Mean-Field optimization problems and non-anticipative optimal transport

# Beatrice Acciaio London School of Economics

based on ongoing projects with J. Backhoff, R. Carmona and P. Wang

Thera Stochastics A Mathematics Conference in Honor of Ioannis Karatzas Thera, Santorini, May 31 - June 2, 2017

# The story in a nutshell

#### Given

- a (finite or infinite) set of agents
- who need to choose their actions/strategies
- and face a cost depending on their own type, action, and on the symmetric interaction with each other:

cost(i) = fct(type(i), action(i), (empirical) distrib. actions)

Aim to

- → find/characterize equilibria
- → through connections with non-anticipative optimal transport

### Outline

### 1 First setting: hidden/no dynamics

- Problem formulation
- Connection with non-anticipative optimal transport
- Existence and uniqueness results

#### 2 Second setting: state dynamics

- Problem formulation
- Connection with non-anticipative optimal transport
- First results

### 3 Conclusions

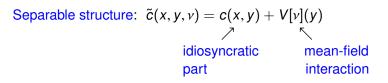
# Setting

- time set:  $\mathbb{T} = \{0, ..., T\}$ , or  $\mathbb{T} = [0, T]$
- X: agents types
  - $\mathcal{X} \subseteq \mathbb{X}^{|\mathbb{T}|}$ : agents types evolutions
- Y: agents' actions

 $\boldsymbol{\mathcal{Y}} \subseteq \mathbb{Y}^{|\mathbb{T}|}$ : agents' actions evolutions

- e.g.  $X=Y=\mathbb{R}$ , and  $X=\mathcal{Y}=\mathbb{R}^{T+1}$  or  $X=\mathcal{Y}=C([0, T]; \mathbb{R})$
- $\eta \in \mathcal{P}(X)$ : known a priori distribution over types
- $\rightarrow \text{ cost function: } \tilde{c}(x, y, v) \quad \text{(for each agent)} \\ \nearrow \uparrow \uparrow \\ \text{type action actions' distribution} \\ x \in \mathcal{X} \quad y \in \mathcal{Y} \quad v \in \mathcal{P}(\mathcal{Y}) \\ \end{array}$

### Cost function



with  $c: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}_+$  l.s.c.,  $V: \mathcal{P}(\mathcal{Y}) \to \mathcal{B}(\mathcal{Y}; \mathbb{R}_+)$ 

- congestion effect:  $V_c[v](y) = f(y, \frac{dv}{dm}(y))$ , with  $m \in \mathcal{P}(\mathcal{Y})$  reference meas. w.r.t. which congestion measured,  $f(y, .) \nearrow$
- attractive effect:  $V_a[v](y) = \int_{\mathcal{Y}} \phi(y, z)v(dz)$ , with  $\phi$  symmetric, convex, minimal on the diagonal

Static case: Blanchet-Carlier 2015

## Pure adapted strategies

pure strategy: all players of type  $x \in X$  choose the same strategy  $y = A(x) = (A_t(x))_{t \in \mathbb{T}}$ 

adapted strategy:  $A_t(x) = T^t(x_{0:t})$  for some measurable  $T^t$ 

Denote by  $\mathcal{A}$  the set of pure adapted strategies  $A : \mathcal{X} \to \mathcal{Y}$ 

- type distribution:  $\eta \in \mathcal{P}(X)$  (known)
- strategy distribution: ν = A<sub>#</sub>η = T<sub>#</sub>η ∈ P(Y), T = (T<sup>t</sup>)<sub>t∈T</sub> (will be determined in equilibrium)

## Pure equilibrium

#### Social planner perspective: minimize average cost

For every  $v \in \mathcal{P}(\mathcal{Y})$ , denote

$$P(v) := \inf_{A \in \mathcal{A}} \int \left\{ c(x, A(x)) + V[v](A(x)) \right\} \eta(dx)$$

#### Definition

An element  $A \in \mathcal{R}$  is called a pure equilibrium if

• A attains P(v),

• where 
$$v = A_{\#}\eta$$
.

### Cournot-Nash equilibrium

**Remark.** Let  $\mathbb{T} = \{0, 1, ..., T\}$  (analogous in continuous time). Let  $c(x, y) = \sum_{t=0}^{T} c_t(x_{0:t}, y_t)$  and  $V[v](y) = \sum_{t=0}^{T} V_t[v_t](y_t)$ , then pure equilibrium for social planner = Cournot-Nash equilibrium ( $\eta$ -a.s. each agent acts as best response to other agents' actions)

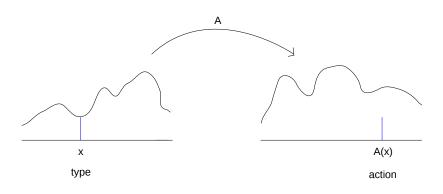
The equilibria are described by the set  $\{A^{\nu}: A^{\nu}_{\#}\eta = \nu\}$ , where  $A^{\nu}_t(x) = T^{\nu}_t(x_{0:t}) := \arg\min_z \{c_t(x_{0:t}, z) + V_t[\nu_t](z)\}.$ 

- This is clearly a specific situation
- Anyway, pure equilibria rarely exists, so we shall consider the natural generalization to mixed-strategy equilibria.

State dynamics

Conclusions

### From pure to mixed-strategy equilibrium

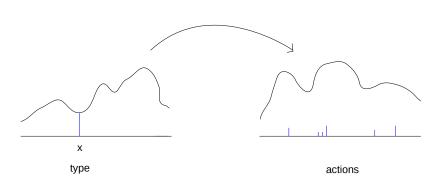


#### adapted pure strategy = adapted Monge transport

State dynamics

Conclusions

### From pure to mixed-strategy equilibrium



#### non-anticipative mixed strategy = causal Kantorovich transport

## Mixed non-anticipative strategy

mixed-strategy: players of same type can choose different actions non-anticipative:  $A_t(x) = \text{fct}(x_{0:t}) + \text{sth indep. of } x$  $\downarrow$ 

**Non-anticipative (causal) transport**:  $\pi \in \mathcal{P}(X \times \mathcal{Y})$  s.t.  $p_{1\#}\pi = \eta$ , and for all *t* and  $D \in \mathcal{F}_t^{\mathcal{Y}}$ , the map  $X \ni x \mapsto \pi^x(D)$  is  $\mathcal{F}_t^X$ -measurable (where  $(\mathcal{F}_t^X), (\mathcal{F}_t^{\mathcal{Y}})$  canonical filtr. in  $X, \mathcal{Y}$ , and  $\pi^x$  reg. cond. kernel)

Denote by  $\Pi_c(\eta, \nu)$  the set of causal transports between  $\eta$  and  $\nu$ , and let  $\Pi_c(\eta, .) := \bigcup_{\nu \in \mathcal{P}(\mathcal{Y})} \Pi_c(\eta, \nu)$ 

Note that  $\pi = (id, T)_{\#} \eta \in \Pi_c(\eta, .)$  are the pure adapted strategies.

## Mixed-strategy equilibrium

For every  $\nu \in \mathcal{P}(\mathcal{Y})$ , denote

$$M(v) := \inf_{\pi \in \Pi_c(\eta,.)} \mathbb{E}^{\pi} \Big[ c(x,y) + V[v](y) \Big]$$

#### Definition

An element  $\pi \in \Pi_c(\eta, .)$  is called a mixed-strategy equilibrium if

- $\pi$  attains M(v),
- where  $v = p_{2\#}\pi$ , i.e.,  $\pi \in \prod_c(\eta, v)$ .

1

**Remark.** Mixed-strategy equilibria are solutions to causal transport problems: if  $\pi^*$  m-s equilibrium, with  $p_{2\#}\pi^* = v^*$ , then it attains

$$\inf_{x\in\Pi_c(\eta,\nu^*)}\mathbb{E}^{\pi}[c(x,y)].$$

Analogously, pure equilibria = solutions to CT pbs over Monge maps

## Potential games

From the remark, we always have equilibrium  $\implies$  optimal transport

For potential games, we will have ">" in some sense

#### Assumption

There exists  $\mathcal{E} : \mathcal{P}(\mathcal{Y}) \to \mathbb{R}$  such that V is the first variation of  $\mathcal{E}$ :

$$\lim_{\epsilon \to 0^+} \frac{\mathcal{E}(\nu + \epsilon(\mu - \nu)) - \mathcal{E}(\nu)}{\epsilon} = \int_{\mathcal{Y}} V[\nu](y)(\mu - \nu)(dy), \quad \forall \nu, \mu \in \mathcal{P}(\mathcal{Y})$$

E.g.  $V = V_c + V_a$  (repulsive+attractive effect) is the first variation of

$$\mathcal{E}(v) = \int_{\mathcal{Y}} F\left(y, \frac{dv}{dm}(y)\right) m(dy) + \frac{1}{2} \int_{\mathcal{Y} \times \mathcal{Y}} \phi(y, z) v(dz) v(dy),$$

where  $F(y, u) = \int_0^u f(y, s) ds$ .

## Potential games

Consider the variational problem

(VP) 
$$\inf_{\nu \in \mathcal{P}(\mathcal{Y})} \left\{ \inf_{\substack{\pi \in \Pi_{c}(\eta, \nu) \\ \mathbf{CT}(\eta, \nu)}} \mathbb{E}^{\pi}[c(x, y)] + \mathcal{E}[\nu] \right\}$$

#### Theorem

Let  $\mathcal{E}$  be convex, then the following are **equivalent**:

(i)  $\pi^*$  is a mixed-strategy equilibrium, with  $p_{2\#}\pi^* = v^*$ ;

(ii)  $v^*$  solves (VP), and  $\pi^*$  solves  $CT(\eta, v^*)$ .

**Remarks.** 1. Convexity only needed for "(*i*)  $\Rightarrow$  (*ii*)"

- 2. Convexity satisfied in the congestion case ( $V = V_c$ )
- 3. Alternatively: displacement convexity can be used

## Potential games

#### Corollary (uniqueness)

If  $\mathcal{E}$  strictly convex  $\Rightarrow$  all m-s equilibria have same second marginal  $v^*$ , i.e., unique optimal distribution of actions.

Indeed,  $\nu \mapsto CT(\eta, \nu)$  convex, hence  $\mathcal{E}$  strictly convex implies unique solution  $\nu^*$  for (VP). Then apply theorem.

#### Corollary (existence)

For  $V = V_c$  and growth condition on  $f \Rightarrow \exists m$ -s equilibrium.

Indeed, the growth condition ensures existence of a solution  $v^*$  for (VP), and  $CT(\eta, v^*)$  admits a solution  $\pi^*$  since *c* is bounded below and l.s.c. Then apply theorem.

#### Example

Let 
$$\mathbb{T} = \{0, 1, ..., T\}$$
, and  $\mathcal{X} = \mathcal{Y} = \mathbb{R}^{T+1}$ . If

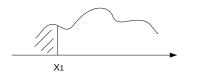
•  $\eta$  has independent increments, and

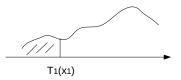
• 
$$c(x, y) = c_0(x_0, y_0) + \sum_{t=1}^{T} c_t(x_t - x_{t-1}, y_t - y_{t-1})$$
, with  $c_t(u, v) = k_t(u - v)$  and  $k_t$  convex,

Then:

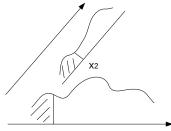
- m-s equilibria (if 3) are determined by the second marginal
- m-s equilibria are the Knothe-Rosenblatt rearrangements
- if moreover  $\eta$  has a density, all m-s equilibria are in fact pure

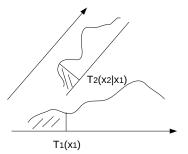
## The Knothe-Rosenblatt map





## The Knothe-Rosenblatt map







### Actions as controls on dynamics

- The previous result describes a specific situation where optimal actions are increasing with the type.
- When these conditions not satisfied, which form of CT/equilibria?

**Example.** Let actions = controls on dynamics:

$$X_t = (k_t^1 X_{t-1} + k_t^2 \alpha_t) + \epsilon_t, \ t = 1, ..., T, \ X_0 = x_0,$$

with associated cost  $f_t(X_t, \alpha_t, \nu_t)$  at time *t*. As  $X_t = fct(\epsilon_i, \alpha_i, i \leq t)$ ,

$$f_t(X_t, \alpha_t, \nu_t) = c_t(\epsilon_{0:t}, \alpha_{0:t}, \nu_t),$$

hence total cost =  $\mathbb{E}[\sum_{t=0}^{T} c_t(\epsilon_{0:t}, \alpha_{0:t}, \nu_t)].$ 

← Fits into previous framework, by reading "noises as types".

## McKean-Vlasov control problem

• With the above example in mind, we will consider

McKean-Vlasov control problem:

$$\inf_{\alpha} \mathbb{E}^{\mathbb{P}}\left[\int_{0}^{T} \tilde{f}_{t}\left(X_{t}, \alpha_{t}, \mathbb{P} \circ (X_{t}, \alpha_{t})^{-1}\right) dt + \tilde{g}\left(X_{T}, \mathbb{P} \circ X_{T}^{-1}\right)\right]$$

subject to

$$dX_t = b_t \left( X_t, \alpha_t, \mathbb{P} \circ X_t^{-1} 
ight) dt + dW_t$$

• Let us fist mention connections to large systems of interacting controlled state processes

## N-player stochastic differential game

The private state process  $X^i$  of player *i* is given by the solution to

$$dX_t^i = b_t(X_t^i, \alpha_t^i, \bar{\mu}_t^N)dt + dW_t^i$$

•  $W^1, ..., W^N$  independent Wiener processes •  $\alpha^1, ..., \alpha^N$  controls of the *N* players •  $\bar{\mu}_t^N = \frac{1}{N-1} \sum_{j \neq i} \delta_{X_t^j}$  empirical distrib. of states of the other players

The objective of player *i* is to choose a  $\alpha^i$  in order to minimize

$$\mathbb{E} \left[ \int_0^T \tilde{f}_t(X_t^i, \alpha_t^i, \bar{v}_t^N) dt + \tilde{g}(X_T^i, \bar{\mu}_T^N) \right]$$

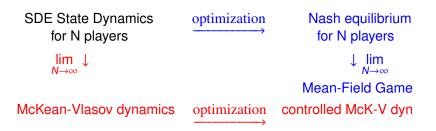
•  $\bar{v}_t^N = \frac{1}{N-1} \sum_{j \neq i} \delta_{(X_t^j, \alpha_t^j)}$  empirical joint distrib. of states and controls of the other players

Statistically identical players: same functions  $b_t$ ,  $\tilde{f}_t$ ,  $\tilde{g}$ 

# From N-player game to McKean-Vlasov control problem

Approximation by asymptotic arguments:

- first optimization then limit for  $N \rightarrow \infty$ , or
- viceversa, first limit for  $N \rightarrow \infty$  and then optimization



(Carmona-Delarue-Lachapelle 2012)

## McKean-Vlasov control problem

Back to the McKean-Vlasov control problem.

For simplicity:

- no terminal cost:  $\tilde{g} = 0$
- separable costs:  $\tilde{f}_t(x, a, v) = f_t(x, a) + K_t(v)$

Therefore

$$\inf_{\alpha} \mathbb{E}^{\mathbb{P}} \left[ \int_{0}^{T} \left\{ f_{t}(X_{t}, \alpha_{t}) + \mathcal{K}_{t} \left( \mathbb{P} \circ (X_{t}, \alpha_{t})^{-1} \right) \right\} dt \right]$$
  
$$dX_{t} = b_{t} \left( X_{t}, \alpha_{t}, \mathbb{P} \circ X_{t}^{-1} \right) dt + dW_{t},$$

with  $f_t : \mathbb{R} \times \mathbb{R} \to \mathbb{R}, K_t : \mathcal{P}(\mathbb{R} \times \mathbb{R}) \to \mathbb{R}, b_t : \mathbb{R} \times \mathbb{R} \times \mathcal{P}(\mathbb{R}) \to \mathbb{R}$ 

## McKean-Vlasov control problem

**Definition.** A weak solution to the McKean-Vlasov control problem is a tuple  $(\Omega, (\mathcal{F}_t)_{t \in [0,T]}, \mathbb{P}, W, X, \alpha)$  such that:

(i) (Ω, (𝓕<sub>t</sub>)<sub>t∈[0,T]</sub>, ℙ) supports X and a BM W, α is 𝓕<sup>X</sup>-progress. measurable and 𝔼<sup>ℙ</sup>[∫<sub>0</sub><sup>T</sup> |α<sub>t</sub>|<sup>2</sup>] < ∞</li>
(ii) the state equation dX<sub>t</sub> = b<sub>t</sub> (X<sub>t</sub>, α<sub>t</sub>, ℙ ∘ X<sub>t</sub><sup>-1</sup>) dt + dW<sub>t</sub> holds
(iii) if (Ω', (𝓕'<sub>t</sub>)<sub>t∈[0,T]</sub>, ℙ', W', X', α') is another tuple s.t. (i)-(ii) hold,
𝔼<sup>ℙ</sup>[∫<sub>0</sub><sup>T</sup> f<sub>t</sub>(X<sub>t</sub>, α<sub>t</sub>)+K<sub>t</sub> (ℙ ∘ (X<sub>t</sub>, α<sub>t</sub>)<sup>-1</sup>)}dt] ≤ 𝔼<sup>ℙ'</sup>[∫<sub>0</sub><sup>T</sup> f<sub>t</sub>(X'<sub>t</sub>, α'<sub>t</sub>)+K<sub>t</sub> (ℙ' ∘ (X'<sub>t</sub>, α'<sub>t</sub>)<sup>-1</sup>)}dt].

## Assumptions

- $\rightarrow$  We need some technical assumptions.
- $\rightarrow$  In the case of linear drift:

$$dX_t = (c_t^1 X_t + c_t^2 \alpha_t + c_t^3 \mathbb{E}[X_t]) dt + dW_t,$$

 $c_t^i \in \mathbb{R}, c_t^2 > 0$ , the assumptions reduce to:

- $f_t(x, .)$  convex (and  $f_t(., y)$  at least quadratic growth)
- $K_t$  is  $\prec_c$ -monotone

Example.

• 
$$f_t(x,a) = d_t^1 x + d_t^2 a + d_t^3 x^2 + d_t^4 a^2$$
,  $d_t^i \in \mathbb{R}, d_t^4 > 0$ 

•  $K_t(\zeta) = F_t(\overline{\zeta}_1, \overline{\zeta}_2)$ , any  $F_t$ ,  $\overline{\zeta}_i := \int y d(p_{i\#}\zeta)(y)$ 

## Characterization via non-anticipative optimal transport

- formulate a transport problem in the path space C([0, T])
- denote by  $\gamma$  the Wiener measure on C([0, T])
- $(\omega, \overline{\omega})$  generic element on  $C([0, T]) \times C([0, T])$
- "move noises into states"

#### Theorem

Under the mentioned assumptions, the weak MKV problem is equivalent to the variational problem

$$\inf_{\mu \ll \gamma} \inf_{\pi \in \Pi_{bc}(\gamma,\mu)} \left\{ \mathbb{E}^{\pi} \left[ \int_{0}^{T} f_{t}(\overline{\omega}_{t}, u_{t}(\omega, \overline{\omega}, \mu)) dt \right] + \int_{0}^{T} K_{t} \left( \left( p_{2}, u_{t}(\omega, \overline{\omega}, \mu) \right)_{\#} \pi_{t} \right) dt \right\}$$
  
where  $u_{t}(\omega, \overline{\omega}, \mu) = b_{t}^{-1}(\overline{\omega}_{t}, .., \mu_{t}) \left( (\overline{\omega} - \omega)_{t} \right).$ 

 $\Pi_{bc}(\gamma,\mu) = \left\{ \pi \in \Pi_c(\gamma,\mu) : \ell_{\#}\pi \in \Pi_c(\mu,\gamma) \right\}, \text{ where } \ell(x,y) = (y,x)$ 

# Characterization via non-anticipative optimal transport

#### Remarks.

- The optimization over Π<sub>bc</sub>(γ, μ) is not a standard optimal transport problem ⇒ new analysis for existence/duality.
- When mean-field cost is K<sub>t</sub>(ℙ ∘ X<sub>t</sub><sup>-1</sup>) ⇒ standard causal transport problem (A.-Backhoff-Zalashko 2016)

#### Example.

- state dynamics:  $dX_t = \alpha_t dt + dW_t$
- cost:  $\mathbb{E}^{\mathbb{P}}\left[\frac{1}{2}\int_{0}^{T}\left(X_{t}^{2}+\alpha_{t}^{2}\right)dt\right]+\int_{0}^{T}K_{t}(\mathbb{P}\circ X_{t}^{-1})dt$
- ⇒ in the variational problem we have causal optimal transport w.r.t. Cameron-Martin distance:

$$\inf_{\pi\in \Pi_{bc}(\gamma,\mu)} \mathbb{E}^{\pi}[|\overline{\omega}-\omega|_{H}^{2}] = \mathcal{H}(\mu|\gamma),$$

hence we are left with

 $\inf_{\mu\ll\gamma} \{\mathcal{H}(\mu|\gamma) + \mathcal{P}(\mu)\}, \quad \mathcal{P}(\mu) \text{ penalty term}$ 

### Conclusions

In the case with hidden/no dynamics:

- characterization of equilibrium via non-anticipative transport
- existence and uniqueness results
- characterization of causal optimal transport ( $\neq$  KR)...

In the case with state dynamics:

- characterization of weak McKean-Vlasov solutions via non-anticipative transport
- existence and uniqueness...
- characterization of causal optimal transport...



# Bibliography et al.

- Acciaio, B, and Backhoff, J, and Zalashko, A. "Causal optimal transport and its links to enlargement of filtrations and continuous-time stochastic optimization", arXiv:1611.02610, 2016.
- Blanchet, A, and Carlier, G. "Optimal transport and Cournot-Nash equilibria", Mathematics of Operations Research 41, 125-145, 2015.
- Carmona, R, and Delarue, F. "Probabilistic Theory of Mean Field Games with Applications I-II", Springer, 2017.

# Thank you for your attention and Buon compleanno loannis! :)