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Introduction Motivation and goal

Motivation and goal

Goal: Tractable dynamic modeling of probability measures

⇒ Probability measure-valued polynomial processes first canonical
class to achieve the above goal

More general: polynomial processes taking values in subsets of signed
measures, including for instance affine processes.

Literature on measure valued processes: Dawson, Ethier, Etheridge,
Fleming, Hochberg, Kurtz, Perkins, Viot, Watanabe, etc.
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Introduction Motivation and goal

What does tractability actually mean?
Consider first the finite dimensional case with a general Markov
process on some subset of Rd :

Let E be some Polish space and consider M(E ) the space of finite
signed measures.

If E consists of d points, then M(E ) can be identified with Rd .

For a general Rd -valued Markov processes the Kolmogorov backward
equation is a PIDE on Rd × [0,∞).

Tractability:

I Affine processes: For initial values of the form x 7→ exp〈u, x〉, the
Kolmogorov PIDE reduces to generalized Riccati ODEs on Rd .

I Polynomial processes: When the initial values are polynomials of
degree k , the Kolmogorov PIDE reduces to a linear ODE on RN with
N the dimension of polynomials of degree k .

In certain cases it can be
further reduced to an ODE.
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Introduction Applications in finance

Applications in finance

Stochastic portfolio theory (SPT) (B. Fernholz, I.Karatzas, ...)

I Large equity markets: joint stochastic modeling of a large finite (or
even potentially infinite) number of stocks or (relative) market
capitalizations constituting the major indices (e.g., 500 in the case of
S&P 500)

I Capital distribution curve modeling

Term structure modeling of interest rates, variance swaps,
commodities or electricity forward contracts involving potentially an
uncountably infinite number of assets

Polynomial Volterra processes in particular in view of rough volatility
modeling

Stochastic representations of (linear systems) of PIDEs
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Introduction Applications in finance

Large equity markets in SPT

Consider a set of stocks with market capitalizations S1
t , . . . ,S

d
t .

In SPT the main quantity of interest are the market weights

µi
t =

S i
t

S1
t + · · ·+ Sd

t

.

µt = (µ1
t , . . . , µ

d
t ) takes values in the unit simplex

∆d =
{
z ∈ [0, 1]d : z1 + · · ·+ zd = 1

}
.

One is interested in the behavior of µ for large d!

Possible approach: Linear factor models, i.e. view (µ1, . . . , µd) as the
projection of a single tractable infinite dimensional model.

I Let X be a probability measure valued (polynomial) process.

I For functions gi ≥ 0 such that g1 + . . .+ gd ≡ 1, set
µi
t =

∫
gi (x)Xt(dx).

I Extensions to infinitely many assets are easily possible.
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Introduction Applications in finance

Capital distribution curves

Probability measure valued processes can be used to describe the empirical
measure of the capitalizations:

1

d

d∑
i=1

δS i
t
(dx) (1)

There is a one to one correspondence between this empirical measure and
the capital distribution curves which map the rank of the companies to their
capitalizations . ⇒ Analysis for specific models as d →∞. (e.g. by M.
Shkolnikov, etc.)

Empirically these curves proved to be of a specific shape and particularly
stable over time with a certain fluctuating behavior.

Question:

For which models is (the limit of) (1) a probability measure valued
polynomial process? Consistency with empirical features?
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Introduction Applications in finance

Term structure modeling

Let us for instance consider modeling of bond prices P(t,T ) for
t ∈ [0,T ∗] and T ∈ [t,T ∗] for some finite time horizon T ∗.

Let X be a probability measure valued (polynomial) process.

Then, one possibility to define bond prices is

P(t,T ) =

∫
E
gt(T , x)Xt(dx),

where gt(·, x) : [t,T ∗]→ [0, 1] is a deterministic function with
gt(t, ·) ≡ 1, chosen to be decreasing if nonnegative short rates are to
be enforced.
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Part I

Signed measure-valued polynomial diffusions
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Review of polynomial diffusions on S ⊆ Rd Definition

Polynomial diffusions on S ⊆ Rd

Pol(S): vector space of all polynomial on S

Definition

A linear operator L : Pol(Rd)→ Pol(S) is called polynomial if
deg(Lp) ≤ deg(p) for all p ∈ Pol(Rd).

Let L be a polynomial operator. Then a polynomial diffusion on S is a
continuous S-valued solution X to the martingale problem

p(Xt)−
∫ t

0

Lp(Xs)ds = (martingale), ∀p ∈ Pol(Rd).

If the martingale problem is well posed it leads to a Markov process and thus
to a polynomial process in the sense of (C., Keller-Ressel, Teichmann, ’12).

In this talk, the focus lies on S = ∆d . In this case the martingale problem is
always well-posed. Polynomial operators L generating diffusions on ∆d have
been completely characterized (Larsson, Filipović, ’16).
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Review of polynomial diffusions on S ⊆ Rd Characterization

Characterization and conditional moment formula
Fix k ∈ N and let H = (h1, . . . , hN), hi ∈ Pol(S), be a basis for
Polk(S) = {p ∈ Pol(S) : deg(p) ≤ k}.

Theorem (C., Keller-Ressel, Teichmann ’12, Filipovic and Larsson ’16)

Let L be a linear operator whose domain contains Pol(Rd) and assume that there
is a continuous S-valued solution X to the martingale problem for L. The
following assertions are equivalent:

L is a polynomial.

L is of the form Lp(x) = ∇p(x)> b(x)︸ ︷︷ ︸
affine in x

+ 1
2 Tr
(

a(x)︸ ︷︷ ︸
quadratic in x

∇2p(x)
)
.

For every polynomial p ∈ Polk(S) we have

E [p(Xt+s) | Fs ] = H(Xs)>etL~p,

where ~p ∈ RN is the vector representation of p, and we identify L with its
N × N matrix representation on Polk(S).
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Review of polynomial diffusions on S ⊆ Rd Measure valued perspective

Goal of this talk

Develop a theory of measure valued polynomial processes:

Questions:

I How to define polynomials p(ν) with measures as argument?

I What is a polynomial operator L in this setting?

I How does this operator look like?

I Specific state spaces: characterization or possible specification of L in
the case of probability measures.

I How does the moment formula look like?

I How does the matrix exponential translate in this infinite dimensional
setting?
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Measure valued polynomial diffusions Polynomials with measures as arguments

Notation

E : compact Polish space.

Ĉ (E k) : space of symmetric continuous functions f : E k → R.

M(E ) : space of finite signed measures on E with the topology

of weak convergence.

M1(E ) : space of probability measures on E with the topology

of weak convergence.
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Measure valued polynomial diffusions Polynomials with measures as arguments

Polynomials of measure arguments

A monomial of degree k on M(E ) is an expression of the form:

ν 7→
∫
E k

g(x1, . . . , xk)︸ ︷︷ ︸
coefficient of the monomial

ν(dx1) · · · ν(dxk) =: 〈g , νk〉,

for some g ∈ Ĉ (E k).

A polynomial p of degree m on M(E ) is an expression of the form:

ν 7→ p(ν) =
m∑

k=0

〈gk , νk〉

for some gk ∈ Ĉ (E k).

We denote the set of all polynomials on S ⊆ M(E ) by Pol(S).
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Measure valued polynomial diffusions Polynomials with measures as arguments

Derivatives of polynomials

For a function f : M(E )→ R the directional derivative in direction δx
at ν is given by

∂x f (ν) := lim
ε→0

f (ν + εδx)− f (ν)

ε
.

The iterated derivative is then denoted by ∂2
xy f (ν) = ∂x∂y f (ν).

Lemma

Consider the monomial p(ν) = 〈g , νk〉 for some g ∈ Ĉ (E k). Then

∂xp(ν) = k〈g(·, x), νk−1〉,

and the map x 7→ ∂xp(ν) lies in C (E ).
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Measure valued polynomial diffusions Polynomials with measures as arguments

Classes of polynomials
Restriction to specific sets of coefficients:

Definition

Let D ⊆ C (E ) be a dense linear subspace. Then

PD =
{
p ∈ Pol(M(E )) : the coefficients of p lie in D⊗k

}
.

Recall that g ⊗ · · · ⊗ g ∈ D⊗k denotes the map

(x1, . . . , xk) 7→ g(x1) · · · g(xk).

Lemma

For any p ∈ PD and ν ∈ M(E ): ∂p(ν) ∈ D and ∂2p(ν) ∈ D ⊗ D.

The most relevant examples that we shall consider are D = C 2(E ) and
D = Pol(E ).
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Measure valued polynomial diffusions M(E)-valued polynomial diffusions

Polynomial diffusions on S ⊆ M(E )

Recall the finite dimensional definition:

Completely analogously to the finite dimensional case we define:

Definition

A linear operator L : Pol(Rd)→ Pol(S) is called polynomial if
deg(Lp) ≤ deg(p) for all p ∈ Pol(Rd).
Let L be a polynomial operator. Then a polynomial diffusion on S is
a continuous S-valued solution X to the martingale problem

p(Xt)−
∫ t

0
Lp(Xs)ds = (martingale), ∀p ∈ Pol(Rd).
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Measure valued polynomial diffusions M(E)-valued polynomial diffusions

Polynomial operators generating diffusions
Theorem (C., Larsson, Svaluto-Ferro ’17)

Let L be a linear operator whose domain contains PD and assume that there is a
continuous S-valued solution of the martingale problem for L. Then the following
assertions are equivalent.

L is a polynomial.

L is of the form

Lp(ν) = B̄(∂p(ν); ν) +
1

2
Q̄(∂2p(ν); ν),

where B̄ : D ×M(E )→ R and Q̄ : (D ⊗ D)×M(E )→ R are given by

B̄(g ; ν) = B0(g) + 〈B1(g), ν〉
Q̄(g ⊗ g ; ν) = Q0(g ⊗ g) + 〈Q1(g ⊗ g), ν〉+ 〈Q2(g ⊗ g), ν2〉

for some linear operators B0 : D → R, B1 : D → C (E ), Q0 : D ⊗ D → R,

Q1 : D ⊗ D → C (E ), Q2 : D ⊗ D → Ĉ (E 2).
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Measure valued polynomial diffusions M(E)-valued polynomial diffusions

Polynomial operators generating diffusions on M1(E )

Theorem (cont.)

In the case S = M1(E ), the form of L simplifies to

Lp(ν) =
〈
B
(
∂p(ν)

)
, ν
〉

+
1

2

〈
Q
(
∂2p(ν)

)
, ν2
〉
,

where B is a linear operator on D and Q is a linear operator on D ⊗ D.

The representation of B as linear and Q as quadratic monomials,
comes from the fact that we work with probability measures, which
allows to write every polynomial of degree k as a monomial of degree
n ≥ k .
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Part II

Probability measure-valued polynomial

diffusions
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Probability measure-valued polynomial diffusions Characterization

M1(E )-valued polynomial diffusions: characterization

Polynomial operators L generating polynomial diffusions on ∆d are characterized
(Filipovic and Larsson ’16) as follows:

Lp(y) =
d∑

i=1

B>i ∇p(y)yi +
1

2

d∑
ij=1

αij

(
∂2
iip(y) + ∂2

jjp(y)− 2∂2
ijp(y)

)
yiyj

where B is a transition rate matrix, i.e. Bij ≥ 0 for i 6= j , Bii = −
∑

j 6=i Bij , and
αij = αji ≥ 0.

Theorem (C., Larsson, Svaluto-Ferro ’17)

Let D = C (E ), i.e. PD = Pol(M(E )). A linear operator L : PD → Pol(M1(E ))
generates a polynomial diffusion on M1(E ) if and only if

Lp(ν) =
〈
B
(
∂p(ν)

)
, ν
〉

+
1

2

〈
α(x , y)

(
∂2
xxp(ν) + ∂2

yyp(ν)− 2∂2
xyp(ν)

)
, ν2
〉

where B is the generator of a jump-diffusion on E , α : E 2 → R is symmetric,
nonnegative and continuous.
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Probability measure-valued polynomial diffusions Characterization

M1(E )-valued polynomial diffusions: characterization
Polynomial operators L generating polynomial diffusions on ∆d are characterized
(Filipovic and Larsson ’16) as follows:

Lp(x) =
d∑

i=1

B>i ∇p(x)xi +
1

2

d∑
ij=1

αij

(
∂2
iip(x) + ∂2

jjp(x)− 2∂2
ijp(x)

)
xixj

where B is a transition rate matrix, i.e. Bij ≥ 0 for i 6= j , Bii = −
∑

j 6=i Bij , and
αij = αji ≥ 0.

Theorem (C., Larsson, Svaluto-Ferro ’17)

Let D = C (E ), i.e. PD = Pol(M(E )). A linear operator L : PD → Pol(M1(E ))
generates a polynomial diffusion on M1(E ) if and only if

Lp(ν) =
〈
B
(
∂p(ν)

)
, ν
〉

+
1

2

〈
αΨ
(
∂2p(ν)

))
, ν2
〉

where B is the generator of a jump diffusion on E , α : E 2 → R is symmetric,
nonnegative, continuous, and Ψg(x , y) = g(x , x) + g(y , y)− 2g(x , y).

If the process generated by B is additionally Feller, then the polynomial diffusion
generated by L is unique in law, i.e. the martingale problem is well posed.
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Probability measure-valued polynomial diffusions Examples and remarks

Example: Fleming-Viot process (α = 1/2)
The most famous M1(E )-valued process is the Fleming-Viot process, which
is actually polynomial with α = 1/2.

When E consists of d points, this process corresponds to a multivariate
Jacobi-type process with infinitesimal generator

Lp(x) =
d∑

i=1

B>i ∇p(x)xi +
1

2

∑
i,j∈E

∂2
ijp(x)xi (δij − xj),

where B is the transition rate matrix of a continuous time Markov chain on
E .

In the general case, the corresponding operator is of the form

Lp(ν) =

∫
E

B(∂p(ν))ν(dx) +
1

2

∫
E

∫
E

∂2
xyp(ν)ν(dx)(δx(dy)− ν(dy))

=
〈
B
(
∂p(ν)

)
, ν
〉

+
1

4

〈
Ψ
(
∂2p(ν)

))
, ν2
〉
.

for p ∈ PD and D the domain of an operator B generating an E -valued
Feller process.
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Feller process.
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Probability measure-valued polynomial diffusions Examples and remarks

Example: Fleming-Viot process (α = 1/2)
The most famous M1(E )-valued process is the Fleming-Viot process, which
is actually polynomial with α = 1/2.

When E consists of d points, this process corresponds to a multivariate
Jacobi-type process with infinitesimal generator

Lp(x) =
d∑

i=1

B>i ∇p(x)xi +
1

2

∑
i,j∈E

∂2
ijp(x)xi (δij − xj),

where B is the transition rate matrix of a continuous time Markov chain on
E .

In the general case, the corresponding operator is of the form

Lp(ν) =

∫
E

B(∂p(ν))ν(dx) +
1

2

∫
E

∫
E

∂2
xyp(ν)ν(dx)(δx(dy)− ν(dy))

=
〈
B
(
∂p(ν)

)
, ν
〉

+
1

4

〈
Ψ
(
∂2p(ν)

))
, ν2
〉
.

for p ∈ PD and D the domain of an operator B generating an E -valued
Feller process.
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Probability measure-valued polynomial diffusions Examples and remarks

Remarks

We have a full characterization of M1(E ) valued diffusions for
D = C (E ), in particular when E is finite dimensional we recover the
characterization by Filipovic and Larsson (2016).

Similarly, if D is general, but B does not contain a diffusion
component, Q is necessarily of the above form.

When D ⊆ C 2(E ), then other specifications are possible.
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Probability measure-valued polynomial diffusions Examples and remarks

Specifications when D ⊆ C 2(E )
Proposition

Let D ⊆ C 2(E ). Consider the linear operator L : PD → Pol(M1(E )) given by

Lp(ν) =
〈
B
(
∂p(ν)

)
, ν
〉

+
1

2

〈
Q
(
∂2p(ν)

)
, ν2
〉

Bg(x) = B0g(x) +
1

2
τ(x)2 d2

dx2
g(x)

Qg(x , y) = α(x , y)Ψg(x , y) + τ(x)τ(y)
d2

dxdy
g(x , y).

for some B0 generating a jump-diffusion on E , α ∈ Ĉ (E 2) nonnegative, and
τ ∈ C (E ) nonnegative and vanishing on ∂E .

Then L generates an M1(E )-valued polynomial diffusion.

If the parameters satisfy some additional conditions and D is rich enough, then
the diffusion generated by L is unique in law.
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Probability measure-valued polynomial diffusions Examples and remarks

Example : Empirical measures

Let Xt = 1
d

∑d
i=1 δS i

t
, for

dS i
t = b(S i

t)dt + σ(S i
t)dW i

t + τ(S i
t)dW 0

t

where (W 0, . . . ,W d) is an (d + 1)-dim Brownian Motion, b, σ and
τ in C (E ).

Then

p(Xt) := 〈g ,X k
t 〉 =

1

dk

d∑
i1,...,ik=1

g(S i1
t , . . . ,S

ik
t )

For g ∈ C 2(E ) (or equiv. p ∈ PD for D ⊆ C 2(E )) we can apply Itô’s
formula!

C. Cuchiero (University of Vienna) Measure-valued polynomial diffusions June 2017 25 / 34



Probability measure-valued polynomial diffusions Examples and remarks

Example: Empirical measures
This yields

p(Xt) = 〈g ,X k
t 〉 = (martingale)

+

∫ t

0

〈(
b(x)

d

dx
+

1

2
(τ(x)2 + σ(x)2)

d2

dx2

)(
∂xp(Xs)

)
,Xs

〉
ds

+

∫ t

0

1

2

〈
τ(x)τ(y)

d2

dxdy

(
∂2
xyp(Xs)

)
+

1

d
σ2(x)

d2

dxdy

(
∂2
xyp(Xs)

)
1{x=y},X

2
s

〉
ds

= (martingale) +

∫ t

0

〈
B
(
∂p(Xs)

)
,Xs

〉
+

∫ t

0

1

2

〈
Q
(
∂2p(ν)

)
,X 2

s

〉
,

where

I Bg(x) = b(x) d
dx g(x) + 1

2 (σ2(x) + τ 2(x)) d2

dx2 g(x) is the generator of S i

I Qg(x , y) = τ(x)τ(y) d2

dxdy g(x , y) + 1
d σ(x)2 d2

dxdy g(x , x)1{x=y}

⇒ The empirical measure of

dS i
t = b(S i

t )dt + σ(S i
t )dW i

t + τ(S i
t )dW 0

t

is a polynomial process.
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t + τ(S i
t )dW 0
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The moment formula

Towards the moment formula

Let p(ν) = 〈g , νk〉 for some g ∈ D⊗k .

Since Lp is a polynomial, we know that

Lp(ν) =
〈
h, νk

〉
∀ ν ∈ M1(E )

for some some h ∈ Ĉ (E k).

We can thus define Lk : D⊗k → Ĉ (E k) as the unique operator such
that

Lp(ν) =
〈
Lkg , ν

k
〉
.

Fact: With the specifications given before, Lk is the generator of a
jump-diffusion on E k .
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The moment formula

The moment formula

Assume that Lk is the generator of a Feller process on E k (which easily
translates to conditions on B, τ , etc.) and let {Y k

t } be the corresponding
Feller semigroup. In particular

Lk
(
Y k
t g
)

=
d

dt

(
Y k
t g
)

for all g ∈ D⊗k .

Theorem

Let X be polynomial diffusion with generator L such that Lk is the
generator of a Feller process on E k . For any k ∈ N0 and any g ∈ Ĉ (E k)
one has the representation

E
[
〈g ,X k

t+s〉|Fs

]
= 〈Y k

t g ,X
k
s 〉

of the conditional moments of X .
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The moment formula

The moment formula - Remarks

Moments up to order k can be computed by solving a linear PIDE in
k variables. In the case of E consisting of d points this boils down to
the usual linear ODE.

For general measure valued processes computing moments would
mean solving the Kolmogorov backward equation with measures as
arguments.

Even in the present case, when D = Pol(E ) and Lk a polynomial
operator on D⊗k , Y k

t corresponds to a matrix exponentials.

One can also view the moment formula as stochastic representation
of PIDEs of the above type.

C. Cuchiero (University of Vienna) Measure-valued polynomial diffusions June 2017 29 / 34



The moment formula

Example: pure drift process (α = τ = 0)

Let B be a generator of a Feller process Z and set

Lp(ν) =
〈
B
(
∂p(ν)

)
, ν
〉
.

Let X be the (unique) polynomial diffusion with generator L and initial
value δx0 , for some x0 ∈ E . Then

Xt = Px0

(
Zt ∈ ·

)
.

In particular, it is deterministic.

Y 1
t g(x) = Ex [g(Zt)], or more generally

Y k
t g
⊗k(x1, . . . , xk) = Ex1 [g(Zt)] · . . . · Exk [g(Zt)].
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The moment formula

Tractability and Flexibility

Tractability

I Comparison with polynomial diffusion in ∆d for computing moments at
T of order k (fixed):

• E = {1, . . . , d} :
linear ODE in RN × [0,T ],

N = dim Polk(∆d) =
(
k+d−1

k

)
≈ dk

• E = [0, 1] :
linear P(I)DE in [0, 1]k × [0,T ]

Discretization of E : { i
n : i = 0, . . . , n} ≈ nk

I Key additional structure: regularity in x ∈ E .

Flexibility

I Linear factor models being projections of an infinite dimensional
process are a much richer class than polynomial models on the simplex.
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Conclusions and outlook

Conclusions

We defined polynomial processes as solution of a MP, whose operator L is
polynomial, i.e. maps PD to Pol(S).

When D = C (E ) we characterize polynomial operators L, whose MP is well
posed:

Lp(ν) =
〈
B
(
∂p(ν)

)
, ν
〉

+
1

2

〈
αΨ
(
∂2p(ν)

)
, ν2
〉
.

We provide a moment formula, establishing a link between M1(E )-valued
polynomial diffusions X and linear PIDEs in E k × [0,T ]:

E
[
〈g ,X k

t+s〉 | Fs

]
= 〈Y k

t g ,X
k
s 〉

Polynomial measure-valued processes allow to exploit spatial regularity,
which is not present in the finite dimensional setting.
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Conclusions and outlook

Outlook

Theoretical part

I Full characterization for D = C 2(E )

I Extension to locally compact E

I Different state spaces - in particular nonnegative measures.

I Work out numerical advantages, possibly also with respect to large
finite dimensional simplexes

Applications in stochastic portfolio theory building on linear factor models

I Existence of arbitrages?

I Existence of supermartingale deflators?

I Functionally generated portfolios, in particular infinite dimension?

I Itô type formulas and stochastic integration in the sense of Föllmer for
measure valued processes?

I Implications for capital distribution curve modeling?
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Conclusions and outlook

Happy Birthday, Ioannis!
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