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Goals of this work

Build a “zero-intelligence” Poisson model of the limit-order book
and determine its diffusion limit.
» “Zero-intelligence” — No strategic play by the agents
submitting orders.
» Poisson — Arrivals of buy and sell limit and market orders are
Poisson processes. Exponentially distributed waiting times
before cancellations.

» Maybe a little intelligence — Locations of arrivals and
cancellations depend on the state of the limit-order book.

» Diffusion scaling — Accelerate time by a factor of n, divide
volume by \/n, and pass to the limit as n — oo.

» Diffusion limit — Evolution of the limiting limit-order book is
described in terms of Brownian motions.

» Computation of statistics — Use the limiting limit-order model
to compute statistics of model dynamics. O



Partial history

» ConT, R., STOoIKOV, S. & TALREJA, R. (2010) “A
stochastic model for order book dynamics,” Operations
Research 58, 549-563.

Poisson arrivals of buy and sell orders and exponential waiting
times before cancellations. Use Laplace transforms to
compute statistics of the order book dynamics.
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Partial history

» ConT, R., STOoIKOV, S. & TALREJA, R. (2010) “A
stochastic model for order book dynamics,” Operations
Research 58, 549-563.

Poisson arrivals of buy and sell orders and exponential waiting
times before cancellations. Use Laplace transforms to
compute statistics of the order book dynamics.

» CoNT, R. & DE LARRARD, A. (2013) “Price dynamics in a
Markovian limit order market,” SIAM J. Financial
Mathematics 4, 1-25.

Always a one tick spread and orders queue only at the best
bid and best ask prices. If one of these is depleted, both move
one tick and the book reinitializes. Derive the diffusion-scaled
limit.
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This talk

» We derive the diffusion-scaled limit.

» The order book consists of more than queues at the best bid
and best ask prices.

» We continue through the price change without reinitializing
the model.

» Our limiting model has a two-tick spread at almost every
time, contrary to empirical observations.

» The pre-limit model, which the limiting model approximates,
has more realistic behavior. For the parameters considered
here, there is a one-tick spread 76% of the time.

» We present some computations in the limiting model. Il
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Arrivals and cancellations of sell orders
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» All orders are of size 1.

> Poisson arrivals of market sells at rate pg. These execute at
the best bid price.

» Poisson arrivals of limit sells at one and two ticks above the
best bid price at rates p1 and o, respectively.

» Cancellations of limit sells two or more ticks above the best
ask price, at rate 6/,/n per order.

> All processes are independent of one another.
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Constraints on parameters
In order to have a diffusion limit, among the six parameters \g, A1,
A2, o, p1, and po, there are three degrees of freedom. Let a and
b be positive constants satisfying a+ b > ab. Then

M= (a— 1),

A2 = (a+ b—ab),
pr = (b—1)uo,

p2 = (a+b— ab)uo,
alog = buo.

In addition to a and b, there is a scale parameter, which can be set
by choosing .

6
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Constraints on parameters

In order to have a diffusion limit, among the six parameters \g, A1,
A2, o, p1, and po, there are three degrees of freedom. Let a and
b be positive constants satisfying a+ b > ab. Then

A1
A2
M1

H2
a)\o

(a — 1))\0,

(a+ b — ab)o,
(b —1)po,
(a+ b— ab)uo,
buyg.

In addition to a and b, there is a scale parameter, which can be set

by choosing .

To simplify the presentation, we set

AM=X=p=p2=1,
)\OZ,UOZ/\::(l—i-\/g)/Q.

6
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Limit-order book arrivals and departures
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Transitions of (W, X)
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Transitions of (W, X)

(W, X) is null recurrent
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Split Brownian motion

The diffusion scaling of a generic process Q is defined to be

Q"(t) == —Q(nt).
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Split Brownian motion

The diffusion scaling of a generic process @ is defined to be

o (t) = %Q(nt).

Theorem
Conditional on the bracketing processes V and Y remaining
nonzero, (W", X" ) converges in distribution to a split Brownian
motion

(W™, X*) = (max{G™*,0}, min{G",0}),

where G* is a one-dimensional Brownian motion with variance 4\
per unit time. O

50



Split Brownian motion
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The other queues

Frozen at §—» Br. Motion
Frozen at 0\.
X* Y* 7%
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Br. Motion
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The other queues

Frozen at %—»

F t0
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/ Starts to diffuse
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32/50



The other queues
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The other queues

X* Y* z*

ur v wr

V* and X* are in a race to zero.

A. METZLER, Stat. & Probab. Letters, 2010: “On the first
passage problem for correlated Brownian motion.”
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The other queues

Suppose V* wins.

X* Y zZr

> Reset the “bracketing processes” to be U* and X*.

» (V*, W*) begins executing a split Brownian motion. O
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Snapped Brownian motion

Let's consider the V* process in more detail.
As long as the "bracketing processes” V* and Y* remain nonzero,
(W*, X*) executes a split Brownian motion:

(W*, X*) = (max{G*,0},min{G",0}),

where G* is a one-dimensional Brownian motion with variance 4\
per unit time.

Frozen at %—»

X* Y* zF
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35/50



Snapped Brownian motion

Still have the split Brownian motion,
(W*, X*) = (max{G*,0},min{G",0}),

but now V* is diffusing.
/ Br. Motion

X* Y* zr

ur v wr
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Snapped Brownian motion
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Snapped Brownian motion
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Summary of properties of the limiting model

> At almost every time, there is a two-tick spread (i.e., one
empty tick), but this happens only 24% of the time in the
pre-limit model.

» The queues at the best bid and best ask in the limiting model
form a two-dimensional correlated Brownian motion.

» The queues behind the best bid and best ask in the limiting
model are frozen at % and —%.

» When the queue at the best bid or the best ask is depleted,
we have a three-tick spread.

» We transition through the three-tick spread using the concept
of a snapped Brownian motion. O
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Renewal states

Y* zZ*
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X* Y*

v wr X*

Which way? How long?

Y*

Z*
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» Let p(¢) be the probability V* reaches zero during a negative
excursion of G* of length £. Can be computed by adapting
Metzler.

» p({) is also the probability Y* reaches zero during a positive
excursion of G*.

» Four independent Poisson random measures:

» vz (dt df) — Lengths of positive (negative) excursion of G*

during which Y* (V*) reaches zero. Lévy measure is
p(0) d¢
dl) = .
po(dl) o /orl3

» vE(dt dl) — Lengths of positive (negative) excursions of G*
during which Y* (V*) does not reach zero. Lévy measure is

(1—p(6)) dt

dl) =
px(dh) 20/ 2703
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Calculation of renewal time distribution
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v = min{t >0: v ((0,t] x (0,00)) > 0.
Ty and Ty are independent.
We want to know the distribution of
(i) the chronological time Ty corresponding to local time 7y A Ty,

(ii) plus the chronological elapsed time T; in the “last excursion”
beginning at local time 7y A 7y before Y* or V* reaches zero.

(i) is
[e%e) Ty ATy [e%¢} Ty ATy
T ::/ / Zuj(dtdﬁﬂ—/ / (v (dt di).
=0 Jt=0 ¢=0 Jt=0

For (ii), we observe that the distribution of the length of the
“last excursion” is po(d?)/uo((0, 00)).

Adapt Metzler again to compute the distribution of the
elapsed time Ty in the “last excursion,” conditioned on its
length. O
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Calculation of renewal time distribution

The moment-generating function of T1 + T5 is

E |:e—oz(T1+T2):|

- et/ (V5 [ )

where p(s, ¢) is the conditional density in s of the elapsed time T,
given that the “last excursion” has length /.
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Concluding remarks
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1.6. Outline of the paper

This paper is aimed at readers with a good command of probability and stochastic
processes, but no particular knowledge of economics. On the former dimension, we
assume familiarity with the Strasbourg theory of martingales and stochastic integra-
tion, as developed in the definitive treatise by Meyer [32]. This assumption is perhaps
unrealistic, but we cannot provide a systematic tutorial on stochastic integrals and an
adequate treatment of our nominal subject matter in a reasonable amount of space._

(Also, the former task is best left to others. We are working dangerously close to the]
boundaries of our knowledge as things star@[Most of this paper will be accessible to

those who know about stochastic integrals with respect to Brownian motion, and the
rest should come into focus after a little study of thé relevant foundational material.
(On first reading, specialize general results to the case where S is an Ito process.) To
facilitate such study, we consistently refer to Meyer [32] by page number for basic
definitions and standard results, and his notation and terminology are used wherever
possible. For a nice overview of the Strasbourg approach to stochastic integration,
plus some new results and illuminating commentary, see the recent survey by
Dellacherie [9] in this journal. A comprehensive treatment of stochastic calculus is
given by Jacod [18], and it appears that the second volume of Williams [38] will be
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Vorlesungen tiber Maftheorie von F. Papangelou

“Sei I das nach beiden Seiten um seine zweifache Lange
erweiterte Intervall I,.”

English translation:

“Let I} be the
toward-both-sides-for-its-doubled-length-extended interval
/n . 12
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“Every valley shall be exalted, and every mountain and
hill shall be made low.” — Isaiah 40:4.
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“Every valley shall be exalted, and every mountain and
hill shall be made low.” — Isaiah 40:4.

“Martingales sprang fully armed from the forehead of
Joseph Doob.” — Karatzas
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If you enounter Greeks bearing gifts....
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If you enounter Greeks bearing gifts....

welcome them with open arms.
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