
Fluctuations of interacting particle systems

Ivan Corwin (Columbia University)

   Stat Phys Page 1    



Interacting particle systems & ASEP

In one dimension these model mass transport, traffic, growth…

Invariant measures and expectations;•

LLN / PDE (hydrodynamic) limits;•

Large deviation principals;•

Fluctuation and stochastic PDEs limits.•

We'll focus ASEP, which predicts behavior of the full class.

Some key considerations and questions:

ASEP:
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TASEP (q=0 ASEP)

Solvable due to connections with Schur polynomials, free Fermions, 

determinantal point processes, biorthogonal ensembles…

[Johansson '99, Prahofer-Spohn '02]:
In long time, TASEP with step initial 

data has height fluctuations which 

grow like time^1/3 with correlations 

in the time^2/3 transversal scale and 

Airy process multipoint distributions.

Work since has extended to general initial data and developed the 

full space time limit of TASEP (called the KPZ fixed point).

Universality is out of reach, but we can test on other solvable models.
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ASEP (q<p), KPZ equation

ASEP is solvable via Bethe ansatz and Hall-Littlewood polynomials.

[Tracy-Widom '09]: In long time, ASEP with step initial data has height 

fluctuations exponent 1/3 and limiting GUE one-point distribution.

[C-Dimitrov '17]: ASEP has transversal scaling exponent 2/3 with a 

limiting spatial process which is absolutely continuous w.r.t Brownian motion.

space-time white noise

Kardar-Parisi-Zhang (KPZ) SPDE: [Amir-C-Quastel '11] proved 1/3 exponent 

and GUE limit; [C-Hammond '13] proved 2/3 exponent and Brownian abs. cont.

•

Another ASEP limit is to Brownian motions with skew reflection. ASEP methods 

should survive that limit ([Sasamoto-Spohn '15] prove 1/3; 2/3 not yet proved).

•
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Integrable probability in a nutshell

Study scaling and statistics of complex random systems through 

exactly solvable examples which predict larger universality class.

These special systems come from algebraic structures:

Representation theory

(Schur/Macdonald processes)

Quantum integrable systems

(stochastic vertex models)

Integrable 

probabilistic systems

Connecting these two sides yields new tools in studying models such 

as tilings, stochastic six vertex model and ASEP.

today

   Stat Phys Page 5    



Tiling

We consider a measure on plane partitions (equivalently rhombus 

tilings, dimers, or 3d Young diagrams) determined by   and    as:

where                         and 

We associate an ensemble of non-

crossing level lines which we call 

the Hall-Littlewood line ensemble.

.     Eg.

Generalizes Schur process / tiling of [Okounkov-Reshetikhin '01].
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Hall-Littlewood Gibbs property

The Hall-Littlewood line ensemble 

enjoys a Gibbs resampling property.

Given curve above and below, the law of middle curve is (uniform) 

x (weight depending locally on the derivative of height differences).
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Tightness

[C-Dimitrov '17] (building on [C-Hammond '11,'13]) show that 

one point tightness of the top curve (base of the tiling) implies 

spatial tightness for the full edge ensemble under diffusive scaling.

Caution: HL Gibbs property does not enjoy monotone coupling (like non-intersecting 

random walks / BM) so we had to develop weaker forms of monotonicity.
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Tiling limit shape?

Taking M, N large seems to yields a limit shape -- what is it? 

We prove edge fluctuation exponent 1/3, transversal exponent 2/3.
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S6V

Stochastic six vertex model [Gwa-Spohn '93], [Borodin-C-Gorin '15]

(Gauge-transform of the a,b,c model where weights sum for fixed input to 1.)

Stochastic weights

Height function           records number of 

arrows at or to the right of a given location.

   Stat Phys Page 10    



Tiling <--> S6V

[Borodin-Bufetov-Wheeler '17] relate these two models so that

equals in law

With

and
With

Proved by relating tiling to a vertex model and using Yang-Baxter.
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S6V -> ASEP

Taking            ,            ,                ,                    , and    to 0 

the S6V height function converges to that of ASEP.  

This is just like how the a,b,c 6 vertex model goes to XXZ spin chain
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Overview of connections

ASEP

Stochastic six vertex

Hall-Littlewood process

It remains for us to prove time^1/3 edge fluctuation, and tiling<-->S6V relation
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time^1/3 proof (via Macdonald processes)

Recast tiling measure as Hall-Littlewood process on sequences of 

interlacing partitions                                                       :

where         . The one variable skew Hall-Littlewood polynomials are

with                      and         defined similarly.

The quantity of interest is the length of        (or first row of its transpose).
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time^1/3 proof (via Macdonald processes)

The marginal distribution of        is a Hall-Littlewood measure

where the Hall-Littlewood symmetric polynomials are defined via

                                                                                    

Hall-Littlewood polynomials            are special cases of the 

Macdonald polynomials             (and generalize Schur                     ).
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Macdonald processes

Macdonald processes
Ruijsenaars-Macdonald system

Representations of Double Affine Hecke Algebras

Hall-Littlewood processes
Random matrices over finite fields

Spherical functions for p-adic groups

General
Random matrices over 

Calogero-Sutherland, Jack polynomials

Spherical functions for Riem. Symm. Sp.

RMT 

q-Whittaker processes
q-TASEP, 2d dynamics

q-deformed quantum Toda lattice

Representations of

Whittaker processes
Directed polymers and their hierarchies

Quantum Toda lattice, repr. of

            Schur processes
Plane partitions, tilings/shuffling, TASEP, PNG, last passage percolation, GUE

  Characters of symmetric, unitary groups

Kingman partition structures
Cycles of random permutations

Poisson-Dirichlet distributions
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Hall-Littlewood expectations via Schur processes

The Macdonald Cauchy identity yields the normalizing constant

Macdonald difference operators act diagonally on the polynomials:

Recipe to compute expectations: 

Easy to see the LHS is q-independent (since                  ) hence

reducing our problem to well-known Schur asymptotics.
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t-Boson vertex model

Plane partition (tiling) a formed by increasing, then decreasing interlacing 

partitions. t-Boson weights induce a measure on such a sequence. 

Setting           we get back our original measure.

(       )Law of
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Yang-Baxter equation

The sum is over all internal vertices and on the right is a vertex 

from the S6V model (rotated 45 degrees) with weights:

Follows single vertex t-Boson YBE by tensoring and taking a limit. 

   Stat Phys Page 19    



Yang-Baxter equation

(     )

=

Using the YBE to switch the red and grey rows

relates law of the tiling base to that of the S6V output arrows.

= (     )Law of 

the base

Law of 

output

In half space case, have to additionally use "reflection equations".
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Summary

Relate S6V height function to "Hall-Littlewood" tiling base.

The tiling is a special case of Macdonald processes at q=0.

Using properties of Macdonald / Hall-Littlewood / Schur 

symmetric functions we compute certain expectations explicitly 

and perform one-point asymptotics.



Using the tiling's Gibbs property, we can extend the one-point 

1/3 exponent tightness to the transversal 2/3 exponent.



Both models admit limits to ASEP and the KPZ equation and 

hence this provides a means to study those models too.



Some questions: Tiling limit shape? Asymptotics for more general 

boundary rates? Two-sided open ASEP? Higher spin models?
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