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Goals of this work

Build a “zero-intelligence” Poisson model of the limit-order book
and determine its diffusion limit.

I “Zero-intelligence” — No strategic play by the agents
submitting orders.

I Poisson — Arrivals of buy and sell limit and market orders are
Poisson processes. Exponentially distributed waiting times
before cancellations.

I Maybe a little intelligence — Locations of arrivals and
cancellations depend on the state of the limit-order book.

I Diffusion scaling — Accelerate time by a factor of n, divide
volume by

√
n, and pass to the limit as n→∞.

I Diffusion limit — Evolution of the limiting limit-order book is
described in terms of Brownian motions.

I Computation of statistics – Use the limiting limit-order model
to compute statistics of model dynamics. �
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Partial history

I Cont, R., Stoikov, S. & Talreja, R. (2010) “A
stochastic model for order book dynamics,” Operations
Research 58, 549–563.
Poisson arrivals of buy and sell orders and exponential waiting
times before cancellations. Use Laplace transforms to
compute statistics of the order book dynamics.

I Cont, R. & de Larrard, A. (2013) “Price dynamics in a
Markovian limit order market,” SIAM J. Financial
Mathematics 4, 1–25.
Always a one tick spread and orders queue only at the best
bid and best ask prices. If one of these is depleted, both move
one tick and the book reinitializes. Derive the diffusion-scaled
limit.
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This talk

I We derive the diffusion-scaled limit.

I The order book consists of more than queues at the best bid
and best ask prices.

I We continue through the price change without reinitializing
the model.

I Our limiting model has a two-tick spread at almost every
time, contrary to empirical observations.

I The pre-limit model, which the limiting model approximates,
has more realistic behavior. For the parameters considered
here, there is a one-tick spread 76% of the time.

I We present some computations in the limiting model. �
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Arrivals and cancellations of buy orders

cc

λ2 λ1 λ0

as
k

b
id

I All arriving and departing orders are of size 1.

I Poisson arrivals of market buys at rate λ0. These execute at
the best ask price.

I Poisson arrivals of limit buys at one and two ticks below the
best ask price at rates λ1 and λ2, respectively.

I Cancellations of limit buys two or more ticks below the best
bid price, at rate θ/

√
n per order.

I All processes are independent of one another. �
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Arrivals and cancellations of sell orders

µ2µ1µ0cc

λ2 λ1 λ0

as
k

b
id

I All orders are of size 1.

I Poisson arrivals of market sells at rate µ0. These execute at
the best bid price.

I Poisson arrivals of limit sells at one and two ticks above the
best bid price at rates µ1 and µ2, respectively.

I Cancellations of limit sells two or more ticks above the best
ask price, at rate θ/

√
n per order.

I All processes are independent of one another. �
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Constraints on parameters
In order to have a diffusion limit, among the six parameters λ0, λ1,
λ2, µ0, µ1, and µ2, there are three degrees of freedom. Let a and
b be positive constants satisfying a + b > ab. Then

λ1 = (a− 1)λ0,

λ2 = (a + b − ab)λ0,

µ1 = (b − 1)µ0,

µ2 = (a + b − ab)µ0,

aλ0 = bµ0.

In addition to a and b, there is a scale parameter, which can be set
by choosing µ0.

To simplify the presentation, we set

λ1 = λ2 = µ1 = µ2 = 1,

λ0 = µ0 = λ := (1 +
√

5)/2.

6 / 50



Constraints on parameters
In order to have a diffusion limit, among the six parameters λ0, λ1,
λ2, µ0, µ1, and µ2, there are three degrees of freedom. Let a and
b be positive constants satisfying a + b > ab. Then

λ1 = (a− 1)λ0,

λ2 = (a + b − ab)λ0,

µ1 = (b − 1)µ0,

µ2 = (a + b − ab)µ0,

aλ0 = bµ0.

In addition to a and b, there is a scale parameter, which can be set
by choosing µ0.
To simplify the presentation, we set

λ1 = λ2 = µ1 = µ2 = 1,

λ0 = µ0 = λ := (1 +
√

5)/2.

6 / 50



Limit-order book arrivals and departures
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Transitions of (W ,X )
X

W
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(W ,X ) is null recurrent

⇔ λ = 1+
√
5
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Split Brownian motion

The diffusion scaling of a generic process Q is defined to be

Q̂n(t) :=
1√
n
Q(nt).

Theorem
Conditional on the bracketing processes V and Y remaining
nonzero, (Ŵ n, X̂ n) converges in distribution to a split Brownian
motion

(W ∗,X ∗) = (max{G ∗, 0},min{G ∗, 0}),

where G ∗ is a one-dimensional Brownian motion with variance 4λ
per unit time. �
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Split Brownian motion

U∗ V ∗ W ∗
X ∗ Y ∗ Z ∗
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The other queues

U∗ V ∗ W ∗
X ∗ Y ∗ Z ∗

Br. Motion

d
dt 〈W

∗,W ∗〉t = 4λ,

Br. Motion

d
dt 〈Y

∗,Y ∗〉t = 4λ

d
dt 〈W

∗,Y ∗〉t = 4

Frozen at 1
θ

Frozen at −1
θ

Frozen at 0
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The other queues

U∗ V ∗ W ∗
X ∗ Y ∗ Z ∗

Frozen at 1
θ

Frozen at −1
θ

Frozen at 0

U∗ V ∗ W ∗
X ∗ Y ∗ Z ∗

Jumps to 1
θ

Jumps to −1
θ

Jumps to 0

Starts to diffuse
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The other queues

U∗ V ∗ W ∗
X ∗ Y ∗ Z ∗

V ∗ and X ∗ are in a race to zero.

A. Metzler, Stat. & Probab. Letters, 2010: “On the first
passage problem for correlated Brownian motion.” �
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The other queues

Suppose V ∗ wins.

T ∗ U∗ V ∗ W ∗
X ∗ Y ∗ Z ∗

I Reset the “bracketing processes” to be U∗ and X ∗.

I (V ∗,W ∗) begins executing a split Brownian motion. �
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Snapped Brownian motion

Let’s consider the V ∗ process in more detail.

As long as the “bracketing processes” V ∗ and Y ∗ remain nonzero,
(W ∗,X ∗) executes a split Brownian motion:

(W ∗,X ∗) = (max{G ∗, 0},min{G ∗, 0}),

where G ∗ is a one-dimensional Brownian motion with variance 4λ
per unit time.

U∗ V ∗ W ∗
X ∗ Y ∗ Z ∗

Frozen at 1
θ
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Snapped Brownian motion

Still have the split Brownian motion,

(W ∗,X ∗) = (max{G ∗, 0},min{G ∗, 0}),

but now V ∗ is diffusing.

U∗ V ∗ W ∗
X ∗ Y ∗ Z ∗

Br. Motion
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Snapped Brownian motion

t

G ∗(t)

1
θ

t

V ∗(t)
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θ
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Summary of properties of the limiting model

I At almost every time, there is a two-tick spread (i.e., one
empty tick), but this happens only 24% of the time in the
pre-limit model.

I The queues at the best bid and best ask in the limiting model
form a two-dimensional correlated Brownian motion.

I The queues behind the best bid and best ask in the limiting
model are frozen at 1

θ and −1
θ .

I When the queue at the best bid or the best ask is depleted,
we have a three-tick spread.

I We transition through the three-tick spread using the concept
of a snapped Brownian motion. �
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Renewal states

U∗ V ∗ W ∗ X ∗
Y ∗ Z ∗

T ∗ U∗ V ∗ W ∗
X ∗ Y ∗

V ∗ W ∗ X ∗ Y ∗
Z ∗ A∗

Which way? How long?
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How long to transition between renewal states?
Recall

W ∗ = max{G ∗, 0}, X ∗ = min{G ∗, 0}.

Negative excursions of G ∗: V ∗ diffuses; Y ∗ frozen at -1/θ.
Positive excursions of G ∗: Y ∗ diffuses; V ∗ frozen at 1/θ.

Lengths of positive
excursions of G ∗

Lengths of negative
excursions of G ∗

Local time
of G ∗ at 0

τV

τY
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Calculation of renewal time distribution

I Let p(`) be the probability V ∗ reaches zero during a negative
excursion of G ∗ of length `. Can be computed by adapting
Metzler.

I p(`) is also the probability Y ∗ reaches zero during a positive
excursion of G ∗.

I Four independent Poisson random measures:
I ν±0 (dt d`) – Lengths of positive (negative) excursion of G∗

during which Y ∗ (V ∗) reaches zero. Lévy measure is

µ0(d`) =
p(`) d`

2
√

2π`3
.

I ν±×(dt d`) – Lengths of positive (negative) excursions of G∗

during which Y ∗ (V ∗) does not reach zero. Lévy measure is

µ×(d`) =
(1− p(`)) d`

2
√

2π`3
.
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µ×(d`) =
(1− p(`)) d`

2
√

2π`3
.

41 / 50



Calculation of renewal time distribution

I Let p(`) be the probability V ∗ reaches zero during a negative
excursion of G ∗ of length `. Can be computed by adapting
Metzler.

I p(`) is also the probability Y ∗ reaches zero during a positive
excursion of G ∗.

I Four independent Poisson random measures:

I ν±0 (dt d`) – Lengths of positive (negative) excursion of G∗

during which Y ∗ (V ∗) reaches zero. Lévy measure is

µ0(d`) =
p(`) d`

2
√

2π`3
.

I ν±×(dt d`) – Lengths of positive (negative) excursions of G∗

during which Y ∗ (V ∗) does not reach zero. Lévy measure is
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Calculation of renewal time distribution
I τY = min{t ≥ 0 : ν+0

(
(0, t]× (0,∞)

)
> 0.

I τV = min{t ≥ 0 : ν−0
(
(0, t]× (0,∞)

)
> 0.

I τY and τV are independent.
I We want to know the distribution of

(i) the chronological time T1 corresponding to local time τY ∧ τV ,
(ii) plus the chronological elapsed time T2 in the “last excursion”

beginning at local time τY ∧ τV before Y ∗ or V ∗ reaches zero.

I (i) is

T1 :=

∫ ∞
`=0

∫ τY∧τV

t=0
`ν+×(dt d`) +

∫ ∞
`=0

∫ τY∧τV

t=0
`ν−×(dt d`).

I For (ii), we observe that the distribution of the length of the
“last excursion” is µ0(d`)/µ0((0,∞)).

I Adapt Metzler again to compute the distribution of the
elapsed time T2 in the “last excursion,” conditioned on its
length. �
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Calculation of renewal time distribution

The moment-generating function of T1 + T2 is

E
[
e−α(T1+T2)

]
=

∫ ∞
0

∫ `

0
e−αs

p(s, `)√
2π`3

ds d`

/(√
α

2
+

∫ ∞
0

e−α`
p(`) d`

2
√

2π`3

)
,

where p(s, `) is the conditional density in s of the elapsed time T2

given that the “last excursion” has length `.
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Concluding remarks
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Fredos Papangelou
Emeritus Professor
School of Mathematics
University of Manchester

45 / 50





Vorlesungen über Maβtheorie von F. Papangelou

“Sei I ∗n das nach beiden Seiten um seine zweifache Länge
erweiterte Intervall In.”

English translation:

“Let I ∗n be the
toward-both-sides-for-its-doubled-length-extended interval
In.”
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“Every valley shall be exalted, and every mountain and
hill shall be made low.” — Isaiah 40:4.

“Martingales sprang fully armed from the forehead of
Joseph Doob.” — Karatzas
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If you enounter Greeks bearing gifts....

welcome them with open arms.
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