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Lévy transformation of the path space

» B is a Brownian motion

TR = / sign(B.)dB. = || — L°(B)

T is a transformation of the path space.
T preserves the Wiener measure.

Is T ergodic?

vV v v v

A deep result of Marc Malric claims that the Lévy transform is
topologically recurrent, i.e., on an almost sure event

{T"B:n>0}NG+#@, forall nonempty open G C C[0, ).

v

We use only a weaker form, also due to Marc Malric, the density of zeros
of iterated paths, ie.:

U {t>0: (T"B): =0} is dense in [0, o0).



Ergodicity and Strong mixing (reminder)

T:0-0, PoTl=P

» T is ergodic, if
1 N-1
> S Y_P(ANTB) P (AP(B), forall A B.

N-1
1
> or, —ZXO T" > E(X), foreachrv. X &Ll

> or, the analtant o—field, is trivial.

» T is strongly mixing if P (A N T_”B) —- P (AP (B), forall A B.



Ergodicity and weak convergence

In our case Q = C[0, o0) is a polish space (complete, separable, metric space).
Theorem
Q polish, T is a measure preserving transform of (Q), B(Q), P). Then

n—1
1 w
» T is ergodic i#E E Po(T°, TH T 5 P®P as n— oo
k=0

> T is strongly mixing iff P o (T°, T)? 2P QP as n — oc.



Ergodicity and weak convergence

In our case Q = C[0, o0) is a polish space (complete, separable, metric space).

Theorem
Q polish, T is a measure preserving transform of (Q), B(Q), P). Then

n—1
1 w
» T is ergodic i#E E Po(T°, TH T 5 P®P as n— oo
k=0

> T is strongly mixing iff P o (T°, T)? 2P QP as n — oc.

Note that both families of measures are tight:
1 n—1
Po(T°, T :n> d {=) Po(TO, T :n>
{Po(T° T n>0} an {”ko o ) n>0

If C C Q compact, with P(Q\ C) < € then
P((T0, TH) ¢ Cx C)<P(T0& C)+P(Tke C) < 2e



L : fd. \ .
Convergence of finite dim. marginals (— ) is enough

Some notations:
> B is the canonical process on Q = CJ0, ),
» h:[0,00) x C[0, ) progressive, |h| =1 dt @ dP a.e.

T 0-q TB= /O h(s, B)dBs, (. his, B) = sign(Bs)).

» B = T"B is the n-th iterated path.
> O =1, K =g his, B¥) for n >0, s0 B = [ h"dp..



L : fd. \ .
Convergence of finite dim. marginals (— ) is enough

Some notations:
> B is the canonical process on Q = CJ0, ),
» h:[0,00) x C[0, ) progressive, |h| =1 dt @ dP a.e.

T 0-q TB= /O h(s, B)dBs, (. his, B) = sign(Bs)).

» B = T"B is the n-th iterated path.
> O =1, K =g his, B¥) for n >0, s0 B = [ h"dp..

Then
» The distribution of (B, B™) is P o (T°, T")7!
> Let k, is uniform on {0 1,...,n—1} and lndependent of B.

The law of (B, B*")) is % :—;P o (TO, TH= 1,
» T is strongly mixing, iff ([3 B L9, Bm-2.
» Similarly, T is ergodic, iff (5, B“"))—>BM 2.

) f.d. .
» Reason: Tightness + — = convergence in law.



Characteristic function

> Fix tl,..,,t,20anc|a:(al,...,a,,bl,...,b,)€R2’

» The characteristic function of (B, ..., B, ,g’) o ,Bgf)) at a is

’

where f = Z}:l ajljoe) & = Z}:l bi1j0,¢)-
» Finite dim. marginals has the right limit, if for all choices r > 1,
aeR¥” t,...,t,>0

1
©@n — exp { —3 / 24+ g2} for strong mixing,

n—1

1 1

. E Pk — exp { -5 / 2+ g2} for ergodicity.
k=0



1 24 52
, where ¢ = e72/ ' +8

Estimate for |¢@, —

v

= Jo(F(s) + hg(s))dBs.

» M is a closed martingale and so is Z = exp {iM + 1 (M)}.
=1 = E(Z,)=1

> (M), = J5° F2(s) + g2(s)ds + 2 [5° h{"F(s)g(s)ds

v

¢ = ¢E (Z,,) = E exp{i/ooo(fdﬁ + gdp") + /000 fgh(")}

v

Recall that fg = Y ajbj1jo ). Then with X,( fo

/ fgh(")
0

where C = C(f,g) = C(a, t1, ..., t;) does not depend on n.

00— ¢l < E|1— 87| < eJWeE

<CY E[X(t)
j=1

’



Xa(t) = [, W ds 50 for all t > 0 would be enough

Theorem
1.1 X,(t) 20 forall t >0, then T is strongly mixing.
2. T is ergodic if and only if 1 Y 1 o X2(t) 50 for all t > 0.

Strong mixing:
» The only missing part is the convergence of finite dimensional marginals.
> If X,(t) 50 then E | X,(t)| — 0 since | X,(t)| < t.
> Then |@, — o] < CY_E[Xi(t)] =0 = (B,B") %5 BM-2.
Remember, that:
> (B, ™) L% BM-2 + tightness gives: (8, B™) > BM-2.
> (B, B™) 5 BM-2 & T strong mixing.



Xa(t) = [, W ds 50 for all t > 0 would be enough

Theorem
1. 1f Xa(t) 20 forall t >0, then T is strongly mixing.
2. T is ergodic if and only if 1 Y 1o X2(t) 50 for all t > 0.

Ergodicity. <.
» By Cauchy-Schwarz and |Xk(t)| < t

E (100 1X0)]) < BV (20 XR(0)) —o.

» Then

LYoo < CLERTIS IXelt) -0 =
(B, ) L% BM-2.
Remeber that

> K, is uniform on {0, ..., n— 1} and independent of B
> (B, B) 14 BM-2 + tightness gives: (B, 8%") 5 BM-2.
> (B, B*) SBM2 & T ergodic.



Xa(t) = [, W ds 50 for all t > 0 would be enough

Theorem

1. If X,(t) >0 for all t >0, then T is strongly mixing.

2. T is ergodic if and only if Zz;é X2(t) 20 forall t > 0.
Ergodicity. = (outline of the proof)

» Fix 0 < s < t. Then the following limits exist a.s and in L?:

1 n—1 1 n—1
I T (k) (k) - — Iim = (k) (RK) _ plk)
zu—,;ggonkZhs W fors<u<t, Z—JL”;onkZ”s (B —Bk)
=0 =0

moreover |Z| and |Z,| are invariant for T, hence they are non-random.

> Then WY — gy = [T WP h{HdB, and

z-= / 2,48, = / \Z,| B, where B= ] sign(Z,)dB..

» Z ~ N(0, 0) since | Z,| is non-random. But | Z| is also non-random.
= Z=0. = Z,=0. = 1Y IX2(t)—0.



A variant of the mean ergodic theorem
T is a measure preserving transformation of (),
> & is rv. taking values in {— 1,41}, ex = g o Tk,

» For & € [?(Q), U&= &o Teg is an isometry.
» von Neumann’'s mean errgodic theorem says, that

v

1 n—1

=Y Ukt PEel?
s

where P is the projection onto
{Xel?: XoTe=UX=X}

» |P&] is invariant under T.
» what is UK&?
k—1
UE=2&o0Tey, UE=C&0T%e, ... U&=¢&o Tk|_|ej,

j=0

> Almost sure convergence also holds by the subadditive ergodic theorem.



Lévy transformation

» The Lévy transformation T is scaling invariant, that is, if for x > 0
0, : C[0, 00) — ([0, c0) denotes O, (w)(t) = xw(t/x?) then

0,T=TO,

> As before Bi" = Bo T", " = P éagn(ﬁ fo
By scaling we get:
Theorem

1. 1F Xa(1) 20 as n— oo, then T is strongly mixing.

2. T is ergodic, if and only if % ZZ;& X2(1) 20as n— 0.



Behaviour of X,(1)

sd[n] ~n 1/sd[n] ~n sd[n*n~n
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Figure: sd?[n]= E (X2(1)), sample size: 2000, number of steps of SRW: 10°.
Pink crosses denotes n x E/? (5(3) where X, = fol "o sign(B¥)ds with

independent BM-s (B(k))kgu We have E'/2 (Xf) ~ n—\% x %

Conjecture

E (X2(1)) = O(1/r?). This would give: X,(1) = [; h{"ds — O almost
surely.



Simplification

v

Goal: Xa(1) = [y h"ds B 0.
Enough: X,(1) — 0 in L2

v

E (X2(1) =2 / E (hh{") dudv = 2 / cov (k. h?) dudv.
0

O<u<v<l1 <u<v<1

v

Enough:
E (h‘s’”h‘{')) 50, for0<s<1,

by boundedness and scaling.

v

New goal: fixing s € (0, 1),
P (h(">h‘1”’ - 1) ~ P (h@h‘l"’ = —1) . for n large.

s

Idea: coupling.



Coupling I.

» Assume that S : C[0, o0) — (][0, 00) preserves P.
» Denote by B the shadow path 8" o S.

> Assume also that there is an event A such that on A the sequences

sign(B)sign(B\”) and sign(B!")sign(B")

differ at exactly one index denoted hy v.

Then
lim sup )E (hg")h(l"))( <P (A°).

n—oQ
Reason:

e <P +P(n< ).

£ ( WY + B R )
2




Coupling.
Proposition
If there is a stopping time T, s.t.

v <

»s<r<l, Iimsup‘Eh(s”)h
, v) = "
> exists v < oo, st Br =0,

> mino<key |BY] > CVI—T, P (s'g[gﬁ]|ﬁs| > C) :



Coupling.
Proposition
If there is a stopping time T, s.t.
> s<T<],
> exists v < oo, s.t. B =0,

> minockey [BY] > CVI -1,
> S reflects B after t:

(SB)t = Bt = Bt/\r - (Bt - Bt/\r)'

=

> A= {maxte[r,l] |B1(ro) - B(TO)| < C\/ﬁ}

» Then
P(A)=P ( max |Bs| > C)
s€[0,1]

by strong Markov property and scaling.

lim sup (Ehf;’)h‘l”’ <
n

P(max |Bs|>C).
s€0,1]




Coupling.

Proposition

If there is a stopping time T, s.t.

v

v

> s<T<],
> exists v < oo, s.t. B =0,

> Mino<k<y |B(rk)| > CV1—r,

=

S reflects B after t:

(SB)t = Bt = Bt/\r - (Bt - Bt/\r)'

A= {maxte[r,l] |B1(ro) - B(TO)| < C\/ﬁ}

We need that
sign(B"B\")  differs from

at exactly one place, when n = v.
Recall that TB = |B] — L.

lim sup (Ehf;’)h‘l”’ <
n

P(max |Bs|>C).
s€0,1]

sign(BL" BY")




Coupling.
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=

v

S reflects B after t:

(SB)t = Bt = Bt/\r - (Bt - Bt/\r)'

v

» We need that

sign(B" B\ differs from  sign(B™ B\")

at exactly one place, when n = v.
> Recall that T8 = |B| — L.
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n

P(max |Bs|>C).
s€0,1]

3(1)
/;)(1)

2CV1—r1




Coupling.
Proposition
If there is a stopping time T, s.t.
> s<T<],
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v

S reflects B after t:
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v
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B
2cVi=7 M

B2
A



Coupling.

Proposition

If there is a stopping time T, s.t.

v

v

> s<T<],
> exists v < oo, s.t. B =0,

> Mino<k<y |B(rk)| > CV1—r,
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S reflects B after t:
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P(max |Bs|>C).
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Coupling.
Proposition
If there is a stopping time T, s.t.
> s<T<],
> exists v < oo, s.t. B =0,

> Mino<k<y |B(rk)| > CV1—r,

=

v

S reflects B after t:

(SB)t = Bt = Bt/\r - (Bt - Bt/\r)'

v

» We need that

sign(B" B\ differs from  sign(B™ B\")

at exactly one place, when n = v.
> Recall that T8 = |B| — L.

A= {maxte[r,l] |B1(ro) - /3(10)| < C\/ﬁ}

lim sup (Ehf;’)h‘l”’
n

<

P(max |Bs|>C).
s€0,1]




Simplification
Proposition

If there is a random time 7, s.t,
then there is also a stopping time

l.s<t<], ith simil ties (replaci
. v = with similar properties (replacing
2. exists v < oo, st Br =0, C by C/2 in 3).

3. ming<k<y [BY] > CVI—7,



Simplification
Proposition
If there is a random time 7, s.t,
then there is also a stopping time

l.s<t<], ith simil ties (replaci
. v = with similar properties (replacing
2. exists v < oo, st Br =0, C by C/2 in 3).

3. ming<k<y |B(Tk)| > CyV1l—r,

Ty = inf{tzs - B =0, Jmin 1B > /(1= t)VO}, t =inf 1,
<k<n n

v

Tp, T are stopping times.
By the condition s < 7 < 1.
If for some w € O, T(w) < T,(w) for all n then by continuity

v

v

ir>n;|/9g”’| >CV1I—7>0 ato.

v

This can only happen with probability zero due to Malric's density
theorem!!



Good time points

Definition
Fors € (0,1), C >0

A(C,s):{tzo c3y,n, s-t<y<t, 35"):0,

i (n)
min > Cy/t —
oz, 91 > €= |
is the set of good time points.
That is, t is good, if some iterated path has a zero close to t and previous
iterates are sufficiently large.



Good time points

Definition
Fors € (0,1), C >0

A(C,s) = {t20 :3dy,n, s t<y<t B =0,
; (n) —
omin, 18] > €V V}

is the set of good time points.
That is, t is good, if some iterated path has a zero close to t and previous
iterates are sufficiently large.

Goal:
P(le A(C,s))=1, forallC>0,s€(0,1).



Set of good points Il.

A(C,s):{tzo :3dy,n, s t<y<t B =0,

min |B£,")| > C\/t— y}

0<k<n

» P (t € A(C,s)) does not depend on t.

» P(1 € A(C,s)) =1« A(C,s) has full Lebesgue measure almost surely
Proof: Let Z exponential independent of B©. Then

1=P(Z€ A, s) = /w P(t € A(C,s)) e tdt.
0

New goal:
The random set of good time points A(C, s) is of full Lebesgue measure almost
surely.



Good time points, a picture s = .9 and C =2

) g e
s - 8 4 - —
$ 1 . .
' FON
all - f— —

T T T T T T T T T T T T

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
If y is a zero of B™ and mino<k<n |BY'| = & > 0 then

2 1—s
I=(y,y+L) CAC,Ss), where L:%/\( v
s

A(C, s) is a dense open set! May have small Lebesgue measure.




Porous sets

Definition
The set H C R is porous at x if

lim sup length of the largest subinterval of (x — r,x + r)\ H

0.
r—0 2r >

> H is porous at x = the Lebesque density of H at x cannot be 1.



Porous sets

Definition
The set H C R is porous at x if

limsu
r—0 2r

0 length of the largest subinterval of (x — r,x + r)\ H 50

> H is porous at x = the Lebesque density of H at x cannot be 1.

> H is Borel and porous at Lebesque almost every point of R = H is of
Lebesgue measure zero.



Porous sets

Definition
The set H C R is porous at x if

. length of the largest subinterval of (x — r,x + r)\ H
limsup

0.
r—0 2r >

> H is porous at x = the Lebesque density of H at x cannot be 1.

> H is Borel and porous at Lebesque almost every point of R = H is of
Lebesgue measure zero.

» For H=10,00) \ A(C,s) the set of bad time points

P(H is porousat1)=1 = Vt>0, P(H is porous at t) =1

= P(Hisporousatae. t>0)=1 = P(AH)=0)=1



Porous sets

Definition
The set H C R is porous at x if

lim sup length of the largest subinterval of (x — r,x + r)\ H

0.
r—0 2r >

> H is porous at x = the Lebesque density of H at x cannot be 1.

> H is Borel and porous at Lebesque almost every point of R = H is of
Lebesgue measure zero.

» For H=10,00) \ A(C,s) the set of bad time points
P(H is porousat1)=1 = Vt>0, P(H is porous at t) =1

= P(Hisporousatae. t>0)=1 = P((AH)=0)=1

New goal:
The set of good time points contains sufficiently large intervals near 1.



. k) ) .
_ MiNo<k<n |/9£;;| > 0 a.s. is enough for strong mixing
lim SUP ;00 VI

> Here y, = sup{t <1:p"= O}' Yp = MaXo<k<n Vk:



(§)|

mino<k<n |B . .
- > 0 a.s. is enough for strong mixing

[im SUP, 500 W

> Here y, = sup{t <1:B"= 0}, VY = MaXo<k<n Vk-

» By Malric's density theorem y} — 1.

1
B3
1By,
Yo I € A(C, s) = {£>0:3n,3ye(st,t), B =0, minkey [B|> C T}
2 2
) |I|:éé\2c (l_yn)
|By,
1 : 1 | mink<, ‘Bl,%”
|B(n) V1 —yn ¢ =35 limsup, Vi
e %

) V:ZYn 1



. Ming<k<n |/9(yli)| . -
limsup,_, — > 0 a.s. is enough for strong mixing

» Here y, = sup{t <1: Bt") = O}, Y5 = MaXo<k<n Yk-

» By Malric's density theorem y} — 1.

1B))
1By,
Yo I € A(C, s) = {£>0:3n,3ye(st,t), B =0, minkey [B|> C T}
2 C2
“ |I|:éé\2 (1_yn)
|By,
1 mink<, ‘BL‘;”
B SVI—=vn &= 3limsup, oo — 7=
ol Ly %
. 1

s Yn = Vn
» | C A(C,s), the length of I is proportional to (1 — y,) = &'

> A(C,s) is of full Lebesqgue measure for all C, s, etc..



Zn+1
Zy

liminf,_ < 1 ass. also guarantees strong mixing

. k
> Here Z, = ming<k<n |.8§ )|-



Zn+1
Zy

liminf,_ < 1 as. also guarantees strong mixing

. k
> Here Z, = ming<k<n |3£ )|-

» This condition is obtained similarly, by considering the right
neighborhood of 1.

)—‘}"‘}
= "3
= ™
= 3
N
P
o
=
g
X
N
AN
MD—‘

n | NC2 o
(14 &)x X=h(1)/9<"’\/'\“'w\\; 77777 ="~
‘ ) | IEX



. k
minok<n |BYY |

- — |y H Zn+1 I
Remark on X = liminf > and Y = limsup Vi

. (k) o« . pk
. = = <1: = .
Here Z, o?)i‘n'Bl . vn max Vi Vi sup{t <1:pB 0}

Working a bit harder, one can obtain that both X and Y are invariant, and
» Either Y =0 a.s,,
» or 0<P(Y=0)<1and T is not ergodic,
» or Y >0 as. and then Y = oo and T is strongly mixing.

Also
» Either X =1,
» or 0< P (X =1)<1andT is not ergodic,
» or X <1 as. and then X =0 and Y = oo and T is strongly mixing.



. k
minok<n |BYY |

- — |y H Zn+1 I
Remark on X = liminf > and Y = limsup Vi

) Yy = max vy, vk:sur){tél : Bﬁk)zo}-
0<k<n

Here Z, = min |BY"
ere Z, = min, |81

Working a bit harder, one can obtain that both X and Y are invariant, and
» Either Y =0 a.s,,
» or 0<P(Y=0)<1and T is not ergodic,
» or Y >0 as. and then Y = oo and T is strongly mixing.

Also
» Either X =1,
» or 0<P(X=1)<1andT is not ergodic,
» or X <1 as. and then X =0 and Y = oo and T is strongly mixing.

Remark: There is a hope that P (X = 1) = 1 is impossible. Then
» P(X=1)>0 = X is not constant, hence X is a nontrivial
invariant variable.

» Both X, and Y characterize ergodicity: X <1< Y >0& Tis
strongly mixing.



|Bl Z n+1

|<1<:>X_I|m|nf,,_>oo 2

» Here v(x) = mf{n >0: |8 < x} and Z, = ming<o<n |BY).
|

lim Infx\o

(v(x) N vix
X:Iimian"H:Iimme. ‘ ‘ |31 )

n—00 x\0 X ‘ ‘ ‘
" Zn—l Zn Zn+1 Zn+2



L 18" i Zyia
liminf,n o =— <1 & X =liminf, =%

» Here v(x) = inf{n >0: B < x} and Z, = mink<o<n |BY].
>

X = liminf 22 Z jiminf PL_1 o N

n—o0 x\,0 X : ‘
" Zn—l Zn Zn+1 Zn+2

(V)
> Claim. {xv(x) : x € (0,1)} is tight = X = liminfo ‘Bl l<1
as. = T is strongly mixing.

> Proof: 1ixs1-g) < liminf 1 swco, ;g



Iﬁ’l

lim inf o " <loe X=Ilminf,_ Z}“
» Here v(X) = |nf{n >0: |B" < X} and Z, = mink<o<n |BY].
>
Z, . X
X = liminf 22 Z jiminf PL_1 . |Bl i
n—o0 n x\,0 X

Zn—l Zn Zn+1 Zn+2

v(x)
> Claim. {xv(x) : x € (0,1)} is tight = X = liminfo ‘Bl l<1
as. = T is strongly mixing.

> Proof: 1(x>1-4 < liminf 1(‘B(V(x)|/ S1-3) By Fatou—lemma

P (X >1-0) < liminfP (|/3§”‘X”| > (1— 5)x)



|/>’1

lim inf o ' <loe X=Ilminf,_ Z}“
» Here v(X) = |nf{n >0: |B" < X} and Z, = mink<o<n |BY].
>
Z, x ()
X = liminf 22 — fiming P! . |Bl | ‘
n—o00 n x\,0 X

Zn—l Zn Zn+1 Zn+2

v(x)
> Claim. {xv(x) : x € (0,1)} is tight = X = liminfo ‘Bl l<1
as. = T is strongly mixing.

> Proof: 1(x>1-g) < liminfl (180 x> 1—5)" By Fatou—lemma

P (X >1-0) < liminfP (|ﬁ§”‘x”| > (1— 5)x)

< Iimg)rlfP(Xv(x) >K)+(1+K/IxX)P(1—0<|B|/x<1)



|/>’1

lim inf o ' <loe X=Ilminf,_ Z}“
» Here v(X) = |nf{n >0: |B" < X} and Z, = mink<o<n |BY].
>
Z, x ()
X = liminf 22 — fiming P! . |Bl | ‘
n—o00 n x\,0 X

Zn—l Zn Zn+1 Zn+2

v(x)
> Claim. {xv(x) : x € (0,1)} is tight = X = liminfo ‘Bl l<1
as. = T is strongly mixing.

> Proof: 1(x>1-g) < liminfl (180 x> 1—5)" By Fatou—lemma

P (X >1-0) < liminfP (|B§”‘X”| > (1— 5)x)
< IimgrlfP(xv(x) >K)+(1+K/IxX)P(1—0<|B|/x<1)

< sup P (xv(x) > K)+ (1+ K)d.
x€(0,1)

P (X =1) <infinf P (xv(x) > K) + (1 + K)3.



Is {xv(x)

: x> 0} tight?

Recall that
SUPxe(1) E (xv(x)) < oo = {xv(x)
inequality) = T is strongly mixing.

E(v(x)

200 -

150 I

100 4 r

50 o -

0.0 0.2 0.4 0.6 0.8 1.0

: x € (0,1)} is thight (by Markov

P(IE((X))
1.10 +
1.05 - H
1.00 4 -
095 +
0.90 +
00 oz 04 o6 08 10

Figure: E (v*(x)) estimated from long runs of a SRW (number of iteration: 105,

number of steps of SRW: 109).
On the x-axis the probability p(x) = P (|B

(0)
1

| < x) is given.



. VX
Density of )—1(|/3£ ( ))|
> Consider the natural extension of (2, B, P, T). Then T is an invertible
measure preserving transformation on the extension.

That is
» O = C[0, 00)%,
> for w = (wn)nez (TW)n = w1 and B (w) = w,,
» P is such that ¥, Btk*+1) ' has the same joint law as (B, T8, .. .) for

all k e Z.
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> Consider the natural extension of (2, B, P, T). Then T is an invertible
measure preserving transformation on the extension.
» Put v¥(x) = inf {n >1: B < x}, the return time for the inverse

Lévy transform.
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> Consider the natural extension of (2, B, P, T). Then T is an invertible
measure preserving transformation on the extension.
» Put v¥(x) = inf {n >1: B < x}, the return time for the inverse
Lévy transform.

> Then by the tower decomposition of Q, for A C ([0, o) and
A={pO0 e A}

P (£ € A) = E (VL1 Lpmes )
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> Consider the natural extension of (2, B, P, T). Then T is an invertible
measure preserving transformation on the extension.
» Put v¥(x) = inf {n >1: B < x}, the return time for the inverse
Lévy transform.

> Then by the tower decomposition of Q, for A C ([0, o) and
A={pO0 e A}

P (£ € A) = E (VL1 Lpmes )
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T —— Tl v =
—
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\:/ Tl \‘v Ti Tl 5 _ Y.
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Density of )—1<|/>’£V(X))|
> Consider the natural extension of (2, B, P, T). Then T is an invertible
measure preserving transformation on the extension.
» Put v¥(x) = inf {n >1: B < x}, the return time for the inverse
Lévy transform.

> Then by the tower decomposition of Q, for A C ([0, o) and
A={pO0 e A}

P (£ € A) = E (VL1 Lpmes )

——{v=3)

T —— Tl v =
—

R A R RN
:1}/\ VAN /{V—O}ﬂA

=2} Jiv=3 " {v=4}

» The density £, of %|B(1V(X))| is obtained by conditioning

() = 200)E (xv'(x)| IBP] = yx) . for y € (0,1)




The density E | xv*(x) \B£0)| = yx |?

U<0.001 U <5e-04
©
@4
<
34
< 4 = . .
° T T T T T T ° T T T T T T
0e+00 2e-04 4e-04 6e-04 8e-04 1le-03 0e+00 le-04 2e-04 3e-04 4e-04 5e-04
U<le-04 U <5e-05
© ©
S 7 . S 7
< | < |
S . S
- : . 4
o | . . o | .
° T T T T T T < T T T T T T
0e+00 2e-05 4e-05 6e-05 8e-05 le-04 0e+00 1e-05 2e-05 3e-05 4e-05 5e-05

Joint behaviour of |B§O)| and v*(x) given |B£0)| < x. Both are rescaled to
uniform variables.

%|B§O)| seems to be conditionally independent of xv*(x),

(From one long random walk: number of steps 10%3, number of iterated paths 10°.)



limy_o+ E (xv*(x)’ 8O = yx) 2

» Conjecture: %|B£V(X))| converges in distribution to a uniform variable.
Actually the density seems to go to 1 as x — 0.

» Playing with two types of expected return times one can show that
lim inf P (|B§V‘X”| < x/z) > 0.
X*)O+

» This is enough

|B(V(X))|
liminf =2—1 < 1 with positive probability.
x—0* X

» Recall that then both

1 (k) . (k)
min mino<k «
X = lim nf Minosksn Ay | Y = |imsupM

x—=0* min0§k<,, |B£k)| ' x—0t V 1- Ya

characterize ergodicity: X <1< Y >0 < T is strongly mixing & T
is ergodic.



Conclusion

» Marc Malric has proved that the orbit of a typical sample path meets
every open set.

» To prove strong mixing only certain open sets has to be considered.
> For these open sets
e Tightness of the family rescaled hitting times would be enough.

e or a quantitative result is needed: the expected hitting times do not
growth faster than the inverse of the size of these open sets.



Thank you for your attention!

Happy birthday!



