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Motivation:

On (
;F ; (Ft );P) let us consider RN -valued diffusion process
(X1(t); : : : ;XN (t)) , 0 � t <1 induced by the following
random graph structure.

Suppose that at time 0 we have a random graph of N vertices
f1; : : : ;Ng and define the strength of connections between
vertices i and j by F0 -measurable random variable ai ;j
(whose distribution may depend on N ) for every
1 � i 6= j � N and fix ai ;i = 0 for 1 � i � N . We shall
consider

dXi (t) = � 1
N

NX
j=1

ai ;j (Xi (t)�Xj (t))dt + dBi (t) ;

for i = 1; : : : ;N , t � 0 ,
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where (B1(t); : : : ;BN (t)) , t � 0 is the standard
N -dimensional BM, independent of (X1(0); : : : ;XN (0)) and of
the random variables (ai ;j )1�i ;j�N .

The randomness determined at time 0 affects the diffusion
process (X1(�); : : : ;XN (�)) .

Deterministic A in the context of financial network :
Carmona, Fouque, Sun (’13), Fouque & Ichiba (’13), ...

The system is solvable as a linear stochastic system for
X (�) := (X1(�); : : : ;XN (�))0 .
Let A(N ) := (ai ;j )1�i ;j�N be the (N �N ) random matrix and
B(�) be the (N � 1) -vector valued standard Brownian motion.
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Then the system can be rewritten as

dX (t) = �A(N )X (t)dt + dB(t) ;

A(N )
:=

1
N

Diag(A(N )1N )� 1
N

A(N ) ;

where 1N is the (N � 1) vector of ones, and Diag(c) is the
diagonal matrix whose diagonal elements are those elements in
the vector c . Note that each row sum of elements in the
matrix A(N ) is zero by definition, i.e.,

a (N )
i ;i = �

X
j 6=i

a (N )
i ;j

for each i = 1; : : : ;N , where a (N )
i ;j is the (i ; j ) element of the

random matrix A(N ) .
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The solution to this linear equation is given by

X (t) = e�tA
(N )�

X (0) +
Z t

0
esA

(N )

dB(s)
�
; t � 0 :

Here we understand e tA
(N )

is the (N �N ) matrix exponential.

Given the initial value X (0) and A(N ) , the law of X (�) is
conditionally an N -dimensional Gaussian law with mean
e�tA

(N )

X (0) and variance covariance matrix Var(X (t)jA(N )) .

Q. How to understand the case N !1 of large network, i.e.,
what happens if N !1 ?
For example, if A(N ) a :s:����!

N!1
A(1) and
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if a (1)
i ;j = �1 for j = i + 1 , a (1)

i ;i = 1 , a (1)
i ;j � 0 , o.w., i.e.,

�A(1)
:=

0
B@
�1 1 0 � � �
0 �1 1 0 � � �

. . . . . . . . .

1
CA ;

dX1(t) = (X2(t)�X1(t))dt + dW1(t) ;

dX2(t) = (X3(t)�X2(t))dt + dW2(t) ;

...

then how can we solve?

� Finite N case: Fernholz & Karatzas (’08-’09) studied
flow, filtering and pseudo-Brownian motion process in equity
markets.
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Example as N !1

For simplicity let us set Xi (0) = 0 . Given X2(�) , we have

X1(t) =

Z t

0
e�(t�s)X2(s)ds +

Z t

0
e�(t�s)dB1(s) ;

and also, given X3(�) , we have

X2(s) =

Z s

0
e�(s�u)X3(u)du +

Z s

0
e�(s�u)dB2(u)

for t � 0 , and hence substituting X2(�) into the first one,

X1(t) =

Z t

0
e�(t�s)dB1(s) +

Z t

0

Z s

0
e�(t�u)dB2(u)ds

+

Z t

0
e�(t�s)

Z s

0
e�(s�u)X3(u)du

for t � 0 .
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By the product rule for semimartingales, we observe

Z t

0

Z s

0
eu(s � u)k�1dB(u)ds =

Z t

0
eu (t � u)k

k
dB(u) ;

for k 2 N , t � 0 , and hence
Z t

0

Z s

0
eudB(u)ds =

Z t

0
eu(t � u)dB(u) ;

Z t

0

Z sk

0
� � �

Z s1

0
eudB(u)ds1 � � �dsk =

Z t

0
eu (t � u)k

k !
dB(u)

for k 2 N , t � 0 . Thus for the above example we have

X1(t) =
1X

k=0

Z t

0
e�(t�u) � (t � u)k

k !
dBk+1(u)

for t � 0 .
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X1(t) =
1X

k=0

Z t

0
e�(t�u) � (t � u)k

k !
dBk+1(u)

is a centered, Gaussian process with covariances

E[X1(s)X1(t)] = e�(s+t)
1X

k=0

Z s

0

e2u

(k !)2
(s � u)k (t � u)kdu

= e�(t�s)
Z s

0
e�2v I0(2

q
(t � s + v)v)dv

for 0 � s � t , where I0(�) is the modified Bessel function of
the first kind with parameter 0 , i.e.,

I�(x ) :=
1X

k=0

� x
2

�2k+� 1
�(k + 1)�(� + k + 1)

for x > 0 , � � �1 .
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In particular,

Var(X1(t)) =

Z t

0
e�2v I0(2v)dv = te�2t (I0(2t) + I1(2t)) <1

(it grows as O(t1=2) for large t , also,

E[X1(s)X1(s + t)] = O(e�(t�2
p
(t+s)s)t�1=4) :)

Thus X1(�) is not stationary.
The (marginal) distribution of Xk (�) , k 2 N is the same as
X1(�) , and hence, we may compute (at least numerically)

E[X1(t)X2(u)] =
Z t

0
e(t�s)E

�
X2(s)X2(u)

�
ds

=

Z t

0
e(t�s)E

�
X1(s)X1(u)

�
ds

and recursively, E[X1(t)Xk (u)] , k 2 N for 0 � t ;u <1 .
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Sample path of (X1(�);X2(�)) generated from the covariance
structure.

X1(�) X2(�)

X1(t) =

Z t

0
e�(t�s)X2(s)ds +

Z t

0
e�(t�s)dB1(s) ;

for t � 0 and Law(X1(�)) = Law(X2(�)) .
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Weighted by Poisson probabilities

An interpretation of

X1(t) =
1X

k=0

Z t

0
e�(t�u) � (t � u)k

k !
dBk+1(u)

=:
1X

k=0

Z t

0
pk (t � u)dBk+1(u)

for t � 0 :

Suppose N (s) ; 0 � s � t is a Poisson process with rate 1 ,
independent of (Bk (�); k 2 N) . Then

X1(t) = E
h 1X

k=0

Z t

0
1fN (t�u)= kgdBk+1(u)

���F(t)
i
;

where F(t) := �(Bk (s); 0 � s � t ; k 2 N) , t � 0 .

12



If we replace the Poisson probability by
compound Poisson probability, i.e.,

fN (t) :=

N (t)X
k=1

�k ;

where (�k ; k 2 N) are I.I.D. integer-valued R.V.’s with
P(�1 = i) = pi , 1 � i � q ,

Pq
i=1 pi = 1 for some q 2 N ,

independent of N (�) and (Bk (�); k 2 N) , then

fX1(t) := E
h 1X

k=0

Z t

0
1
feN (t�u)= kgdBk+1(u)

���F(t)
i

=
1X

k=0

Z t

0
epk (t � u)dBk+1(u) ;

where

epk (t) :=
@k

@z k

h
exp

� qX
i=1

pi t(z i � 1)
�i���

z = 0

for k 2 N , t � 0
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corresponds to the modified matrix

�Ã(1)
:=

0
BB@
�1 p1 p2 � � � pq 0 � � �
0 �1 p1 p2 � � � pq

. . .
. . . . . . . . . . . . . . . . . .

1
CCA ;

and

dXk (t) =
��Xk (t) +

qX
i=1

piXi+k (t)
�
dt + dBk (t)

with Xk (0) = 0 for k 2 N , t � 0 .
� In particular, if q = 2 , p1 = p2 = 1=2 , then

epk (t) =

bk=2cX
j=0

e�t tk�j

2k�j (k � 2j )! j !
; t � 0 ; k 2 N :
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Another modification:

dX1(t) = (X1(t)�X2(t))dt + dB1(t) ;

dX2(t) = (X2(t)�X3(t))dt + dB2(t) ;

� � �
We may use the same reasoning in this case to obtain

X1(t) =

Z t

0

1X
k=0

e t�s � (�1)
k (t � s)k

k !
dBk+1(s)

with exponentially growing variance

Var(X1(t)) = te2t (I0(2t)� I1(2t)) ; t � 0 :
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A formulation of equation with identical distribution

Let us consider (
;F ;P; fF(t); t � 0g) on which X0(�) is an
adapted stochastic process which is a weak solution to

dX0(t) = b(t ;X0(t);X1(t))dt + �(t ;X0(t);X1(t))dB0(t) ; t � 0 ;

where r -dimensional standard Brownian motion B0(�) is
independent of d -dimensional process X1(�) which has the
same distribution as X0(�) on [0;T ] i.e.,

Law(X0(s); 0 � s � T ) = Law(X1(s); 0 � s � T ) ;

and also P a.s. X0(0) = x0 2 Rd and

Z T

0
(kb(t ;X0(t);X1(t))k+ k�i ;j (t ;X0(t);X1(t))k2)dt < +1

for 1 � i � d , 1 � j � r and T � 0 . Here we assume
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b : R+ � Rd � Rd ! Rd and � : R+ � Rd � Rd ! Rd�r are
Lipschitz continuous with at most linear growth, i.e., there exist
a constant K > 0 such that

kb(t ; x ; y)� b(t ; ex ; ey)k+ k�(t ; x ; y)� �(t ; ex ; ey)k � K (kx � exk+ ky � eyk)
and

kb(t ; x ; y)k2 + k�(t ; x ; y)k2 � K 2(1+ kxk2 + kyk2)

for every (t ; x ; y) 2 R+ � Rd � Rd .

We also assume that X1(�) is adapted to the filtration
fF1(t); t � 0g generated by the Brownian motions
(Bk (t); k � 1; t � 0) augmented by the P -null sets.

We shall solve this system with distributional identity.

17



� When b(t ; x ; y) = x � y and �(t ; x ; y) = 1 , it reduces to
the first example

X1(t) =

Z t

0
e�(t�s)X2(s)ds +

Z t

0
e�(t�s)dB1(s) ; t � 0 :

� In the linear case we may consider the corresponding A(1)

to the example of the block matrix form

A(1)
=

0
BB@

A1;1 A1;2 0 � � �
0 A1;1 A1;2 0

. . .
. . . . . . . . . . . .

1
CCA :

� It looks similar to the nonlinear diffusion

dX (t) = b(X (t);E[X (t)])dt + �(X (t);E[X (t)])dB(t) ; t � 0

of mean-field which appears as Mckean-Vlasov limit of
interacting particles (Mckean (’67), Kac (’73), Sznitman
(’89), Tanaka (’84), Shiga & Tanaka (’85), ... ), but is
different.
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Proposition.
On some probability space (
;F ;P; fF(t); t � 0g) there is a
unique weak solution to

dX0(t) = b(t ;X0(t);X1(t))dt + �(t ;X0(t);X1(t))dB0(t) ; t � 0 ;

with Law(X1(t); 0 � t � T ) = Law(X0(t); 0 � t � T ) and

�(t) = E[ sup
0�s�t

kX0(s)�X1(s)k2] ; t � 0

satisfiesZ t

0
�(s)ds +

Z t

0
�0e�0(t�s)

� Z s

0
�(u)du

�
ds � c1�(t) ;

for 0 � t � T , T > 0 , where �0 := 4K 2(�1 + T ) ,

c0 := 9max(1;K 2(�1 + T )(1 _T )) ; c1 :=
1� e(c0��0)T

c0 � �0

and �1 is a global constant form the
Burkholder-Davis-Gundy inequality.
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Idea of proof:
Given B0(�) and X1(�) , we may construct X0(�) by the
method of Picard iteration, i.e., there exists a map

� : C ([0;1);Rd)�C ([0;1);Rr )! C ([0;1);Rd)

with X0(t) = �t (X1;B0) for t � 0 .
We shall find a fixed point of ��(�;B0) , i.e.,

Law(X1(�)) = Law(��(X1;B0)) = Law(X0(�))

by evaluating the Wassestein distance

W2;T (�; e�) := inf
�
E� [ sup

0�t�T
k�(t)� e�(t)k2]

where � = Law(�(�)) , e� = Law(e�(�)) and the infimum is taken
over the joint law � of (�(�); e�(�)) , and using Banach fixed
point theorem.
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S :=
n
�(�) :

Z t

0
�(s)ds +

Z t

0
�0e�0(t�s)

� Z s

0
�(u)du

�
ds

� c1�(t) ; 0 � t � T
o

� Note that c0 > �0 , ( 1� e�(c0��0)T ) = ( c0 � �0 ) < 1 and,
�1(t) := ec0t satisfies
Z t

0
�1(s)ds+

Z t

0
�0e�0(t�s)

� Z s

0
�1(u)du

�
ds = c1�1(t) ; 0 � t � T ;

and so, �1(�) 2 S and S is non-empty.

If f 2 S , then c � f 2 S for every positive constant c > 0 .
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Also, if f ; g 2 S , then a � f + (1� a) � g 2 S for every
a 2 [0; 1] , and hence, S is convex.

Moreover, since ( 1� e�(x��0)T ) = ( x � �0 ) is a non-decreasing
function of x for x > �0 ,
�2(t) := ec2t with 0 < c2 � c0 satisfies

Z t

0
�2(s)ds+

Z t

0
�0e�0(t�s)

� Z s

0
�2(u)du

�
ds =

1� e�(c2��0)T

c2 � �0
��2(t)

� c1�2(t) ; 0 � t � T ;

and hence �2(�) 2 S for every 0 < c2 � c0 .
�
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� We may extend to the case of the form

dX0(t) = b(t ;X0(t); : : : ;Xq(t))dt+�(t ;X0(t); : : : ;Xq(t))dB0(t)

with Law(X0(�)) = Law(X1(�)) = � � � = Law(Xq(�)) for some
q 2 N and with Lipschitz coefficients, where Xi (�) is adapted
to the filtration generated by (Bk (�); k � i) for i 2 N .
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Coming back to the diffusions on the graph

� We say the infinite dimensional matrix x = (xi ;j )(i ;j )2N2 is
row-finite if for each i 2 N there is k(i) 2 N such that
xi ;j = 0 for every j � k(i) .

� We say the infinite dimensional matrix x = (xi ;j )(i ;j )2N2 is
uniformly row-finite, if there is n0 2 N such that xi ;j = 0 for
every i 2 N and every j with ji � j j � n0 .

� We also say the infinite dimensional matrix (xi ;j )(i ;j )2N2 is
(uniformly) column-finite, if its transpose (xi ;j )

0
(i ;j )2N2 is

(uniformly) row finite.

� Let us denote by A the class of uniformly positive definite,
bounded, infinite dimensional matrices which are both
uniformly row and uniformly column finite.
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� Suppose that there exist u > d > 0 such that all the
eigenvalues of A(N ) are bounded above by u and below by d
for every N , and as N !1 , each (i ; j ) element a (N )

i ;j of

A(N ) converges to an (i ; j ) element a (1)
i ;j of fixed matrix

A(1) 2 A almost surely for every (i ; j ) 2 N2 , i.e.,

lim
N!1

a (N )
i ;j = a (1)

i ;j :

� Assume the first k elements X (k ;N )(0) = (X1(0); : : : ;Xk (0))
of initial random variables X (N )(0) converges weakly to an
Rk -valued random vector �(k) for every k 2 N .

� We also assume that supN E[kX (k ;N )(0)k4] <1 for every
k 2 N .
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Then for every k 2 N and T > 0 , as N !1 , the law of the
first k elements X (k ;N )(�) = (X1(�); : : : ;Xk (�))0 of
X (N )(�) = (X1(�); : : : ;XN (�))0 converges weakly in C ([0;T ])
to the law of the first k -dimensional stochastic process
Y (k)(�) := (Y1(�); : : : ;Yk (�))0 of Y (�) := (Yi (�))0i2N defined by

Y (t) = e�tA
(1)�

Y (0) +
Z t

0
esA

(1)

dW (s)
�
; t � 0 ;

where Law(Y (k)(0)) = Law(�(k)) for every k 2 N and W (�)
is the R1 -valued standard Brownian motion.
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Summary

Thank you all for your attentions, and Happy Birthday!

� Examples of linear systems on infinite graph

� A class of stochastic differential equations with restrictions in
their distribution

Part of research is supported by grants NSF -DMS-13-13373
and DMS-16-15229.
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