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The story in a nutshell

Given
@ a (finite or infinite) set of agents
@ who need to choose their actions/strategies

@ and face a cost depending on their own type, action, and on
the symmetric interaction with each other:

cost(i) = fct (type(i), action(/), (empirical) distrib. actions)

Aim to
— find/characterize equilibria
— through connections with non-anticipative optimal transport
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ﬂ First setting: hidden/no dynamics
@ Problem formulation
@ Connection with non-anticipative optimal transport
@ Existence and uniqueness results

e Second setting: state dynamics
@ Problem formulation
@ Connection with non-anticipative optimal transport
@ First results

e Conclusions
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o timeset: T={0,..,T},orT =0, T]
@ X: agents types
X c XII: agents types evolutions
@ Y: agents’ actions
Y c Y™ agents’ actions evolutions
@ e.g. X=Y=R, and X=Y=R"*" or X=Y=C([0, T|;R)
@ 77 € P(X): known a priori distribution over types

— cost function: ¢(x,y,v) (for each agent)

TN

type action actions’ distribution
xeX yelY vePY)
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Cost function

Separable structure: ¢(x,y,v) = c(x,y) + V[V|(y)

/ AN
idiosyncratic mean-field
part interaction

withc: X xY - Ry lsc., V:P(Y) - B(Y;Ry)
e congestion effect: Vo[v(y) = f(y, 2(y)), with m € P(¥)
reference meas. w.r.t. which congestion measured, f(y,.) /

o attractive effect: Vu[v](y) = [, ¢(y,2)v(dz),
with ¢ symmetric, convex, mlnlmal on the diagonal

Static case: Blanchet-Carlier 2015
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Pure adapted strategies

pure strategy: all players of type x € X choose the same strategy
y = A(x) = (Ai(X))ter

adapted strategy: A;(x) = T!(xo.t) for some measurable T!

Denote by ‘A the set of pure adapted strategies A : X —» VY

@ type distribution: n € £(X) (known)

e strategy distribution: v = Aun = Tyun e P(Y), T = (T)ter
(will be determined in equilibrium)
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Pure equilibrium

Social planner perspective: minimize average cost

For every v € P(Y), denote
PO) = jnt, [ o(x.A() + VEIAG)] n(ax)

Definition

An element A € A is called a pure equilibrium if
@ A attains P(v),
@ where v = Ayn.
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Cournot-Nash equilibrium

Remark. Let T = {0, 1, ..., T} (analogous in continuous time).

Let o(x.y) = ZLo &lxa 1) and VI(y) = 2o Vibvil(ye), then
pure equilibrium for social planner = Cournot-Nash equilibrium

(n-a.s. each agent acts as best response to other agents’ actions)

The equilibria are described by the set {AV : A;n =y } where
Al (x) = T{(xo:t) := arg minz{ct(xo:t,z) + Vt[vt](z)}.

@ This is clearly a specific situation

@ Anyway, pure equilibria rarely exists, so we shall consider the
natural generalization to mixed-strategy equilibria.
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From pure to mixed-strategy equilibrium

STy

X A(x)

type action

adapted pure strategy = adapted Monge transport
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From pure to mixed-strategy equilibrium

STy

type actions

non-anticipative mixed strategy = causal Kantorovich transport
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Mixed non-anticipative strategy

mixed-strategy: players of same type can choose different actions
non-anticipative: A;(x) = fct(xo:t) + sth indep. of x

)

Non-anticipative (causal) transport: 7 € P(X X Y) s.t. pym =17,
and for all t and De 7Y, the map X > x+ 7*(D) is 7;X-measurable
(where (FX),(F;Y) canonical filtr. in X,/, and 7* reg. cond. kernel)

Denote by N¢(n, v) the set of causal transports between r and v,
and let Mo (7, .) := Uyep(y) Me(n,v)

Note that 7 = (id, T)4n € MN¢(n,.) are the pure adapted strategies.
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Mixed-strategy equilibrium

For every v € P(Y), denote

Me) = _int E[e(xy) + VL))

Definition
An element 7 € MN¢(n, .) is called a mixed-strategy equilibrium if
@ 1 attains M(v),

@ where v = paum, ie., e Me(n,v).

Remark. Mixed-strategy equilibria are solutions to causal transport
problems: if 7 m-s equilibrium, with po.7* = v*, then it attains

inf  E™[c(x, y)].
LA [e(x,y)]

Analogously, pure equilibria=solutions to CT pbs over Monge maps
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Potential games

From the remark, we always have equilibrium =— optimal transport

For potential games, we will have “<=" in some sense

There exists & : P(Y) — R such that V is the first variation of &:

E(v+e(u-v)) -8

= |, vBI . Vruery)

e—0t €

E.g. V=V, + V; (repulsive+attractive effect) is the first variation of

&)= |, F(y,j—;(y))m(dm; [[. ot 2ptczmin)

where F(y,u) = fo (v.s
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Potential games
Consider the variational problem

VP inf inf  E"[c(x, + 8lv
(vP) VW){HEHM [o(x.¥)] [1}

CT(n,v)

Let & be convex, then the following are equivalent:

(i) = is a mixed-strategy equilibrium, with pz,7* = v*;
(i) v* solves (VP), and n* solves CT(n,v").

Remarks. 1. Convexity only needed for “(i) = (ii)”
2. Convexity satisfied in the congestion case (V = V)
3. Alternatively: displacement convexity can be used
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Potential games

Corollary (uniqueness)

If & strictly convex = all m-s equilibria have same second
marginal v*, i.e., unique optimal distribution of actions.

Indeed, v —CT(n, v) convex, hence & strictly convex implies
unique solution v* for (VP). Then apply theorem.

Corollary (existence)

For V =V, and growth condition on f = 4 m-s equilibrium.

Indeed, the growth condition ensures existence of a solution v* for
(VP), and CT(n, v*) admits a solution 7* since ¢ is bounded below
and l.s.c. Then apply theorem.
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LetT ={0,1,...,Thand X =Y = RTH |f
@ 7 has independent increments, and

@ ¢c(x.y) = co(Xo, ¥o) + Xy Ce(Xt = Xe-1. ¥t = Y1), with
ci(u, v) = k(u - v) and k; convex,

Then:

e m-s equilibria (if 3) are determined by the second marginal
e m-s equilibria are the Knothe-Rosenblatt rearrangements
e if moreover i has a density, all m-s equilibria are in fact pure
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The Knothe-Rosenblatt map

\\\?

g4

X1 T1(x1)
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The Knothe-Rosenblatt map

T

\ 2(x2|x1)
%ﬁ/ﬂ ‘

- >

X1 T1(x1)

\\\?
Y
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Actions as controls on dynamics

e The previous result describes a specific situation where optimal
actions are increasing with the type.

e When these conditions not satisfied, which form of CT/equilibria?

Example. Let actions = controls on dynamics:
Xi = (k' Xe-1 + KPar) + &, t=1,.., T, Xo = Xo,
with associated cost f;(X;, ¢, v;) at time t. As X; = fct(ej, @i, i < 't),
fr(Xt, ar, vt) = ci(eot, @o:t, vt),
hence total cost = E[,[_, ct(€o:t» @0:t, vt)]-

— Fits into previous framework, by reading “noises as types”.
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McKean-Vlasov control problem

e With the above example in mind, we will consider
McKean-Viasov control problem:
T ~
inf EF U (Xt anPo (Xear)™")dt + §(Xr.Po x;1)]
@ 0
subject to
dX; = by (X ar,Po X ') dt + dW;

e Let us fist mention connections to large systems of interacting
controlled state processes
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N-player stochastic differential game

The private state process X' of player i is given by the solution to
dX! = by(X[, o}, iN)dt + dW;

e W', ..., WN independent Wiener processes
e a',...,aN controls of the N players
° ,a?’ = ﬁ 2 5x{ empirical distrib. of states of the other players

The objective of player i is to choose a o' in order to minimize
T~ . . .
E[ f f(X{, o, ) dt + G(XT. 1Y)
0

o N = 5 Y 8 (1,0} €Mpirical joint distrib. of states and controls
of the other players

Statistically identical players: same functions by, f;, §
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From N-player game to McKean-Vlasov control problem

Approximation by asymptotic arguments:
@ first optimization then limit for N — oo, or
@ viceversa, first limit for N — co and then optimization

SDE State Dynamics optimization Nash equilibrium
for N players ’ for N players

Mean-Field Game

McKean-Vlasov dynamics optimization controlled McK-V dyn
_—

(Carmona-Delarue-Lachapelle 2012)
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McKean-Vlasov control problem

Back to the McKean-Vlasov control problem.

For simplicity:
e no terminal cost: g =0
e separable costs: fi(x,a,v) = fi(x, a) + Ki(v)

Therefore
T
inf EP [f {ft(Xt,at) + Kt (P o (Xt,a/t)_1)}dt]
@ 0
aX; = by (Xi. a1, P o X ') dt + dW;,

with i 1 RXR >R, Ki : P(RXR) > R, b :RXxRXP(R) > R
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McKean-Vlasov control problem

Definition. A weak solution to the McKean-Vlasov control problem
is a tuple (2, (ﬂ)te[o,r], P, W, X, @) such that:

(i) (2, (Ft)tefo,17- P) supports X and a BM W, a is FX-progress.
measurable and EP[fOT |czt|2] < 00
(ii) the state equation dX; = bt (X;, a1, P o X;") dt + dW; holds
(iii) if (2, (F/ )tefo,1- P'» W', X', @’) is another tuple s.t. (i)-(ii) hold,

EPUO [ a0 (o (%)) }dt] <& (10, ey (o (i) ) }dt] '
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— We need some technical assumptions.
— In the case of linear drift:
dX; = (¢} X; + c2ar + CPE[X{])dt + dW,,

c[ eR, ct2 > 0, the assumptions reduce to:
@ fi(x,.) convex (and f;(.,y) at least quadratic growth)
@ K;is <c.-monotone

Example.
o fi(x,a) =d/x + d?a+ d®x® + dfa®, dieR,d}>0
o Ki(0) = Fi(Z1.22), any Fi, = [ yd(pigd)(y)
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Conclusions

Characterization via non-anticipative optimal transport

e formulate a transport problem in the path space C([0, T])
@ denote by y the Wiener measure on C([0, T])

@ (w,w) generic element on C([0, T]) x C([0, T])
@ “move noises into states”

Theorem

Under the mentioned assumptions, the weak MKV problem is
equivalent to the variational problem

T T
inf inf <E"| | f (@, ui(w, o, u))dt +fK( , Ui(w, o, )dl‘}
it ”Enbc(w){ [f; t (Wi, Ut(w, @, 1)) ] o t (Pz t(w, © #))#ﬂt

where uy(w, @, 1) = by (@t . ut)((@ — w):).

Mpc(y, 1) = {7r € Ne(y,u) : yme I_Ic(,u,y)}, where £(x,y) = (v, X)
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Characterization via non-anticipative optimal transport

Remarks.
@ The optimization over My (y, 1) is not a standard optimal
transport problem = new analysis for existence/duality.
@ When mean-field cost is Ki(P o X; ') = standard causal
transport problem (A.-Backhoff-Zalashko 2016)

Example.
@ state dynamics: dX; = a;dt + dW;
@ cost: EF [% fOT (th + aff) dt] + fOT Ki(Po X, ")dt
= in the variational problem we have causal optimal transport
w.r.t. Cameron-Martin distance:

inf  E"[[w - wlf] = H(uly),
7€Mpe (y.u)

hence we are left with

inf {H(uly) + P(u)},  P(u) penalty term
IS
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Conclusions

In the case with hidden/no dynamics:
@ characterization of equilibrium via non-anticipative transport
@ existence and uniqueness results
@ characterization of causal optimal transport (# KR)...

In the case with state dynamics:

@ characterization of weak McKean-Vlasov solutions via
non-anticipative transport

@ existence and uniqueness...
@ characterization of causal optimal transport...

Ve
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Thank you for your attention
and
Buon compleanno loannis! :)
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