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Motivation:

On (Q,F,(F:),P) let us consider RY -valued diffusion process
(X1(t),..., Xn(t)), 0 <t < oo induced by the following
random graph structure.

Suppose that at time 0 we have a random graph of N vertices
{1,..., N} and define the strength of connections between
vertices ¢+ and j by Fg-measurable random variable a; ;
(whose distribution may depend on N ) for every
1<2#37<N andfix a;; = 0 for 1 <12 < N. We shall
consider

N
4Xi(t) =~ >y (Xi(8) — X,(8) dt + dB.(8);
=1

fore=1,...,N, t>0,



where (51(t),..., By(t)), t > 0 is the standard
N -dimensional BM, independent of (X;(0),...,Xn(0)) and of
the random variables (a;;)i<sj<n -

The randomness determined at time 0 affects the diffusion
process (Xi(:),..., Xn(*)).

Deterministic A in the context of financial network :
CARrRMONA, FouQue, Sun (’13), FouQue & IcHiBA (’13), ...

The system is solvable as a linear stochastic system for
X() = (X)), Xn())-

Let AW) := (a;;)1<;j<ny bethe (N x N) random matrix and
B(-) be the (N x 1)-vector valued standard Brownian motion.



Then the system can be rewritten as

(N)

dx(t) = A" x(t)dt +dB(1),

1
A N Dlag( (M1y) - WA(N) )

where 1y is the (N x 1) vector of ones, and Diag(c) is the
diagonal matrix whose diagonal elements are those elements in
the vector c¢. Note that each row sum of elements in the
matrix A" is zero by definition, i.e.,

(N N
agz) - _Za(J)
37
for each 7 = 1,..., N, where M) s the (z,7) element of the

l!]
random matrix Z(N) .



The solution to this linear equation is given by

X(t) = e A (X(0)+/()t A" dB(s)); t>0.

()
Here we understand e?4 = is the (N x N) matrix exponential.

Given the initial value X (0) and At , the law of X (-) is

conditionally an N -dimensional Gaussian law with mean

_tZ(N) . . . (N)
e X(0) and variance covariance matrix Var(X(t)|A"/).

Q. How to understand the case N — oo of large network, i.e.,
what happens if N — o0 ?

For example, if 2 Na—s> 2 and
—00



if EE?) =—-1lforg=1+1, az(zo) =1, o,i(:;o) =0, o.w,, ie,

dXi(t) = (X2(t) — Xa(¢))dt + dWA(?),
dXo(t) = (X3(t) — Xo(¢))dt + dWa(?),

then how can we solve?

e Finite N case: FERNHOLZ & KARATZAs ('08-'09) studied
flow, filtering and pseudo-Brownian motion process in equity
markets.



Example as N — oo

For simplicity let us set X;(0) = 0. Given Xj(-), we have

X1(t) :/0 ~(=) X5(s) ds+/ ~=9)4By (s),

and also, given , we have

X(s) :/0 e (s7u) du+/ (s=wd By(u)

for ¢t > 0, and hence substituting X5(-) into the first one,

Xl(t):/ ~(t-9)4B(s +// ()4 By(u)ds
_I_/ (ts)/ —(s—u) du

for t > 0.



By the product rule for semimartingales, we observe

/ / W) 1dB(u)ds = /Ot e“(t_ku)kdB(u),

for k € N, t > 0, and hence

/Ot /0 e“dB(u)ds = /ot et (t — w)dB(u),
/Ot/Ok/ol e*dB(u)ds; - - -dsy, = /Ote ngB( u)

for k € N, t > 0. Thus for the above example we have

o0

. k —(t—u (t_u)k
Xi(t) = kz‘;/o et -8By (u)

for t > 0.



o0

. t —(t—u (t_u)k
Xi(t) = kzo/o et -8By (u)

is a centered, Gaussian process with covariances
o0 s e2u
B (0] = e Y [Tt (s —whe - w)hau
izo’o (K

= e_(t_s)/ e 2V Ip(24/(t — s + v)v)dv
0

for 0 < s < t, where Iy(-) is the modified Bessel function of
the first kind with parameter 0, i.e.,

et T\ 2k+v 1
L(z) == kZ:O (5) N+ 1)I(v+k+1)

for z >0, v>—1.



In particular,
t
Var(Xi(t)) = / e 2V Ip(2v)dv = te 2*(Io(2t) + [1(2t)) < o0
0
(it grows as O(t/?) for large t, also,

E[X1(s)X1(s + t)] = O(e 12V (EHs)s)p=1/4) y

Thus Xi(-) is not stationary.
The (marginal) distribution of Xj(-), k& € N is the same as
Xi(+), and hence, we may compute (at least numerically)

BUG(0Xa(w)] = [ e IED(s) Ko (w))ds

t
:/ et =B [ Xy (s) Xy (u)]ds
0
and recursively, E[X;(t)Xg(u)], k €N for 0 < ¢,u < 00.

10



Sample path of (X;(:), X2(:)) generated from the covariance
structure.

Xa(")

t
xl(t)zfo ~(1-9) X, (s ds+/ (=94 By (s),

for t > 0 and Law(X;(-)) = Law(X2(")).
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Weighted by Poisson probabilities

An interpretation of

e t

Z/O e : k:. Ll ————dBgt1(u)

[e o)

t
= Y [ pu(t - wdBa(w)
k=0 0
for t > 0:

Suppose N(s), 0 < s <t is a Poisson process with rate 1,
independent of (Bg(-),k € N). Then

Xi(t) = E i tl{N(t—u):k}dBkJrl(u’) F(t)
0
k=0

where F(t) := o(Bi(s),0<s<t,keN), t>0.
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If we replace the Poisson probability by
compound Poisson probability, i.e.,

N(t)

ng)

where (€, k € N) are I.I.D. integer -valued R.V.’s with
P(éy = 1) = p;, 1<1<q, 27 p, =1 for some g €N,
independent of N(:) and (Bgk(-),k € N), then

yl(t) = E[i/ot 1{:7\7(t_u):k}dBk+1(U)‘F(t)]
k=0

0 ¢
- ;;‘o /0 Fe(t — w)dByi1(u),

where
ak

Bu(t) = o [exn (L mit(s )]

1=1

z2=0

for keN, t>0

13



corresponds to the modified matrix

o -1 p1 p2 -+ pg O
A= 0 1 p om Pq

and
dXe(t) = +sz i+&(t)) dt + dBy(t)

with X;(0) = 0 for £k € N, ¢t >0.
e In particular, if ¢ = 2, p; = p; = 1/2, then

lk/2] e—ttk—i

Pe(t) = ]2% =g t>0,keN.
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Another modification:
dX;(t) = (Xi(t) — Xo(¢))dt + dBu(t),

dXo(t) = (Xo(t) — X3(¢))dt + dBa(t),

We may use the same reasoning in this case to obtain

st _1Yk(+ _ s k
Xl(t) = /Ot l;) et_s . (1)(kt!)dB1H,1(S)

with exponentially growing variance

Var(X:(t)) = te®*(I(2t) — I,(2t)); t>0.
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A formulation of equation with identical distribution

Let us consider (2, F,P,{F(t),t > 0}) on which Xp(-) is an
adapted stochastic process which is a weak solution to

dXo(t) = b(t, Xo(t), X1(t))dt + o(t, Xo(t), X1(¢))dBo(t); t >0,

where r-dimensional standard Brownian motion By(:) is
independent of d-dimensional process Xj(-) which has the
same distribution as Xo(-) on [0, T i.e.,

Law(Xo(s),0 < s < T) = Law(X;1(s),0<s < T),
and also P a.s. Xo(0) = 2o € R% and
T 2
/O (16(t, Xo(2), Xa (O + [l (2, Xo(2), X1(8))[7)dt < +o0
for 1<1<d,1<j53<7r and T > 0. Here we assume

16



b:R, xR?xR? =5 R?% and 0: R, x R x R — RI*" are
Lipschitz continuous with at most linear growth, i.e., there exist
a constant K > 0 such that
16(¢,z,y) — b(¢, Z,9)|| + lo(¢, z,y) — o(t, Z, )| < K(llz - Z| + ||y -
and

16(t, 2, Y)II” + llo(t, z, y)II> < K21+ [[z]” + [|y]1*)
for every (t,z,y) € Ry x RY x R4,

We also assume that X;(-) is adapted to the filtration
{F1(t),t > 0} generated by the Brownian motions
(B(t),k > 1,t > 0) augmented by the P-null sets.

We shall solve this system with distributional identity.
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e When b(t,z,y) = z —y and o(t,z,y) = 1, it reduces to
the first example

Xl(t):/o —(t= ds—i—/ —(t=s)dBy(s); t>0.

o In the linear case we may consider the corresponding Al

to the example of the block matrix form
Aii Aia O
A = | 0 Ay A 0

o It looks similar to the nonlinear diffusion
dX(t) = b(X(¢), EIX (1))t + o(X(¢), EIX(O)))AB(t), ¢>0

of mean-field which appears as Mckean-Vlasov limit of
interacting particles (MCKEAN (’67), KAc ('73), SZNITMAN
('89), TANAKA (’'84), SHIGA & TANAKA (’85), ... ), but is

different.

1



Proposition.
On some probability space (2, F,P,{F(t),t > 0}) thereis a
unique weak solution to

dXO(t) = b(t’ XO(t)’Xl(t))dt + U(t) XO(t)) Xl(t))dBO(t)1 t Z 0,
with Law(X;(t),0 <t < T) = Law(Xp(t),0 <t < T) and
a(t) = E[ sup [|Xo(s) - Xa(s)|I”]; ¢ >0

0<s<t

satisfies
t t s
/ a(s)d5+/ ﬂoeﬁo(t_s)</ a(u)du)ds < cra(t),
0 0 0

for 0<t< T, T >0, where By := 4K%(A1+ T),

1 — elco—Bo)T

co := 9max(1, K} (A + T)AV T)), ¢ = ——F——
co — Po

and A; is a global constant form the

BURKHOLDER-DAVIS-GUNDY inequality.
10



Idea of proof:
Given By(-) and Xj(-), we may construct Xo(-) by the
method of PICARD iteration, i.e., there exists a map

% : C([0,00),R%) x C([0,00),R") — C([0, 0), R%)

with Xo(t) = th(Xl;BO) for tZ 0.
We shall find a fixed point of &.(-, By), i.e.,

Law(Xi(:)) = Law(®.(X1, By)) = Law(Xo())
by evaluating the Wassestein distance

Wa,r(u, B) = inf E,[ sup ||€(¢) —&(¢)I1%]
0<t< T

where p = Law(¢(-)), & = Law(¢(-)) and the infimum is taken
over the joint law v of (£(:),&(:)), and using Banach fixed
point theorem.



t

6 = {a(-) : /0 a(s)ds—k/ot ﬂoeﬁo(ts)(/os a(u)du)ds

<ca(t),0<t< T |

e Note that ¢y > fo, (1 — e (©0=F)T) /(cy—Fp) <1 and,
ai(t) := e®! satisfies

t t s
/ al(s)ds—i-/ ﬂoeﬁo(t’s)</ al(u)du)ds = qai(t), 0<t< T,
0 0 0

and so, a1(-) € G and & is non-empty.

If fe &, then c-f € & for every positive constant ¢ > 0.
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Also, if f,g€e &, then a-f+(1—a)-g €S for every
a € [0,1], and hence, & is convex.

Moreover, since (1 — e (#=#0)T) /(2 — By) is a non-decreasing

function of z for z > By,
as(t) := et with 0 < ¢ < co satisfies

[ as(yass [ ot [ as(uian)as =

<am(t); 0<t<T,

1— e*(czfﬂo)T

c2 — Po

'az(t)

and hence az(-) € S for every 0 < ¢ < ¢p.
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o We may extend to the case of the form
dXO(t) = b(t7 XO(t)x ceey Xq(t))dt+0(t, XO(t)7 SRR Xq(t))dBO(t)

with Law(Xo(-)) = Law(Xi1(-)) = -+ = Law(X,(-)) for some
g € N and with Lipschitz coefficients, where X;(-) is adapted
to the filtration generated by (Bk(-),k > ¢) for 7 € N.
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Coming back to the diffusions on the graph

e We say the infinite dimensional matrix z = (z;;)(; j)enz is
row-finite if for each ¢ € N there is k(z) € N such that
z;; = 0 for every j > k().

e We say the infinite dimensional matrix z = (z;;)(;,j)enz 18
uniformly row-finite, if there is nyp € N such that z;; = 0 for
every ¢ € N and every j with |1 —j| > ng.

e We also say the infinite dimensional matrix (z;;)(; )enz is
(uniformly) column-finite, if its transpose (:1:”)2 ij)ene 18
(uniformly) row finite.

e Let us denote by A the class of uniformly positive definite,
bounded, infinite dimensional matrices which are both
uniformly row and uniformly column finite.
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e Suppose that there exist u > d > 0 such that all the

eigenvalues of Z(N) are bounded above by u and below by d

for every N, and as N — o0, each (z,7) element EE’J}” of

Z(N) (o0)

converges to an (7,7) element @, of fixed matrix

A1) ¢ A almost surely for every (1,7) € N2 ie.,
o =(N) _ —(o0)
ngnoo a, ;' =a;; .

e Assume the first k elements X(*)(0) = (X31(0),..., Xx(0))
of initial random variables X(¥)(0) converges weakly to an
R* -valued random vector n(¥) for every k € N.

e We also assume that supy E[||X%")(0)||4] < co for every
keN.

25



Then for every K € N and T >0, as N — oo, the law of the
first k elements XM () = (X1(),..., Xx()) of

XY = (X1(),..., Xn(-)) converges weakly in C([0, T7)
to the law of the first & -dimensional stochastic process

YE)() i= (Yi(),. .., Yk("))" of Y(-) := (Vi(*))icy defined by

Y(t) = e_tA(OO)(Y(O)—F/Ot eSZ(W)dW(s)); t>0,

where Law( Y (#)(0)) = Law(n(*)) for every k € N and W ()
is the R*° -valued standard Brownian motion.
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Summary

Thank you all for your attentions, and Happy Birthday!

e Examples of linear systems on infinite graph

o A class of stochastic differential equations with restrictions in
their distribution

Part of research is supported by grants NSF -DMS-13-13373
and DMS-16-15229.
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