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The story in a nutshell

Given

a (finite or infinite) set of agents

who need to choose their actions/strategies

and face a cost depending on their own type, action, and on
the symmetric interaction with each other:

cost(i) = fct
(
type(i), action(i), (empirical) distrib. actions

)
Aim to

→ find/characterize equilibria

→ through connections with non-anticipative optimal transport
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1 First setting: hidden/no dynamics
Problem formulation
Connection with non-anticipative optimal transport
Existence and uniqueness results

2 Second setting: state dynamics
Problem formulation
Connection with non-anticipative optimal transport
First results

3 Conclusions
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Setting

time set: T = {0, ...,T }, or T = [0,T ]

X: agents types

X ⊆ X|T|: agents types evolutions

Y: agents’ actions

Y ⊆ Y|T|: agents’ actions evolutions

e.g. X=Y=R, and X=Y=RT+1 or X=Y=C([0,T ];R)

η ∈ P(X): known a priori distribution over types

→ cost function: c̃(x, y, ν) (for each agent)
↗ ↑ ↖

type action actions’ distribution
x ∈ X y ∈ Y ν ∈ P(Y)
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Cost function

Separable structure: c̃(x, y, ν) = c(x, y) + V [ν](y)
↗ ↖

idiosyncratic mean-field
part interaction

with c : X ×Y → R+ l.s.c., V : P(Y)→ B(Y;R+)

congestion effect: Vc [ν](y) = f
(
y, dν

dm (y)
)
, with m ∈ P(Y)

reference meas. w.r.t. which congestion measured, f(y, .)↗

attractive effect: Va [ν](y) =
∫
Y
φ(y, z)ν(dz),

with φ symmetric, convex, minimal on the diagonal

Static case: Blanchet-Carlier 2015
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Pure adapted strategies

pure strategy: all players of type x ∈ X choose the same strategy

y = A(x) = (At (x))t∈T

adapted strategy: At (x) = T t (x0:t ) for some measurable T t

Denote by A the set of pure adapted strategies A : X → Y

type distribution: η ∈ P(X) (known)

strategy distribution: ν = A#η = T#η ∈ P(Y), T = (T t )t∈T

(will be determined in equilibrium)



Hidden/no dynamics State dynamics Conclusions

Pure equilibrium

Social planner perspective: minimize average cost

For every ν ∈ P(Y), denote

P(ν) := inf
A∈A

∫ {
c(x,A(x)) + V [ν](A(x))

}
η(dx)

Definition
An element A ∈ A is called a pure equilibrium if

A attains P(ν),

where ν = A#η.



Hidden/no dynamics State dynamics Conclusions

Cournot-Nash equilibrium

Remark. Let T = {0, 1, ...,T } (analogous in continuous time).
Let c(x, y) =

∑T
t=0 ct (x0:t , yt ) and V [ν](y) =

∑T
t=0 Vt [νt ](yt ), then

pure equilibrium for social planner = Cournot-Nash equilibrium

(η-a.s. each agent acts as best response to other agents’ actions)

The equilibria are described by the set
{
A ν : A ν

#
η = ν

}
, where

A ν
t (x) = Tν

t (x0:t ) := arg minz

{
ct (x0:t , z) + Vt [νt ](z)

}
.

This is clearly a specific situation

Anyway, pure equilibria rarely exists, so we shall consider the
natural generalization to mixed-strategy equilibria.
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From pure to mixed-strategy equilibrium

x A(x)

A

type action

adapted pure strategy = adapted Monge transport 
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From pure to mixed-strategy equilibrium

x

type actions

non-anticipative mixed strategy = causal Kantorovich transport 
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Mixed non-anticipative strategy

mixed-strategy: players of same type can choose different actions

non-anticipative: At (x) = fct(x0:t ) + sth indep. of x

↓

Non-anticipative (causal) transport: π ∈ P(X×Y) s.t. p1#π = η,
and for all t and D ∈F Yt , the map X3 x 7→ πx(D) is F Xt -measurable
(where (F Xt ),(F Yt ) canonical filtr. in X,Y, and πx reg. cond. kernel)

Denote by Πc(η, ν) the set of causal transports between η and ν,
and let Πc(η, .) :=

⋃
ν∈P(Y) Πc(η, ν)

Note that π = (id,T)#η ∈ Πc(η, .) are the pure adapted strategies.
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Mixed-strategy equilibrium

For every ν ∈ P(Y), denote

M(ν) := inf
π∈Πc(η,.)

Eπ
[
c(x, y) + V [ν](y)

]
Definition

An element π ∈ Πc(η, .) is called a mixed-strategy equilibrium if

π attains M(ν),

where ν = p2#π, i.e., π ∈ Πc(η, ν).

Remark. Mixed-strategy equilibria are solutions to causal transport
problems: if π∗ m-s equilibrium, with p2#π

∗ = ν∗, then it attains

inf
π∈Πc(η,ν∗)

Eπ[c(x, y)].

Analogously, pure equilibria=solutions to CTpbs over Monge maps
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Potential games

From the remark, we always have equilibrium =⇒ optimal transport

For potential games, we will have “⇐⇒” in some sense

Assumption

There exists E : P(Y)→ R such that V is the first variation of E:

lim
ε→0+

E(ν + ε(µ − ν)) − E(ν)

ε
=

∫
Y

V [ν](y)(µ−ν)(dy), ∀ ν, µ ∈ P(Y)

E.g. V = Vc + Va (repulsive+attractive effect) is the first variation of

E(ν) =

∫
Y

F
(
y,

dν
dm

(y)

)
m(dy) +

1
2

∫
Y×Y

φ(y, z)ν(dz)ν(dy),

where F(y, u) =
∫ u

0 f(y, s)ds.
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Potential games

Consider the variational problem

(VP) inf
ν∈P(Y)

 inf
π∈Πc(η,ν)

Eπ[c(x, y)]︸                   ︷︷                   ︸
CT(η, ν)

+E[ν]


Theorem
Let E be convex, then the following are equivalent:

(i) π∗ is a mixed-strategy equilibrium, with p2#π
∗ = ν∗;

(ii) ν∗ solves (VP), and π∗ solves CT(η, ν∗).

Remarks. 1. Convexity only needed for “(i)⇒ (ii)”
2. Convexity satisfied in the congestion case (V = Vc)
3. Alternatively: displacement convexity can be used
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Potential games

Corollary (uniqueness)

If E strictly convex ⇒ all m-s equilibria have same second
marginal ν∗, i.e., unique optimal distribution of actions.

Indeed, ν 7→CT(η, ν) convex, hence E strictly convex implies
unique solution ν∗ for (VP). Then apply theorem.

Corollary (existence)

For V = Vc and growth condition on f ⇒ ∃ m-s equilibrium.

Indeed, the growth condition ensures existence of a solution ν∗ for
(VP), and CT(η, ν∗) admits a solution π∗ since c is bounded below
and l.s.c. Then apply theorem.
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Example

Let T = {0, 1, ...,T }, and X = Y = RT+1. If

η has independent increments, and

c(x, y) = c0(x0, y0) +
∑T

t=1 ct (xt − xt−1, yt − yt−1), with
ct (u, v) = kt (u − v) and kt convex,

Then:
• m-s equilibria (if ∃) are determined by the second marginal
• m-s equilibria are the Knothe-Rosenblatt rearrangements
• if moreover η has a density, all m-s equilibria are in fact pure
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The Knothe-Rosenblatt map

X1 T1(x1)
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The Knothe-Rosenblatt map

X1 T1(x1)

x2
T2(x2|x1)
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Actions as controls on dynamics

• The previous result describes a specific situation where optimal
actions are increasing with the type.

•When these conditions not satisfied, which form of CT/equilibria?

Example. Let actions = controls on dynamics:

Xt = (k 1
t Xt−1 + k 2

t αt ) + εt , t = 1, ...,T , X0 = x0,

with associated cost ft (Xt , αt , νt ) at time t . As Xt = fct(εi , αi , i ≤ t),

ft (Xt , αt , νt ) = ct (ε0:t , α0:t , νt ),

hence total cost = E[
∑T

t=0 ct (ε0:t , α0:t , νt )].

↪→ Fits into previous framework, by reading “noises as types”.
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McKean-Vlasov control problem

•With the above example in mind, we will consider

McKean-Vlasov control problem:

inf
α
EP

[∫ T

0
f̃t
(
Xt , αt ,P ◦ (Xt , αt )

−1
)
dt + g̃

(
XT ,P ◦ X−1

T

)]
subject to

dXt = bt

(
Xt , αt ,P ◦ X−1

t

)
dt + dWt

• Let us fist mention connections to large systems of interacting
controlled state processes
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N-player stochastic differential game

The private state process X i of player i is given by the solution to

dX i
t = bt (X i

t , α
i
t , µ̄

N
t )dt + dW i

t

•W1, ...,WN independent Wiener processes
• α1, ..., αN controls of the N players
• µ̄N

t = 1
N−1

∑
j,i δX j

t
empirical distrib. of states of the other players

The objective of player i is to choose a αi in order to minimize

E

[∫ T

0
f̃t (X i

t , α
i
t , ν̄

N
t )dt + g̃(X i

T , µ̄
N
T )

]
• ν̄N

t = 1
N−1

∑
j,i δ(X j

t ,α
j
t )

empirical joint distrib. of states and controls
of the other players

Statistically identical players: same functions bt , f̃t , g̃
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From N-player game to McKean-Vlasov control problem

Approximation by asymptotic arguments:

first optimization then limit for N → ∞, or

viceversa, first limit for N → ∞ and then optimization

SDE State Dynamics optimization
−−−−−−−−−−−→

Nash equilibrium
for N players for N players

lim
N→∞

↓ ↓ lim
N→∞

Mean-Field Game

McKean-Vlasov dynamics optimization
−−−−−−−−−−−→

controlled McK-V dyn

(Carmona-Delarue-Lachapelle 2012)
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McKean-Vlasov control problem

Back to the McKean-Vlasov control problem.

For simplicity:
• no terminal cost: g̃ = 0
• separable costs: f̃t (x, a, ν) = ft (x, a) + Kt (ν)

Therefore

inf
α
EP

[∫ T

0

{
ft (Xt , αt ) + Kt

(
P ◦ (Xt , αt )

−1
) }

dt
]

dXt = bt

(
Xt , αt ,P ◦ X−1

t

)
dt + dWt ,

with ft : R × R→ R, Kt : P(R × R)→ R, bt : R × R × P(R)→ R



Hidden/no dynamics State dynamics Conclusions

McKean-Vlasov control problem

Definition. A weak solution to the McKean-Vlasov control problem
is a tuple (Ω, (Ft )t∈[0,T ],P,W ,X , α) such that:

(i) (Ω, (Ft )t∈[0,T ],P) supports X and a BM W , α is F X -progress.

measurable and EP
[ ∫ T

0 |αt |
2
]
< ∞

(ii) the state equation dXt = bt

(
Xt , αt ,P ◦ X−1

t

)
dt + dWt holds

(iii) if (Ω′, (F ′t )t∈[0,T ],P
′,W ′,X ′, α′) is another tuple s.t. (i)-(ii) hold,

EP
[∫ T

0

{
ft (Xt , αt )+Kt

(
P◦(Xt , αt )

−1
) }

dt
]
≤ EP

′

[∫ T

0

{
ft (X ′t , α

′
t )+Kt

(
P′◦(X ′t , α

′
t )
−1

) }
dt

]
.
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Assumptions

→We need some technical assumptions.

→ In the case of linear drift:

dXt = (c1
t Xt + c2

t αt + c3
t E[Xt ])dt + dWt ,

c i
t ∈ R, c

2
t > 0, the assumptions reduce to:

ft (x, .) convex (and ft (., y) at least quadratic growth)

Kt is ≺c-monotone

Example.

ft (x, a) = d1
t x + d2

t a + d3
t x2 + d4

t a2, d i
t ∈ R, d

4
t > 0

Kt (ζ) = Ft (ζ̄1, ζ̄2), any Ft , ζ̄i :=
∫

yd(pi#ζ)(y)
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Characterization via non-anticipative optimal transport

formulate a transport problem in the path space C([0,T ])

denote by γ the Wiener measure on C([0,T ])

(ω,ω) generic element on C([0,T ]) × C([0,T ])

“move noises into states”

Theorem
Under the mentioned assumptions, the weak MKV problem is
equivalent to the variational problem

inf
µ�γ

inf
π∈Πbc (γ,µ)

{
Eπ

[∫ T

0
ft (ωt , ut (ω,ω, µ)) dt

]
+

∫ T

0
Kt

((
p2, ut (ω,ω, µ)

)
#
πt

)
dt

}
where ut (ω,ω, µ) = b−1

t (ωt , ., µt )
(
( ˙ω − ω)t

)
.

Πbc(γ, µ) =
{
π ∈ Πc(γ, µ) : `#π ∈ Πc(µ, γ)

}
, where `(x, y) = (y, x)
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Characterization via non-anticipative optimal transport

Remarks.
The optimization over Πbc(γ, µ) is not a standard optimal
transport problem⇒ new analysis for existence/duality.
When mean-field cost is Kt (P ◦ X−1

t )⇒ standard causal
transport problem (A.-Backhoff-Zalashko 2016)

Example.
state dynamics: dXt = αtdt + dWt

cost: EP
[

1
2

∫ T
0

(
X2

t + α2
t

)
dt

]
+

∫ T
0 Kt (P ◦ X−1

t )dt

⇒ in the variational problem we have causal optimal transport
w.r.t. Cameron-Martin distance:

inf
π∈Πbc(γ,µ)

Eπ[|ω − ω|2H] = H(µ|γ),

hence we are left with

inf
µ�γ

{
H(µ|γ) + P(µ)

}
, P(µ) penalty term
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Conclusions

In the case with hidden/no dynamics:

characterization of equilibrium via non-anticipative transport

existence and uniqueness results

characterization of causal optimal transport (, KR)...

In the case with state dynamics:

characterization of weak McKean-Vlasov solutions via
non-anticipative transport

existence and uniqueness...

characterization of causal optimal transport...
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Thank you for your attention
and

Buon compleanno Ioannis! :)
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