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Motivation

Game theoretic approach formulates probability / math finance without
measure theory.

@ Kolmogorov's approach powerful but sometimes not well justified
(frequentist vs subjective probability).
@ Martingales usually introduced as “fair games”:

» not obvious from definition;
» which parts of martingale theory come from “fair game" description,
which from measure theoretic modelling?

@ Model free math finance also eliminates reference probability =
connections to game-theoretic approach.
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Scope of Vovk's approach

Vovk's Vovk '08 approach
@ convenient book-keeping for model free math finance.
@ qualitative properties of “typical price paths”:
variation regularity Vovk '11, quadratic variation Vovk '12, Vovk '15,
tochowski-P.-Prémel '16, local times P.-Promel '15, rough paths P.-Prémel '16.
@ measure free stochastic calculus:
P.-Promel '16, tochowski '15, Vovk '16, tochowski-P.-Promel '16,

@ quantitative results:
pathwise Dambis Dubins-Schwarz theorem Vovk '12;
model free pricing—hedging duality Beiglbock-Cox-Huesmann-P.-Promel '15,
Bartl-Kupper-Promel-Tangpi '17.
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Outline

@ Definition and basic properties
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Vovk's approach

o Q:= C([0,00),R) (or C([0, T],R), D4 ([0, T],RY), ...);
® Si(w) = w(t); Fir=0(Ss:s < t);
@ simple strategy H:
> stopping times0 =1 <71 < ...
» F, -measurable F,: Q — R.
o Well-defined integral:

(H-S)e(w ZF W)[Srpant(w) = Sryne(w)]

H is A\-admissible (€ H.,) |f (H -S)e(w) > —AVw, t.
Definition (Vovk '09 / P-Promel '15)

Outer measure P of AC Q is

P(A) = inf {A  3(H)n © Ha st liminfA+(H"S)oo () > ]lA(w)Vw}.

Game-theoretic martingales are the capital processes A + (H - S), H € H,.
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Link with measure-theoretic martingales

Lemma (Vovk '12)

sup P(A) < P(A), Ae F.
P MM

e For A > P(A) we find (H") C H, with
Ta(w) <liminf(A + (H" - S)oo(w)).

n—oo

@ Throw martingale measure P at both sides:

P(A) < Ep |liminf(A + (H" - S)x)
< liminfEp [(A + (H” - S)oo)] < A
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Link with (NA1)
e By scaling: P(A) = 0 iff 3(H") C H; with

liminf(1 4+ (H" - S)s) > 00 - 1 4.

n—o00

@ Recall: P satisfies (NA1) (= (NUPBR)) if
{1+(H-S)e: HeE M1}
bounded in P-probability.
o supp (ya1) P(A) £ P(A), but:

Lemma (P-Promel '15)
Let A€ Fuo. If P(A) =0, then P(A) = 0 for all P with (NAL).

(NA1) is minimal assumption any market model should fulfill.

(Ankirchner '05, Karatzas-Kardaras '07, Ruf '13, Fontana-Runggaldier '13, Imkeller-P. '15...)
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© Overview of some nice results
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Typical price paths

Property (P) holds for typical price paths if it is violated on a null set.

Observations due to Vovk:
@ Typical price paths have no points of increase.
@ Typical price paths have finite p-variation for p > 2.

e Typical price paths have a quadratic variation [S].

Observations due to P.-Promel:
@ Typical price paths are rough paths in the sense of Lyons.

@ Typical price paths have nice local times.
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Typical price paths have quadratic variation

o0

[SI12:= ) "(Srp ne — Seone)’

k=0
= 52 50 -2 Z 5‘I'”/\t Tk+1 ST/:,/\t)

=5t—50—2(5"' S)t

@ Deterministic 7/: no chance for convergence.

o Set 7§ =0, 7,y =inf{t > 77 [St — Spp[ > 27"}

o [S]FFh —[S]7 =2((8" — §"*1) - S)e.

e Bounds on (5" — S"*1) and ST,g =S
+ a priori control on #{7 : k}
+ pathwise Hoeffding inequality:
convergence of [S]"(w) for typical price paths w Vovk '12
(continuous paths or bounded jumps).
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Pathwise Dambis Dubins-Schwarz Theorem

Q = C([0,00),R), define time-change operator t: Q — Q:
[t(w)]e =t, te€]0,00).

Theorem (Vovk '12)

W Wiener measure, F > 0 measurable, ¢ € R:

EI(F 0 s, 5] o] = /Q Flc + w)W(dw),
where

E(F) := inf {)\ S 3(H")n C Hy st liminf(A+(H" - S)ao(w)) > F(w)Vw}.

v
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© Measure free stochastic calculus
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Model free concentration of measure
Q= C([o, T],RY).

@ Want “stochastic integral”.

@ For step functions F ok. Extension?

Lemma (Lochowski-P.-Promel '16)
F adapted step function, then

)
P(IF-Sll > avB, [ FF%ls]: < b) < 2e47,
0

Pathwise Hoeffding: ai,...,a, € R with |a,| < ¢, then VA there exist
by = bg(al, ...,d0—1,C, )\) with

4 l )\2
1+ Z brax > exp ()\Z ak — ?€C2) Ve.
k=1 k=1

Now discretize S and apply Hoeffding.
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Topologies on path space

o dov(F,G) = E(fOT(Ft — G)®2d[S]; A 1):
complete metric space of integrands.
0 duo(X,Y):=E(|X = Y| A1):
complete metric space of (possible) integrals.
e F+— F -5 continuous on (step functions, dqyv), extends to closure.

@ No idea how closure looks like. Need to localize:
0 o T
dovioc(F. G) = > 2—"5((/ (F: — G)®2d[S]; A 1)]1[5]T§n>.
n=1 0

Now closure contains caglad paths, open problem if also bounded
predictable processes.

@ Convergence of integrals for typical price paths, It6's formula, integral
is independent of approximating sequence, ...
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What about jumps?

Strategy H is A\-admissible if

o0

(H-S)e(w) =Y Fa(@)[Srpine(@) = Srpe(@)] = =X Vt,w.
n=0

e Q= D([0, T],R9): no admissible H!
o (Q paths with bounded jumps: Vovk '12.
Canonical: D, ([0, T],R?) (positive cadlag paths).
@ means no short-selling;
e want [S], but all constructions of [S] use short-selling.

o Way out: relax problem to allow “little bit of short-selling”. Take
relaxation away = [S] ex for typical positive cadlag price paths
tochowski-P.-Promel '16.
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Integration with jumps

Q = Ds, ([0, T]de)'
@ Again canonical definition of F - S for step functions F. Extension?
o Pathwise Hoeffding no longer works: £, (S, ., — S;,) unbounded.

Instead: pathwise B-D-G inequality of Beiglbsck-Siorpaes '15
ai,...,an € R, then there exist by = by(a1,...,as—1) with

From here:

-

_ b+2

P(IF Sz a [ FEASI < b F <€) <1+ 5o VB2
0

Extension to caglad F as before.
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@ Pathwise stochastic calculus
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Pathwise stochastic calculus

@ Measure free calculus excludes “nontypical price paths” at every step
= not pathwise.

Féllmer '81: pathwise 1t calculus.

Lyons '98 and Gubinelli '04: generalization to rough paths.

Can we implement / extend this here?
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Pathwise 1t6 formula (no probability)

Consider f € C2(R, R), partition 7. Taylor expansion:

F(S(t) - £(S )—Zf (t11)) — F(5()))

= 30 PSS () = S(5) + 5 3 PSS (te0) = S(6)?
+3 @S(t) = S(ED(S(t4) — S(6)2.

tiem
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Pathwise 1t6 formula (Follmer (1981))

S has quadratic variation along sequence of partitions (7") if

> (8(t41) = S())3s,

t;em”
converges vaguely to (non-atomic) p. Write [S](t) := u([0, t]).

Theorem (Follmer '81)

If S has quadratic variation along (") and f € C?, then

F(5(1)) = £(5(0)) /f’(S(s) ds(s) + /f”(S(s))d[Sl(s).
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Pathwise 1t6 formula

Without probability Follmer constructed

J; 7StsMSts) = im. 32 A(SCENS(51.10) =S 1),

Natural (pathwise) extensions:

@ Higher dimensions:
Lyons '98, Gubinelli '04, P.-Promel '16

@ Path-dependent functionals f:

Cont-Fournié '10, Imkeller-Promel '15

© Less regular functions f:
Wouermli '80, P.-Prémel '15, Davis-Obtdj-Siorpaes '15

= Applications to robust and model-free finance:
Bick-Willinger '94, Lyons '95, ..., Davis-Obtéj-Raval '14, Schied-Voloshchenko '15,.
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Pathwise Tanaka formula (Wuermli (1980))
Let f(x) = [, f'(y)dy and b > a:

F(b) — f(a) = '(a)(b — a) + / (F(x)

(a,8]

—F@b-a)+ [ (b= 0)df ()

(a,8]

So for S € C([0,00),R) and any partition 7:

F(S(t) =Y F(S(t A1) (S(tigr At) — S(tj At))
tiem
/ 3 ( 5600 5(6 a0 (DS (G A £) — u|)df'(u).
o tier
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Pathwise local time

Define discrete pathwise local time

LF(S,u) =) Uys(gne)sigaunnn(U)IS(ta1 A t) — u].

tiem

Then:

F(S(1) = £(5(0) = D F/(S(t A )(S(tj41 A 1) = S(t A t))

tiem

+/00 LT(S, u)df'(u).

Nicolas Perkowski Game-theoretic math finance 23 /31



LP-local time

Let (7") be sequence of partitions with mesh size = 0.
L(S): [0,00) x R — R is a LP-local time of S along (7")
if LT"(S, ) converge weakly in LP(du) to L:(S,-) for all t € [0, 00).

Theorem (Wuermli '80, Davis-Obtéj-Siorpaes '15)
For f € W29 (Sobolev space) with 1/q + 1/p = 1 we have

F(S()) = F(S(0)) + /0 F1(5(5))dS(s) + / T ) Le(S, u)du.

—00

Remark: Existence of LP-local time implies quadratic variation along (7).
Converse is wrong!
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Continuous local time

Let (7") be sequence of partitions with mesh size = 0.

S has a continuous local time along (7") if
e LT"(S,-) converges uniformly to continuous limit L(S,-) Vt,

o (t,u) — L¢(S,u) is continuous.

Theorem (P.-Prémel '15)
Let f be absolutely continuous with f' of bounded variation. Then

oo

f(S(t)):f(S(O))—i—/0 f’(S(u))dS(u)—i—/ Le(u)df'(u).

—00
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Local time of finite p-variation

Recall

n 1/p
[l povar = sup { <Z \f(uk)—f(uk_1)|”> L 00 < Uy < o < Uy < oo}.
k=1
For p > 1 the set L. ,(7") consists of all S € C([0, T],R)

@ having a continuous local time L¢(S, u) with

o discrete local times (L?") of uniformly bounded p-variation, uniformly
inte [0, T]forall T >0, ie.

sup sup HL?"(-)H,J_Var < 00.
neN t€[0,T]

Nicolas Perkowski Game-theoretic math finance 26 / 31



Pathwise generalized It6 formula

Theorem (P.-Prémel '15)
Let p,q > 1 be such that /% + %l >1andletS e Lp(n").

Let f: R — R be absolutely continuous with f' of locally finite g-variation.
Then

F(S(1)) = F(S(0)) + /0 F(S(s))dS(s) + / " L(u)df(u),

where df’(u) denotes Young integration and where

/ FS())AS(s) == lim 3™ F(S(E))(S(ta A £) — S(t A D))
t€7r"
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But do such nice local times exist?

Consider Q = C([0, T],R) and define random partition 7" via
79 :=0, Tpp = inf{t > 70 0[S — S| > 27"

Then
LF'(S,u) = (St —u)” —(So—u)” + Z]l( o0,u)(Srn)[Srn ne = Sronel,
where we recall that

oo
= Zo ]lqsﬂ'f’/\tvsTjﬂl/\t]](u)‘STjﬂ»l/\t - ul.
J=
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Local times for typical price paths

Theorem (P.-Prémel '15)
Let T >0, o € (0,1/2). For typical price paths w € Q,

o the discrete local time L™ converges uniformly in (t,u) € [0, T] x R
to a limit L € C([0, T], C*(R)),
o there exists C = C(w) > 0 with

IL™ = L|| (oo, Tyxr) < €27,
o L™ has uniformly bounded p-variation for p > 2:

sup sup ]|L?n(~)]|p_var < 00.
neN t€[0,T]
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Conclusion

@ Vovk formulates continuous time math finance without probability.

@ Get interesting properties of “typical price paths”...

@ ...but also quantitative results (pathwise Dambis Dubins-Schwarz,
model free pricing-hedging duality).

@ Probability free stochastic calculus based on model free analogues of
[t6's isometry.

@ Pathwise calculus of Follmer extended via pathwise local times, those

exist for typical price paths.
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Thank you
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