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Discounted Dynamic Programming

Five ingredients: S,A, r, q, β.

S - state space

A - set of actions

q(·|s, a) - law of motion

r(s, a) - daily reward function (bounded, real-valued)

β ∈ [0,1) - discount factor
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Play of the game

You begin at some state s1 ∈ S, select an action a1 ∈ A, and

receive a reward r(s1, a1).

You then move to a new state s2 with distribution q(·|s1, a1),

select a2 ∈ A, and receive β · r(s2, a2).

Then you move to s3 with distribution q(·|s2, a2), select a3 ∈ A,

receive β2 · r(s3, a3). And so on.

Your total reward is the expected value of

∞∑
n=1

βn−1r(sn, an).
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Plans and Rewards

A plan π selects each action an, possibly at random, as a function

of the history (s1, a1, . . . , an−1, sn). The reward from π at the

initial state

s1 = s is

V (π)(s) = Eπ,s[
∞∑
n=1

βn−1r(sn, an)].

Given s1 = s and a1 = a, the conditional plan π[s, a] is just the

continuation of π and

V (π)(s) =
∫

[r(s, a) + β
∫
V (π[s, a])(t) q(dt|s, a)]π(s)(da).
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The Optimal Reward and the Bellman Equation

The optimal reward at s is

V ∗(s) = sup
π
V (π)(s).

The Bellman Equation for V ∗ is

V ∗(s) = sup
a

[r(s, a) + β
∫
V ∗(t) q(dt|s, a)].

I will sketch the proof for S and A countable.
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Proof of ≤:

For every plan π and s ∈ S,

V (π)(s) =
∫

[r(s, a) + β
∫
V (π[s, a])(t) q(dt|s, a)]π(s)(da)

≤ sup
a′

[r(s, a′) + β
∫
V (π[s, a′])(t) q(dt|s, a′)]

≤ sup
a′

[r(s, a′) + β
∫
V ∗(t) q(dt|s, a′)].

Now take the sup over π.
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Proof of ≥: Fix ε > 0.

For every state t ∈ S, select a plan πt such that

V (πt)(t) ≥ V ∗(t)− ε/2.

Fix a state s and choose an action a such that

r(s, a)+β
∫
V ∗(t) q(dt|s, a) ≥

sup
a′

[r(s, a′) + β
∫
V ∗(t) q(dt|s, a′)]− ε/2.

Define the plan π at s1 = s to have first action a and conditional

plans π[s, a](t) = πt. Then

V ∗(s) ≥ V (π)(s) =r(s, a) + β
∫
V (πt)(t) q(dt|s, a)

≥ sup
a′

[r(s, a′) + β
∫
V ∗(t) q(dt|s, a′)]− ε.
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Measurable Dynamic Programming

The first formulation of dynamic programming in a general mea-

sure theoretic setting was given by Blackwell (1965). He as-

sumed:

1. S and A are Borel subsets of a Polish space (say, a Euclidean

space).

2. The reward function r(s, a) is Borel measurable.

3. The law of motion q(·|s, a) is a regular conditional distribution.

Plans are required to select actions in a Borel measurable way.
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Measurability Problems

In his 1965 paper, Blackwell showed by example that for a Borel

measurable dynamic programming problem:

The optimal reward function V ∗(·) need not be Borel mea-

surable and good Borel measurable plans need not exist.

This led to nontrivial work by a number of mathematicians in-

cluding R. Strauch, D. Freedman, M. Orkin, D. Bertsekas, S.

Shreve, and Blackwell himself. It follows from their work that

for a Borel problem:

The optimal reward function V ∗(·) is universally measurable

and that there do exist good universally measurable plans.
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The Bellman Equation Again

The equation still holds, but a proof requires a lot of measure

theory. See, for example, chapter 7 of Bertsekas and Shreve

(1978) - about 85 pages.

Some additional results are needed to measurably select the πt
in the proof of ≥. See Feinberg (1996).

The proof works exactly as given in a finitely additive setting,

and it works for general sets S and A.
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Finitely Additive Probability

Let γ be a finitely additive probability defined on a sigma-field

of subsets of some set F . The integral∫
φ dγ

of a simple function is defined in the usual way. The integral∫
ψ dγ

of a bounded, measurable function ψ is defined by squeezing with

simple functions.

If γ is defined on the sigma-field F of all subsets of F , it is

called a gamble and
∫
ψ dγ is defined for all bounded, real-valued

functions ψ.
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Finitely Additive Processes

Let G(F ) be the set of all gambles on F . A strategy σ is

a sequence σ1, σ2, . . . such that σ1 ∈ G(F ) and for n ≥ 2, σn

is a mapping from Fn−1 to G(F ). Every strategy σ naturally

determines a finitely additive probability Pσ on the product sigma-

field FN. (Dubins and Savage (1965), Dubins (1974), and Purves

and Sudderth (1976))

Pσ is regarded as the distribution of a random sequence

f1, f2, . . . , fn, . . . .

Here f1 has distribution σ1 and, given f1, f2, . . . , fn−1, the condi-

tional distribution of fn is σn(f1, f2, . . . , fn−1).
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Finitely Additive Dynamic Programming

For each (s, a), q(·|s, a) is a gamble on S. A plan π chooses

actions using gambles on A.

Each π together with q and an initial state s1 = s determines a

strategy σ = σ(s, π) on (A× S)N. For D ⊆ A× S,

σ1(D) =
∫
q(Da|s, a)π1(da)

and

σn−1(a1, s2, . . . , an−1, sn)(D) =
∫
q(Da|sn, a)π(a1, s2, . . . , an−1, sn)(da).

Let

Pπ,s = Pσ.
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Rewards and the Bellman Equation

For any bounded, real-valued reward function r, the reward for

a plan π is well-defined by the same formula as before:

V (π)(s) = Eπ,s[
∞∑
n=1

βn−1r(sn, an)].

Also as before, the optimal reward function is

V ∗(s) = sup
π
V (π)(s).

The Bellman equation

V ∗(s) = sup
a

[r(s, a) + β
∫
V ∗(t) q(dt|s, a)].

can be proved exactly as in the discrete case.
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Blackwell Operators

Let B be the Banach space of bounded functions x : S 7→ R
equipped with the supremum norm.

For each function f : S 7→ A, define the operator Tf for elements

x ∈ B by

(Tfx)(s) = r(s, f(s)) + β
∫
x(s′) q(ds′|s, f(s)).

Also define the operator T ∗ by

(T ∗x)(s) = sup
a

[r(s, a) + β
∫
x(s′) q(ds′|s, a)].

This definition of T ∗ makes sense in the finitely additive case,

and in the countably additive case when S is countable. There

is trouble in the general measurable case.
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Fixed Points

The operators Tf and T ∗ are β-contractions. By a theorem of

Banach, they have unique fixed points.

The fixed point of T ∗ is the optimal reward function V ∗. The

equality

V ∗(s) = (T ∗V ∗)(s)

is just the Bellman equation

V ∗(s) = sup
a

[r(s, a) + β
∫
V ∗(t) q(dt|s, a)].
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Stationary Plans

A plan π is stationary if there is a function f : S 7→ A such that

π(s1, a1, . . . , an−1, sn) = f(sn) for all (s1, a1, . . . , an−1, sn).

Notation: π = f∞.

The fixed point of Tf is the reward function V (π)(·) for the

stationary plan π = f∞.

V (π)(s) = r(s, f(s)) + β
∫
V (π)(t) q(dt|s, f(s)) = (TfV (π))(s)

Fundamental Question: Do optimal or nearly optimal

stationary plans exist?
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Existence of Good Stationary Plans

Fix ε > 0. For each s, choose f(s) such that

(TfV
∗)(s) ≥ V ∗(s)− ε(1− β).

Let π = f∞. An easy induction shows that

(Tnf V
∗)(s) ≥ V ∗(s)− ε, for all s andn.

But, by Banach’s Theorem,

(Tnf V
∗)(s)→ V (π)(s).

So the stationary plan π is ε - optimal.
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The Measurable Case: Trouble for T ∗

T ∗ does not preserve Borel measurability.

T ∗ does not preserve universal measurability.

T ∗ does preserve “upper semianalytic” functions, but these do

not form a Banach space.

Good stationary plans do exist, but the proof is more compli-

cated.
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Finitely Additive Extensions of Measurable Problems

Every probability measure on an algebra of subsets of a set F

can be extended to a gamble on F , that is, a finitely additive

probability defined on all subsets of F . (The extension is typically

not unique.)

Thus a measurable, discounted problem S,A, r, q, β can be ex-

tended to a finitely additive problem S,A, r, q̂, β where q̂(·|s, a) is

a gamble on S that extends q(·|s, a) for every s, a.

Questions: Is the optimal reward the same for both problems?

Can a player do better by using non-measurable plans?
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Reward Functions for Measurable and for Finitely Additive

Plans

For a measurable plan π, the reward

VM(π)(s) = Eπ,s[
∞∑
n=1

βn−1r(sn, an)]

is the expectation under the countably additive probability Pπ,s.

Each measurable π can be extended to a finitely additive plan π̂

with reward

V (π̂)(s) = Eπ̂,s[
∞∑
n=1

βn−1r(sn, an)]

calculated under the finitely additive probability Pπ̂,s.

Fact: VM(π)(s) = V (π̂)(s).
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Optimal Rewards

For a measurable problem, let

V ∗M(s) = supVM(π)(s),

where the sup is over all measurable plans π, and let

V ∗(s) = supV (π)(s),

where the sup is over all plans π in some finitely additive exten-

sion.
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Theorem: V ∗M(s) = V ∗(s).

Proof: The Bellman equation is known to hold in the measurable

theory:

V ∗M(s) = sup
a

[r(s, a) + β
∫
V ∗M(t) q(dt|s, a)].

In other terms

V ∗M(s) = (T ∗V ∗M)(s).

But V ∗ is the unique fixed point of T ∗.
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Positive Dynamic Programming

Assume the daily reward function r is nonnegative and that the

discount factor β = 1. Let

V (π)(s) = Eπ,s[
∞∑
n=1

r(sn, an)].

In a measurable setting

V (π)(s) = lim
β→1

Eπ,s[
∞∑
n=1

βn−1r(sn, an)]

by the monotone convergence theorem. Blackwell (1967) used

this equality to prove, for example,

Theorem. In a measurable positive dynamic programming prob-

lem, there always exists, for each ε > 0 and s ∈ S such that

V ∗(s) <∞, an ε-optimal stationary plan at s.
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Finitely Additive Positive Dynamic Programming

The monotone convergence theorem fails for finitely additive

measures. An example with S equal to the set of ordinals less

than or equal to the first uncountable ordinal (Dubins and Sud-

derth, 1975) shows that good stationary plans need not exist.

There is also a countably additive counterexample with a much

larger state space (Ornstein, 1969).
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