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Super-replication

The super-replication plays a cruicial role in this work.
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Abstract. The problem of valuation for contingent claims that can be exer- 
cised at any time before or at maturity, such as American options, is discussed 
in the manner  of Bensoussan [1]. We offer an approach which both simplifies 
and extends the results of  existing theory on this topic. 

I. Introduction 

In an important and relatively recent article, Bensoussan [1] presents a rigorous 
treatment for American contingent claims, that can be exercised at any time 
before or at maturity (in contradistinction to European contingent claims which 
are exercisable only at maturity). He adapts the Black and Scholes [3] 
methodology of duplicating the cash flow from such a claim to this situation by 
skillfully managing a self-financing portfolio that contains only the basic instru- 
ments of  the market, i.e., the stocks and the bond, and that entails no arbitrage 
opportunities before exercise. Under a condition on the market model called 
completeness (due to Harrison and Pliska [7], [8] in its full generality and rendered 
more transparent in [1]), Bensoussan shows that the pricing of such claims is 
indeed possible and characterizes the exercise time by means of an appropriate 
optimal stopping problem, 

In the study of the latter, Bensoussan employs the so-called "penalization 
method,"  which forces rather stringent boundedness and regularity conditions 
on the payoff from the contingent claim. Such conditions are not satisfied, 
however, by tile prototypical examples of  such claims, i.e., American call options. 

The aim of the present paper  is to offer an alternative methodology for this 
problem, which is actually simpler and manages to remove the above restrictions; 

* Research supported in part by the National Science Foundation under Grant No. NSF-DMS- 
84-16736 and by the Air Force Office of Scientific Research under Grant No. F49620-85-C-0144. 
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Overview

I We consider a financial market without any probabilistic or

topological structure but rather with a partial order representing

the common beliefs of all agents.

I In this structure, we investigate the proper extensions of the

classical notions of arbitrage and viability or the economic

equilibrium.

I Our contributions are an extension of classical works of Harrison

& Kreps’79 and Kreps’81 to incorporate Knightian uncertainty

and also the unification of several arbitrage definitions given

recently in model-free finance.

I We prove equivalent conditions for arbitrage and viability.
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What is it ?

Frank Knight in his 1921 book, Risk, Uncertainty, and Profit,

formalized a distinction between risk and uncertainty.

B According to Knight, risk applies to situations where we do not

know the outcome of a given situation, but can accurately measure

the odds.

B Uncertainty applies to situations where we cannot know all the

information we need in order to set accurate odds.

There is a fundamental distinction between the reward for taking a

known risk and that for assuming a risk whose value itself is not

known.
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Uncertain volatility

Suppose the agents consider not one probability measure but

uncountably many of them as possible measures. As an example,

suppose that they consider all volatility processes in an interval

[a, b] as possible but cannot make a precise estimation of it. Let

P = {Pσ} be the set of all such measures indexed by adapted

volatility process σ with values in [a, b].

There is no single dominating measure. Relevant questions ;

B In this context what are the notions of arbitrage or equilibrium ?

B How is a single measure chosen, or is it chosen ?

B How do these measures relate to the preferences of agents ?

6



What is arbitrage ?

In the context of P possible definitions of a tradable contract X

with zero initial cost an arbitrage would be

P(X ≥ 0) = 1, and P(X > 0) > 0.

What do we do here ? How do we quantify P ?
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What is arbitrage ?

In the context of P possible definitions of a tradable contract X

with zero initial cost an arbitrage would be

inf
P∈P

P(X ≥ 0) = 1, and supP∈P P(X > 0) > 0.

or

inf
P∈P

P(X≥ 0) = 1, and infP∈P P(X> 0)> 0.

Which one is appropriate ? or is there such a notion ? Note

inf
P∈P

P(A) = 1, ⇔ P(A) = 1, ∀P ∈ P

⇔ A holds P − quasi-surely.
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Harrison & Kreps

B Harrison & Kreps (1979) consider consumption bundles

(r ,X ) ∈ R× L2(Ω,P),

where r ∈ R is the units of consumption at time zero and the

random variable X ∈ L2(Ω,P) is the consumption at date T .

Important is that P is fixed right at the beginning.

B Kreps (1981) considers a more abstract set-up. Starting point :

B cone of positive contracts K ;

B linear pricing functional π on a subspace M.
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Viability

B A preference relation �∈ Ã provided that it is complete,

convex, continuous and is strictly increasing in K, i.e.,

X ≺ X + k , ∀ X ∈ X , k ∈ K.

B Then a market (X ,K, π,M) is viable if there exists �∈ Ã and

an optimal contract m∗ = 0 satisfying,

m � 0 = m∗, whenever m ∈M and π(m) ≤ 0 = π(m∗).

B The optimal contract being zero is not a loss of generality.

And the condition π(m) ≤ 0 is the budget constraint.
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Extension

Theorem (Harrison & Kreps’79, Kreps’81)

A market is viable if and only if there exists an linear, continuous,

extension ϕ of π to whole of X which is strictly increasing, i.e.,

ϕ(k) > 0, ∀ k ∈ K.

The extension ϕ is the equivalent risk neutral measure. In this

context strict monotonicity implies that ϕ is equivalent.

But ϕ may not be countably additive.
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NFLVR

Delbaen & Schachermayer (1994).

The definition of No Free Lunch with Vanishing Risk (NFLVR) is

that there are no sequences of admissible, predicable processes Hn

so that fn := (H · S)T :=
∫ T
0 Hn · dS satisfies

f −n → 0 uniformly, fn → f ≥ 0, P− a.s. and P(f > 0) > 0.

NFLVR is equivalent to

D(ξ) := inf {r ∈ R : ∃H so that x + (H · S)T ≥ ξ a.s. }> 0,

for every P(ξ ≥ 0) = 1 and P(ξ > 0) > 0.

The deep analysis shows that there is a countably additive

martingale measure iff NFLVR.
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Starting Point

In our set-up,

B agents consider of preferences and not only probabilities and

there is a cloud of preferences that are possible ;

B they are presented with market data, i.e., liquidly traded

contracts and their prices representing a partial equilibrium ;

B there is a unanimous partial order that is consistent with the

cloud of preferences ;

B they also have beliefs.
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Contracts

I L is the set of all Borel measurable random variables and any

X ∈ L represents the cumulative future cash flows.

I ≤ is a partial order on a subspace H ⊂ L.

≤ is not the pointwise order ; although we assume that is

monotone with respect to it. Also

X ≤ Y ⇔ X + Z ≤ Y + Z , ∀ Z ∈ L.

If a probability measure is given, then X ≤ Y iff X ≤ Y , P− a.s.
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Preferences and Market

Let A be the set of a all preference relations (i.e., complete and

transitive) satisfying

I monotone with respect to ≤ ; convex ; weakly continuous.

Up to now, we are now given (H,≤) an ordered vector space.

We now assume that there is a cone of contracts that are liquidly

traded with zero initial cost, denoted by I.

Examples of elements of I are stochastic integrals or liquidly

traded options.
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Relevant or “More”

We need an object replacing the “positive” cone K. These are

contracts that all agents agree to be positive.

We may simply take the set of all positive contracts, i.e., P ∈ P+

if and only if P ∈ P \ Z. Although this is a plausible choice in

some examples it might be too large.

In general, we consider an an arbitrary subset R of P+ and call it

as the set of relevant contracts. We assume all positive constants

are in R.

All agents agree that any contract R ∈ R is positive and as such it

plays the same role as the positive cone.
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Arbitrage

Definition (Arbitrage)

A traded contract ` ∈ I is an arbitrage if there exists R ∈ R,

` ≥ R.

Definition (Free Lunch with Vanishing Risk)

A sequence of traded contracts {`n}n ∈ I is called a free lunch

with vanishing risk if there exists R ∈ R and a sequence of real

numbers cn → 0 so that

`n + cn ≥ R, ∀ n = 1, 2, . . . .
20



Super-replication

We define the super-replication functional by,

D(X ) := inf {c ∈ R : ∃ ` ∈ I so that c + ` ≥ X } .

Note that this is a convex functional and is Lipschitz in the

supremum norm.

Lemma

There are no-free-lunches-with vanishing-risk (NFLVR), if and only

if D(R) > 0 for all R ∈ R.
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Viability - Recall

First recall the definition of Harrison & Kreps : The market

(X ,K, π,M) is viable if there exists �∈ Ã so that

m � 0, whenever m ∈M and π(m) ≤ 0.

Moreover, a preference relation �∈ Ã iff it is convex, continuous

and X ≺ X + k for all X ∈ X , k ∈ K. And K is a cone.

B In our structure R plays the same role as K.

B The set I is given by {m ∈M : π(m) = 0}.
B However, we do not insist on X ≺ X + k.
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Viability extended

A market (H,�, I,R) is viable if there exists �′∈ A so that

`− R �′ −R and − R ≺′ 0, ∀` ∈ I.

The second condition is strict monotonicity at the optimal

portfolio. (Recall that H&K requires X − R �′ X for every X . )

As a corollary to the first condition

` �′ 0, ∀` ∈ I.

This is a manifestation of equilibrium.
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Viability restated

A market (H,≤, I,R) is viable if there exists �′∈ A and an an

optimal portfolio X ∗ ∈ H so that

X ∗ + `− R �′ X ∗ − R and X ∗ − R ≺′ X ∗, ∀` ∈ I.

The weak continuity and first condition above imply that

X ∗ + ` �′ X ∗, ∀` ∈ I.
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Equivalence

Theorem (Burzoni, Riedel, Soner, 2017)

A financial market is viable if and only if there are no free lunches

with vanishing risk.

Proof : Suppose NFLVR holds. Then the super-replication

functional D is convex and proper. We define

X �′ Y ⇔ −D(−X ) ≤ −D(−Y ), X ,Y ∈ H, where

D(X ) := inf {c ∈ R : ∃ ` ∈ I so that c + ` � X } .

Then, one checks easily that �′ has all the required properties.
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Proof continued

B Suppose the market is viable and towards a contraposition

assume that `n + cn ≥ R∗ for some R∗ ∈ R and cn → 0. Then,

−cn ≤ `n − R∗.

B Since �′ is monotone, −cn �′ `− R∗.

B Moreover, by viability `− R∗ �′ −R∗.

B Combining we conclude that

−cn �′ −R∗ ⇒ 0 �′ −R∗.

B This contradicts with −R ≺′ 0 for every R ∈ R.
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Characterization

Theorem (Burzoni, Riedel, Soner, 2017)

Assume L = H is the set of bounded, measurable functions. Then,

(H,≤, I,R) is viable or equivalently NFLVR if and only if there

are linear functionals Q satisfying :

1. (Consistency) ϕ(`) ≤ 0, ∀ ` ∈ I, ϕ ∈ Q;

2. (Absolute Continuity) ϕ(P) ≥ 0, ∀ P ∈ P, ϕ ∈ Q;

3. (Equivalance) ∀R ∈ R ∃ ϕR ∈ Q s.t. ϕR(R) > 0.

So the appropriate extension of the market is achieved by the

following coherent non-linear expectation and not by a linear one,

E(X ) := sup
ϕ∈Q

ϕ(X ).
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Proof

The super-replication functional

D(X ) := inf {c ∈ R : ∃ ` ∈ I so that c + ` ≥ X }

is convex, proper and Lipschtiz continuous. Also it is homogenous,

i.e., D(λX ) = λD(X ) for every λ > 0. By Fenchel-Moreau

D(X ) := sup
ϕ∈Q

ϕ(X ),

where

Q = {ϕ ∈ ba(Ω) : ϕ(X ) ≤ D(X ), ∀ X ∈ H}.

Then, one easily check that Q has the stated properties.

One may call the elements of Q as risk neutral measures.
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Set I

In all of our examples, I contains all stochastic integrals :

In finite discrete time,

` =
T∑

k=1

Hk · (Sk+1 − Sk),

In continuous time,

` =

∫ T

0
Ht · dSt .

Appropriate restrictions on H are placed ; predictable, sometimes

bounded, etc.

We may also add liquidly traded options as wel,

` = h(ST )− price of h.
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Dominated Models

In these class of problems, one fixes a probability space (Ω,F,P)

and stock price process S . Then,

B The partial order ≤ is given through P almost sure inequalities.

B R is the set of P almost-surely non-negative functions that are

not equal to zero.

Then, one obtains equivalent martingale measures. The fact that

they are countably additive is a deep result and depends on results

from stochastic integration.
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Quasi-Sure

In this case we fix a measurable space (Ω,F) and a family of

probability measures P. Then,

B ≤ is given through P quasi-sure inequalities.

B The choice of R is important. The following is used in the

literature but other choices are possible as well, R ∈ R if

infP∈P P(R≥ 0) = 1, and supP∈P P(R> 0)> 0.

Then, the result is the existence of bounded additive measures Q
consistent with I and with full support property, i..e, for every

R ∈ R there is ϕR ∈ Q so that ϕR(R) > 0.
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Countable Additivity

Bouchard & Nutz (2014) considers above set-up with I is the set

of all stochastic integrals and finitely many static options. They

prove that there is no arbitrage iff there exists a set of countably

additive martingale measures Q so that polar sets of P and Q
agree.

Same is proved in continuous time with continuous paths in

Biagini, Bouchard, Kardaras & Nutz.

Burzoni, Fritelli & Maggis (2015) also consider a similar problem in

finite discrete time. They extend the notion of arbitrage and the

proof technique is different.
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Model-independent

One can present these models in two ways :

B P =M1 is the set of all probability measures ;

B Equivalently, ≤ is the pointwise order.

Then, the financial market is given through dynamic hedging with

the stock and also by static hedging through given liquidly traded

options.

The set I is again set of all stochastic integrals and static

positions.

The notions of arbitrage depends on the choice of R.
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Relevant contracts

B R > 0 : Vienna arbitrage.

inf
P∈M1

P(R ≥ 0) = 1, and infP∈M1 P(R > 0) > 0.

B R ≥ 0 everywhere, positive at one point : one-point arbitrage.

inf
P∈M1

P(R ≥ 0) = 1, and supP∈M1 P(R > 0) > 0.

In this case, constructed preference relation is

X �′ Y ⇔ inf
ϕ∈Q

ϕ(X ) ≤ inf
ϕ∈Q

ϕ(Y ).

This preference relation is not strictly increasing in the direction of

R ; it only satisfies,

`− R �′ −R ≺′ 0.
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Robust Arbitrage

In summary, from weakest to strongest we have

I one point arbitrage : strictly positive only at one point Riedel ;

I open arbitrage : strictly positive on an open set

Burzoni, Fritelli & Maggis, and Dolinsky, S. ;

I Vienna arbitrage : strictly positive everywhere ;

I uniform arbitrage : uniformly positive. This is the strongest

possible ; Bartl, Cheredito & Kupper, and Dolinsky, S.

To eliminate uniform arbitrage one finitely additive martingale

measure suffices. While for one point arbitrage, for every point

there needs to be a martingale measure which charges that point.

37



Vienna Arbitrage

Acciaio, Beiglböck, Penker & Schachermayer 2014 consider a finite

discrete time model with Ω = RT
+. In addition to dynamic trading,

a family of European options {hα(ω)} are traded with zero price.

THEOREM. (Acciaio et. al).

Suppose all hα’s are continuous and there is a power option. Then,

there is no arbitrage if and only if there exists a martingale

measure Q consistent with prices, i.e., EQ[hα] = 0 for every α.

Arbitrage is strong compared to Bouchard & Nutz. So the

martingale measures do not have additional properties. In Bouchard

& Nutz, martingale measures also have the same polar sets.
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Smooth Ambiguity

This is related to the notion of smooth ambiguity by Klibanoff,

Marinacci, Mukerji, 2005.

Also robust arbitrage is developed by Cuchiero, Klein, Teichmann.

B P = P(Ω) is the set of all probability measures on (Ω,F).

B Let µ be probability measure on P (i.e., a measure on

measures)

B The partial order is then given by, X ≤ Y provided that

µ (P ∈ P : P(X ≤ Y ) = 1) = 1.
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Smooth Ambiguity

We say R ∈ R if

µ (P ∈ P : P(R ≥ 0) = 1) = 1, and

µ (P ∈ P : P(R > 0) > 0) > 0.

Moreover, a Borel set N ⊂ Ω is µ polar if

µ (P ∈ P : P(N) = 0) = 1.

Let Nµ be the set of all µ polar sets.

Then NFLVR and viability is equivalent to existence of a set of risk

neutral measures Q so that Q polar sets is equal to Nµ.
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Beliefs

I The notions Arbitrage and viability depends crucially on the

partial order and the beliefs (i.e, relevant contracts).

I If the partial equilibrium (i.e., pricing on I) is extended to whole

contracts, this imply that the agents agree one of the preference

relations available to them.

I There are possibly many linear extensions, i.e., the set Q could

be large. This is also the case in incomplete markets. However,

in this case different possibilities may have different null events.
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Technical

I No-Free-Lunch-with-Vanishing-Risk is can be equivalently stated

through the super-replication functional.

I Without much assumption we show the existence of linear

pricing rules that are consistent with the market data, i.e., I.

I However, these functionals are only finitely additive.

I To ensure countably additivity we need to use the structure of I
and in particular stochastic integration as done by Delbaen &

Schachermayer. We also achieve this in finite discrete time as

done is probabilistic models by Bouchard, Burzoni, Fritelli,

Maggis, Nutz. In continuous time by Biagini, Bouchard,

Kardaras, Nutz.
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Conclusions

I We have showed that for partial equilibrium to extend to a larger

set, an appropriate no-arbitrage notion is necessary and

sufficient.

I We extend the classical work of Harrison & Kreps by simply

relaxing a strict monotonicity condition. This relaxation allows

us to incorporate Knightian uncertainty.

I We have shown that equilibrium is possible even in market with

orthogonal preferences.
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