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This talk is dedicated to Ioannis Karatzas
on the occasion of his 65th birthday.
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Introduction

“Zipf’s law states that given some corpus of natural language

utterances, the frequency of any word is inversely proportional to

its rank in the frequency table. The law is named after the

American linguist George Kingsley Zipf (1902–1950), who

popularized it and sought to explain it (Zipf (1935, 1949)), though

he did not claim to have originated it.” (From Wikipedia (2017).)
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Word count from Wikipedia
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Power laws and the Pareto distribution

Data follow a power law or Pareto distribution if a log-log plot

of the data versus rank is approximately a straight line. Pareto

distributions can result from self-organized criticality or from

time-dependent systems.

A Pareto distribution follows Zipf’s law if the slope of the

log-log plot is −1. Zipf’s law is a form of universality, since many

classes of data seem to follow this distribution. Specifically, certain

time-dependent, rank-based systems seem to follow Zipf’s law, and

we shall try to characterize these systems.
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Examples of Pareto distributions

Log-log slopes in blue (From Newman (2006)).

−.83 −.49 −.71

−.40 −.82 −.49
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Examples of Pareto distributions

Log-log slopes in blue (From Newman (2006)).

−.47 −1.20 −1.25

−.92 −1.06 −.77
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Members and families

We wish to model systems of positive-valued, time-dependent

data {Ξ1(t),Ξ2(t), . . .} of indefinite size. These data represent two

classes of objects, members and families. The members are

contained within the families, and Ξi(t) indicates the number of

members contained within the ith family at time t. Examples of

members within families are:

I people within cities;

I occurrences within words;

I dollars within family fortunes;

I individuals within surnames;

I dollars within company capitalizations;

I birds within species.
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Trends and sampling

The data we consider {Ξ1(t),Ξ2(t), . . .} might have a common

global trend of the form G(t)dt, e.g., population growth,

Wikipedia growth, GDP growth, etc. We shall study

log-differences, so a global trend does not affect us, and it is

convenient to assume it to be zero.

Alternatively, we can sample the total population with a

constant number of people, words, dollars, etc., in our sample over

time. This could introduce sampling error but should not

materially affect the shape of the distribution curve.

In any case, to simplify the exposition, we shall assume

henceforth that the total population we observe is free of trends.
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Continuous semimartingales

To model the data {Ξ1(t),Ξ2(t), . . .} we shall use continuous

semimartingales X1, X2, . . . of the form

d logXi(t) = γi(t)dt+ σi(t)dWi(t),

where W is a Brownian motion and the processes γi and σi are

measurable and adapted to the Brownian filtration.

A model of this form might be reasonable if, e.g.,

1. the changes dΞi(t) are proportional to the values Ξi(t);

2. the log-changes d log Ξi(t) are composed of many small,

independent perturbations;

3. the changes in the different Ξi are independent.
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Rank processes

For a system of positive continuous semimartingales

X1, . . . , Xn we define the rank function to be the random

permutation rt ∈ Σn such that rt(i) < rt(j) if Xi(t) > Xj(t) or if

Xi(t) = Xj(t) and i < j. The rank processes X(1) ≥ · · · ≥ X(n)

are defined by X(rt(i))(t) = Xi(t).

If the Xi satisfy certain regularity conditions, e.g., they spend

no local time at triple points, then the rank processes satisfy,

d logX(k)(t) =

n∑
i=1

1{rt(i)=k}d logXi(t) +
1

2
dΛXk,k+1(t)

− 1

2
dΛXk−1,k(t), a.s.,

where ΛXk,k+1 is the local time at the origin for log(X(k)/X(k+1)),

with ΛX0,1 = ΛXn,n+1 ≡ 0 (Fernholz (2002)).
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Asymptotic stability

A system of positive continuous semimartingales X1, . . . , Xn is

asymptotically stable if

1. lim
t→∞

t−1
(

logX(1)(t)− logX(n)(t)
)

= 0, a.s. (coherence);

2. lim
t→∞

t−1ΛXk,k+1(t) = λk,k+1 > 0, a.s.;

3. lim
t→∞

t−1〈logX(k) − logX(k+1)〉t = σ2
k,k+1 > 0, a.s.;

for k = 1, . . . , n− 1, where λk,k+1 and σ2
k,k+1 are constants.

The systems of continuous semimartingales we consider will be

asymptotically stable and will also satisfy

(∗) lim
T→∞

1

T

∫ T

0

(
logX(k)(t)− logX(k+1)(t)

)
dt =

σ2
k,k+1

2λk,k+1
,

a.s, for k = 1, . . . , n− 1.
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U.S. Capital Distribution, 1929 to 1999
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Market weight curves (From Fernholz (2002)).
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Conservation of ‘mass’

Suppose that for the data {Ξ1(t),Ξ2(t), . . .} the “total mass”

Ξ(1)(t) + Ξ(2)(t) + · · ·

remains constant.

The mass of the top n ranks Ξ(1), . . . ,Ξ(n) is defined by

Ξ[n](t) , Ξ(1)(t) + · · ·+ Ξ(n)(t),

and since the sample has constant total mass, for large enough n

the mass of the top n ranks should also be approximately constant.

Hence, we impose the condition on the model X1, . . . , Xn that

(A) lim
n→∞

E
[
dX[n](t)

X[n](t)

]
= 0.
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Behavior of ranked systems

Let us suppose for the moment that the data processes Ξi are

continuous semimartingales that spend no local time at triple

points. In this case, the rank processes Ξ(k) will satisfy

d log Ξ(k)(t) =

∞∑
i=1

1{rt(i)=k}d log Ξi(t) +
1

2
dΛΞ

k,k+1(t)

− 1

2
dΛΞ

k−1,k(t), a.s.,

for all k. By Itô’s rule, for all k, a.s.,

dΞ(k)(t)

Ξ(k)(t)
=
∞∑
i=1

1{rt(i)=k}
dΞi(t)

Ξi(t)
+

1

2
dΛΞ

k,k+1(t)− 1

2
dΛΞ

k−1,k(t)

=

∞∑
i=1

1{rt(i)=k}
dΞi(t)

Ξ(k)(t)
+

1

2
dΛΞ

k,k+1(t)− 1

2
dΛΞ

k−1,k(t).
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Behavior of ranked systems

Hence,

dΞ(k)(t) =

∞∑
i=1

1{rt(i)=k}dΞi(t) +
1

2
Ξ(k)(t)dΛΞ

k,k+1(t)

− 1

2
Ξ(k)(t)dΛΞ

k−1,k(t)

=

∞∑
i=1

1{rt(i)=k}dΞi(t) +
1

2
Ξ(k)(t)dΛΞ

k,k+1(t)

− 1

2
Ξ(k−1)(t)dΛΞ

k−1,k(t), a.s.,

so we can add up the dΞ(k)(t) to obtain

dΞ[n](t) =

∞∑
i=1

1{rt(i)≤n}dΞi(t) +
1

2
Ξ(n)(t)dΛΞ

n,n+1(t), a.s.

This serves to define the local time ΛΞ
n,n+1(t) for the data.
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ΛΞ
k,k+1(t) for U.S. capital distribution

k = 10, 20, 40, . . . , 5120 (From Fernholz (2002)).
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Leakage

For the data {Ξ1(t),Ξ2(t), . . .} we have the representation

dΞ[n](t) =

∞∑
i=1

1{rt(i)≤n}dΞi(t) +
1

2
Ξ(n)(t)dΛΞ

n,n+1(t).

The final term compensates for the “leakage” from Ξ[n].

In order that the system not depend on mass replenished from

outside, we impose the condition that the (relative) leakage tends

to zero:

(B) lim
n→∞

E
[
X(n)(t)

X[n](t)
dΛXn,n+1(t)

]
= 0.
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A conservation law

Conditions (A) and (B) together are a form of conservation law

that ensures that the total mass of the system is autonomously

maintained:

(A) lim
n→∞

E
[
dX[n](t)

X[n](t)

]
= 0,

and

(B) lim
n→∞

E
[
X(n)(t)

X[n](t)
dΛXn,n+1(t)

]
= 0.

We shall now study the effects of conditions (A) and (B) on our

continuous semimartingale model X1, . . . , Xn.

19 / 39



Atlas models

Perhaps the simplest model for the systems we consider is an

Atlas model, a system of positive continuous semimartingales

X1, . . . , Xn defined by

d logXi(t) =
(
− g + ng1{rt(i)=n}

)
dt+ σ dWi(t),

where g and σ are positive constants, and (W1, . . . ,Wn) is a

Brownian motion. Atlas models are asymptotically stable, and

since the processes Xi are exchangeable, they asymptotically spend

equal time in each rank. Hence, each of the Xi has zero

asymptotic log-drift, so the entire system has zero asymptotic

log-drift (Fernholz (2002), Banner et al. (2005)).

We shall assume that Atlas models are in their steady-state

distributions.
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The asymptotic distribution of Atlas models

The asymptotic parameters for Atlas models are

λk,k+1 = 2kg and σ2
k,k+1 = 2σ2, a.s.,

and these models satisfy

(∗) lim
T→∞

1

T

∫ T

0

(
logX(k)(t)− logX(k+1)(t)

)
dt =

σ2
k,k+1

2λk,k+1
,

a.s., for k = 1, . . . , n− 1. Hence, for large enough k,

lim
T→∞

1

T

∫ T

0

logX(k)(t)− logX(k+1)(t)

log(k)− log(k + 1)
dt ∼= −

σ2

2g
, a.s.,

so Atlas models follow Pareto distributions, and Zipf’s law is

equivalent to σ2/2 = g. We wish to characterize this in terms of

conditions (A) and (B).
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The behavior of Atlas models

For an Atlas model, Itô’s rule implies that, a.s.,

dXi(t) =
(σ2

2
− g + ng1{rt(i)=n}

)
Xi(t)dt+ σXi(t)dWi(t).

For the total mass X[n] = X1 + · · ·+Xn we have

dX[n](t) =
(σ2

2
−g
)
X[n](t)dt+X[n](t)dM(t)+ngX(n)(t)dt, a.s.,

where M is a martingale incorporating all the σWi, so

dX[n](t)

X[n](t)
=
(σ2

2
− g
)
dt+ dM(t) +

ngX(n)(t)

X[n](t)
dt, a.s.

where the last term plays the same role as leakage in the system Ξ.

Hence,

E
[
dX[n](t)

X[n](t)

]
=
(σ2

2
− g
)
dt+ E

[
ngX(n)(t)

X[n](t)

]
dt.
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Zipf’s law for Atlas models

For an Atlas model we have

E
[
dX[n](t)

X[n](t)

]
=
(σ2

2
− g
)
dt+ E

[
ngX(n)(t)

X[n](t)

]
dt,

and we can calculate

E
[
ngX(n)(t)

X[n](t)

]
=


O
(
1
)

for σ2/2 < g,

O
(
1/ log n

)
for σ2/2 = g,

O
(
n(1−σ2/2g)

)
for σ2/2 > g.

Hence,

(A) lim
n→∞

E
[
dX[n](t)

X[n](t)

]
= 0 plus (B) lim

n→∞
E
[
ngX(n)(t)

X[n](t)

]
= 0

is equivalent to σ2/2 = g, and this is equivalent to Zipf.
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Examples of Pareto distributions

Log-log slopes in blue (From Newman (2006)).

−.83 −.49 −.71

−.40 −.82 −.49
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First-order models

A first-order model is a system of continuous semimartingales

X1, . . . , Xn with

d logXi(t) = grt(i)dt+ σrt(i)dWi(t),

where the gk and σk are constants such that σ2
k > 0, with

g1 + · · ·+ gn = 0 and g1 + · · ·+ gk < 0 for k < n

(Fernholz (2002), Banner et al. (2005)). As usual, (W1, . . . ,Wn)

is a Brownian motion. First-order models are asymptotically stable

with
λk,k+1 = −2

(
g1 + · · ·+ gk

)
, a.s.,

and
σ2
k,k+1 = σ2

k + σ2
k+1, a.s.
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First-order approximation

Suppose that {Ξ1(t),Ξ2(t), . . .} is an asymptotically stable

system of time-dependent data of indefinite size with parameters

λk,k+1 and σ2
k,k+1. Then the first-order approximation for the top

n ranks of this system is the first-order model X1, . . . , Xn with

parameters

gk =
1

2
λk−1,k −

1

2
λk,k+1, for k = 1, . . . , n− 1

gn =
1

2
λn,n+1

σ2
1 =

1

2
σ2

1,2

σ2
k =

1

4

(
σ2
k−1,k + σ2

k,k+1

)
, for k = 2, . . . , n.

In this manner, we can construct a first-order approximation for

any asymptotically stable system.
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First-order approximation

The first-order approximation X1, . . . , Xn satisfies

(∗) lim
T→∞

1

T

∫ T

0

(
logX(k)(t)− logX(k+1)(t)

)
dt = −

σ2
k + σ2

k+1

2λk,k+1
,

a.s., with parameters

λk,k+1 = λk,k+1, σ2
1 =

1

2
σ2

1,2, σ2
k =

1

4

(
σ2
k−1,k + σ2

k,k+1

)
.

Let us suppose that the data {Ξ1(t),Ξ2(t), . . .} satisfy

(∗) lim
T→∞

1

T

∫ T

0

(
log Ξ(k)(t)− log Ξ(k+1)(t)

)
dt = −

σ2
k,k+1

2λk,k+1
,

so the X distribution is a smoothed version of the Ξ distribution.
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Parameters gk for U.S. capital distribution
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Parameters σ2
k for U.S. capital distribution
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U.S. capital distribution, 1990 to 1999
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First-order approximation

Perhaps the simplest first-order model is of the form

d logXi(t) =
(
− g + ng1{rt(i)=n}

)
dt+ σrt(i)dWi(t),

where the σ2
k increase with rank, σ2

1 ≤ · · · ≤ σ2
n. Indeed, this

increasing variance would probably have occurred with the original

Brownian motion, where the small pollen particles would vibrate

more vigorously than the big ones. In this case, the slope of the

tangent

lim
T→∞

1

T

∫ T

0

logX(k)(t)− logX(k+1)(t)

log(k)− log(k + 1)
dt ∼= −

σ2
k + σ2

k+1

4g
, a.s.,

will be increasingly negative, so the distribution curve will be

concave.
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Weakly Zipfian systems

Suppose our model is of the form

d logXi(t) =
(
− g + ng1{rt(i)=n}

)
dt+ σrt(i) dWi(t),

with σ2
1 ≤ · · · ≤ σ2

n. Then

E
[
dX[n](t)

X[n](t)

]
=

( n∑
k=1

E
[
X(k)(t)

X[n](t)

]
σ2
k

2
− g
)
dt+ E

[
ngX(n)(t)

X[n](t)

]
dt,

Hence, if

(A) lim
n→∞

E
[
dX[n](t)

X[n](t)

]
= 0 and (B) lim

n→∞
E
[
ngX(n)(t)

X[n](t)

]
= 0,

then,
lim
n→∞

n∑
k=1

E
[
X(k)(t)

X[n](t)

]
σ2
k

2
= g.

This system will be weakly Zipfian, having a distribution that is

concave with tangent slope −1 somewhere in the middle ranks.
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U.S. capital distribution, 1990 to 1999
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Birds

North American Bird Survey 2003 (From Newman (2006)).
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Birds

North American Bird Survey 2003 (From Newman (2006)).
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Word count from Wikipedia
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Thera Stochastics

Thank you!
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