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Lévy transformation of the path space
I β is a Brownian motion

Tβ = ∫ sign(βs )dβs = |β | − L0(β).
I T is a transformation of the path space.
I T preserves the Wiener measure.
I Is T ergodic?
I A deep result of Marc Malric claims that the Lévy transform istopologically recurrent, i.e., on an almost sure event

{Tnβ : n ≥ 0} ∩ G 6= ∅, for all nonempty open G ⊂ C [0,∞).
I We use only a weaker form, also due to Marc Malric, the density of zerosof iterated paths, i.e.:

∞⋃
n=0

{t > 0 : (Tnβ)t = 0} is dense in [0,∞).



Ergodicity and Strong mixing (reminder)
T : Ω→ Ω, P ◦ T−1 = P

I T is ergodic, if
I

1

N

N−1∑
n=0

P
(
A ∩ T−nB

)
→ P (A)P (B ) , for all A,B.

I or, 1

N

N−1∑
n=0

X ◦ T n → E (X ) , for each r.v. X ∈ L1.
I or, the invariant σ–field, is trivial.

I T is strongly mixing if P (A ∩ T−nB
)
→ P (A)P (B ) , for all A,B.



Ergodicity and weak convergence
In our case Ω = C [0,∞) is a polish space (complete, separable, metric space).TheoremΩ polish, T is a measure preserving transform of (Ω,B(Ω),P). Then

I T is ergodic iff 1

n

n−1∑
k=0

P ◦ (T 0,T k )−1 w−→P ⊗ P as n→∞.

I T is strongly mixing iff P ◦ (T 0,T n)−1 w−→P ⊗ P as n→∞.

Note that both families of measures are tight:
{
P ◦ (T 0,T n)−1 : n ≥ 0

} and {
1

n

n−1∑
k=0

P ◦ (T 0,T n)−1 : n ≥ 0

}

If C ⊂ Ω compact, with P(Ω \ C ) < ε then
P
((T 0,T k ) /∈ C × C

)
≤ P

(
T 0 /∈ C

) + P
(
T k /∈ C

)
< 2ε.
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Convergence of finite dim. marginals ( f .d .−→ ) is enoughSome notations:
I β is the canonical process on Ω = C [0,∞),
I h : [0,∞)× C [0,∞) progressive, |h| = 1 dt ⊗ dP a.e.

T : Ω→ Ω, Tβ = ∫ .

0

h(s, β)dβs , (e.g. h(s, β) = sign(βs )).
I β (n) = T nβ is the n-th iterated path.
I h(0) = 1, h(n)

s = ∏n−1
k=0 h(s, β (k)) for n > 0, so β (n)

t = ∫ t
0 h

(n)
s dβs .

Then
I The distribution of (β, β (n)) is P ◦ (T 0,T n)−1
I Let κn is uniform on {0, 1, . . . , n − 1} and independent of β .The law of (β, β (κn)) is 1

n

∑n−1
k=0 P ◦ (T 0,T k )−1.

I T is strongly mixing, iff (β, β (n)) f .d .−→BM-2.
I Similarly, T is ergodic, iff (β, β (κn)) f .d .−→BM-2.
I Reason: Tightness + f .d .−→ = convergence in law.
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Characteristic function
I Fix t1, . . . , tr ≥ 0 and α = (a1, . . . , ar , b1, . . . , br ) ∈ R2r

I The characteristic function of (βt1 , . . . , βtr , β (n)
t1 , . . . , β

(n)
tr ) at α is

φn = E

(
e
i
(∫

f (s)dβs+∫ g (s)dβ(n)
s

)) = E

(
e
i
∫ (

f (s)+g (s)h(n)
s

)
dβs
)
,

where f = ∑r
j=1 aj1[0,tj ], g = ∑r

j=1 bj1[0,tj ].
I Finite dim. marginals has the right limit, if for all choices r ≥ 1,
α ∈ R2r , t1, . . . , tr ≥ 0

φn → exp

{
− 1

2

∫
f 2 + g2

} for strong mixing,
1

n

n−1∑
k=0

φk → exp

{
− 1

2

∫
f 2 + g2

} for ergodicity.



Estimate for |φn − φ|, where φ = e−
1
2

∫
f 2+g2

I Mt = ∫ t
0 (f (s) + h

(n)
s g (s))dβs .

I M is a closed martingale and so is Z = exp
{
iM + 1

2 〈M 〉
}.

I Z0 = 1 =⇒ E (Z∞ ) = 1.
I 〈M 〉∞ = ∫∞0 f 2(s) + g2(s)ds + 2

∫∞
0 h

(n)
s f (s)g (s)ds

I

φ = φE (Z∞ ) = E exp

{
i

∫ ∞
0

(fdβ + gdβ (n)) + ∫ ∞
0

fgh(n)}
I Recall that fg = ∑j ajbj1[0,tj ]. Then with Xn(t) = ∫ t

0 h
(n)
s ds

|φn − φ| ≤ E
∣∣∣1− e

∫∞
0 fgh(n) ∣∣∣ ≤ e

∫
|fg|E

∣∣∣∣∫ ∞
0

fgh(n)∣∣∣∣ ≤ C
r∑

j=1

E |Xn(tj )| ,
where C = C (f , g ) = C (α, t1, . . . , tr ) does not depend on n.



Xn(t) = ∫ t

0 h
(n)
s ds

p→ 0 for all t ≥ 0 would be enough
Theorem1. If Xn(t) p→ 0 for all t ≥ 0, then T is strongly mixing.2. T is ergodic if and only if 1

n

∑n−1
k=0 X

2
k (t) p→ 0 for all t ≥ 0.

Strong mixing:
I The only missing part is the convergence of finite dimensional marginals.
I If Xn(t) p→ 0 then E |Xn(t)| → 0 since |Xn(t)| ≤ t .
I Then |φn − φ| ≤ C

∑
j E |Xn(tj )| → 0 =⇒ (β, β (n)) f .d .−→BM-2.Remember, that:

I (β, β (n)) f .d .−→BM-2 + tightness gives: (β, β (n)) D→BM-2.
I (β, β (n)) D→BM-2 ⇔ T strong mixing.
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n
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2
k (t) p→ 0 for all t ≥ 0.

Ergodicity. ⇐.
I By Cauchy-Schwarz and |Xk (t)| ≤ t

E
(

1
n

∑n−1
k=0 |Xk (t)|) ≤ E1/2

(
1
n

∑n−1
k=0 X

2
k (t))→ 0.

I Then ∣∣∣ 1n ∑n−1
k=0 φk − φ

∣∣∣ ≤ C
∑

j E
1
n

∑n−1
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Xn(t) = ∫ t

0 h
(n)
s ds

p→ 0 for all t ≥ 0 would be enoughTheorem1. If Xn(t) p→ 0 for all t ≥ 0, then T is strongly mixing.2. T is ergodic if and only if 1
n

∑n−1
k=0 X

2
k (t) p→ 0 for all t ≥ 0.

Ergodicity. ⇒ (outline of the proof)
I Fix 0 < s < t . Then the following limits exist a.s and in L2:

Zu = lim
n→∞

1

n

n−1∑
k=0

h(k)
s h(k)

u for s ≤ u ≤ t, Z = lim
n→∞

1

n

n−1∑
k=0

h(k)
s (β (k)

t −β (k)
s )

moreover |Z | and |Zu | are invariant for T , hence they are non-random.
I Then h

(k)
s (β (k)

t − β
(k)
s ) = ∫ t

s h
(k)
s h

([k)
u dβu and

Z = ∫ t

s

Zudβu = ∫ t

s

|Zu | d β̃u, where β̃ = ∫ .

s

sign(Zu)dβu.
I Z ∼ N(0, σ2) since |Zu | is non-random. But |Z | is also non-random.=⇒ Z = 0. =⇒ Zu = 0. =⇒ 1

n

∑n−1
k=0 X

2
k (t)→ 0.



A variant of the mean ergodic theorem
I T is a measure preserving transformation of Ω,
I ε0 is r.v. taking values in {− 1,+1}, εk = ε0 ◦ T k .
I For ξ ∈ L2(Ω), Uξ = ξ ◦ Tε0 is an isometry.
I von Neumann’s mean errgodic theorem says, that

1

n

n−1∑
k=0

Ukξ → Pξ,∈ L2

where P is the projection onto{
X ∈ L2 : X ◦ Tε0 = UX = X

}
I |Pξ | is invariant under T .
I what is Ukξ?

Uξ = ξ ◦ Tε0, U2ξ = ξ ◦ T 2ε1ε0, . . . Ukξ = ξ ◦ T k
k−1∏
j=0

εj ,

I Almost sure convergence also holds by the subadditive ergodic theorem.



Lévy transformation
I The Lévy transformation T is scaling invariant, that is, if for x > 0Θx : C [0,∞)→ C [0,∞) denotes Θx (w )(t) = xw (t/x2) then

ΘxT = TΘx

I As before β (n) = β ◦ Tn , h(n)
t = ∏n−1

k=0 sign(β (k)
t ), Xn(t) = ∫ t

0 h
(n)
s ds .By scaling we get:Theorem1. If Xn(1) p→ 0 as n→∞, then T is strongly mixing.2. T is ergodic, if and only if 1

n

∑n−1
k=0 X

2
k (1) p→ 0 as n→∞.



Behaviour of Xn(1)
sd[n] ~ n
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Figure: sd2[n]= E
(
X 2

n (1)), sample size: 2000, number of steps of SRW: 106.Pink crosses denotes n × E1/2
(
X̃ 2

n

), where X̃n = ∫ 1

0

∏n−1
k=0 sign(β̃ (k)

s )ds withindependent BM-s (β̃ (k))k≥0. We have E1/2
(
X̃ 2

n

)
≈ π

n
√
2
≈ 2.22

n
.Conjecture

E
(
X 2
n (1)) = O(1/n2). This would give: Xn(1) = ∫ 1

0 h
(n)
s ds → 0 almost

surely.



Simplification
I Goal: Xn(1) = ∫ 1

0 h
(n)
s ds

p→ 0.
I Enough: Xn(1)→ 0 in L2.
I

E
(
X 2
n (1)) = 2

∫
0<u<v<1

E
(
h(n)
u h(n)

v

)
dudv = 2

∫
0<u<v<1

cov
(
h(n)
u , h(n)

v

)
dudv .

I Enough:
E
(
h(n)
s h

(n)
1

)
→ 0, for 0 < s < 1,

by boundedness and scaling.
I New goal: fixing s ∈ (0, 1),

P
(
h(n)
s h

(n)
1 = 1

)
≈ P

(
h(n)
s h

(n)
1 = −1) , for n large.

Idea: coupling.



Coupling I.
I Assume that S : C [0,∞)→ C [0,∞) preserves P.
I Denote by β̃ (n) the shadow path β (n) ◦ S .
I Assume also that there is an event A such that on A the sequences

sign(β (n)
s ) sign(β (n)

1 ) and sign(β̃ (n)
s ) sign(β̃ (n)

1 )
differ at exactly one index denoted by ν .Then

lim sup
n→∞

∣∣∣E (h(n)
s h

(n)
1

)∣∣∣ ≤ P (Ac ) .
Reason:∣∣∣Eh(n)

s h
(n)
1

∣∣∣ = ∣∣∣∣∣E
(
h

(n)
s h

(n)
1 + h̃

(n)
s h̃

(n)
1

2

)∣∣∣∣∣ ≤ P(Ac ) + P (n < ν ) .



Coupling.Proposition
If there is a stopping time τ, s.t.

I s < τ < 1,
I exists ν < ∞, s.t. β (ν)

τ = 0,
I min0≤k<ν |β (k)

τ | > C
√
1− τ,

=⇒ lim sup
n

∣∣∣Eh(n)
s h

(n)
1

∣∣∣ ≤
P

(
max
s∈[0,1] |βs | > C

)
.

I S reflects β after τ :
(Sβ)t = β̃t = βt∧τ − (βt − βt∧τ ).

I A = {maxt∈[τ,1] |β (0)
t − β

(0)
τ | ≤ C

√
1− τ

}.

t
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P
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I A = {maxt∈[τ,1] |β (0)
t − β

(0)
τ | ≤ C

√
1− τ

}.
I Then

P (Ac ) = P

(
max
s∈[0,1] |βs | > C

)
by strong Markov property and scaling.

t

τs 1

2C
√
1− τ

β̃ (0)
β (0)
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}.
I We need that
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1 ) differs from sign(β̃ (n)
s β̃ (n)

1 )
at exactly one place, when n = ν .

I Recall that Tβ = |β | − L.

t
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2C
√
1− τ

β̃ (0)
β (0)
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β (4) = β̃ (4)



SimplificationProposition
If there is a random time τ, s.t,1. s < τ < 1,2. exists ν < ∞, s.t. β (ν)

τ = 0,3. min0≤k<ν |β (k)
τ | > C

√
1− τ,

=⇒ then there is also a stopping time
with similar properties (replacing
C by C /2 in 3.).

τn = inf

{
t ≥ s : β (n)

t = 0, min
0≤k<n

|β (k)
t | ≥ C

√(1− t) ∨ 0

}
, τ̃ = inf

n
τn.

I τn , τ̃ are stopping times.
I By the condition s ≤ τ̃ < 1.
I If for some ω ∈ Ω, τ̃(ω) < τn(ω) for all n then by continuity

inf
n≥0
|β (n)
τ̃ | ≥ C

√
1− τ̃ > 0 at ω.

I This can only happen with probability zero due to Malric’s densitytheorem!!
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I This can only happen with probability zero due to Malric’s densitytheorem!!



Good time points
DefinitionFor s ∈ (0, 1), C > 0

A(C , s) = {t ≥ 0 : ∃γ, n, s · t < γ < t, β (n)
γ = 0,

min
0≤k<n

∣∣β (n)
γ
∣∣ > C

√
t − γ

}
is the set of good time points.That is, t is good, if some iterated path has a zero close to t and previousiterates are sufficiently large.

Goal:
P (1 ∈ A(C , s)) = 1, for all C > 0, s ∈ (0, 1).
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Set of good points II.
A(C , s) = {t ≥ 0 : ∃γ, n, s · t < γ < t, β (n)

γ = 0,

min
0≤k<n

∣∣β (n)
γ
∣∣ > C

√
t − γ

}
I P (t ∈ A(C , s)) does not depend on t .
I P (1 ∈ A(C , s)) = 1 ⇔ A(C , s) has full Lebesgue measure almost surelyProof: Let Z exponential independent of β (0). Then

1 = P (Z ∈ A(C , s)) = ∫ ∞
0

P (t ∈ A(C , s)) e−tdt.
New goal:The random set of good time points A(C , s) is of full Lebesgue measure almostsurely.



Good time points, a picture s = .9 and C = 2
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If γ is a zero of β (n) and min0≤k<n |β (k)
γ | = ξ > 0 then

I = (γ, γ + L) ⊂ A(C , s), where L = ξ2
C 2
∧ (1− s)γ

s
.

A(C , s) is a dense open set! May have small Lebesgue measure.



Porous sets
DefinitionThe set H ⊂ R is porous at x if

lim sup
r→0

length of the largest subinterval of (x − r , x + r ) \ H
2r

> 0.

I H is porous at x =⇒ the Lebesgue density of H at x cannot be 1.

I H is Borel and porous at Lebesgue almost every point of R =⇒ H is ofLebesgue measure zero.
I For H = [0,∞) \ A(C , s) the set of bad time points

P (H is porous at 1) = 1 =⇒ ∀t > 0, P (H is porous at t ) = 1

=⇒ P (H is porous at a.e. t > 0) = 1 =⇒ P (λ(H) = 0) = 1New goal:The set of good time points contains sufficiently large intervals near 1.
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lim supn→∞
min0≤k<n |β (k)

γ∗n
|

√
1−γ∗n

> 0 a.s. is enough for strong mixing
I Here γn = sup

{
t ≤ 1 : β (n)

t = 0
}, γ∗n = max0≤k≤n γk .

I By Malric’s density theorem γ∗n → 1.

1s γ∗n = γn

|β (n)
γn |

|β (0)
γn |

|β (k)
γn |

|β (1)
γn |

...
ξ
√
1− γn; ξ = 1

2 lim supn→∞
mink<n |β(k)

γ∗n
|

√
1−γ∗n

I ⊂ A(C , s) = {t>0 :∃n, ∃γ∈(st,t), β(n)
γ =0,mink<n |β(k)

γ |>C
√
t−γ}

|I | = ξ2∧C 2

C 2 (1− γn)

I I ⊂ A(C , s), the length of I is proportional to (1− γn) = δ ′.
I A(C , s) is of full Lebesgue measure for all C , s , etc..
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lim infn→∞
Zn+1

Zn
< 1 a.s. also guarantees strong mixing

I Here Zn = min0≤k<n |β (k)
1 |.

I This condition is obtained similarly, by considering the rightneighborhood of 1.

1 1 + x2τ

(1 + ξ)x
I ⊂ A(C , r ), for x2 < 1−r

2r

|I | ≥ ξ2∧C 2

C 2 x2

ξx
x = h

(n)
1 β (n)

h
(k)
1 β (k)
h

(0)
1 β (0)

h
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1 β (1)
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Remark on X = lim inf Zn+1

Zn
and Y = lim sup

min0≤k<n |β (k)
γ∗n
|

√
1−γ∗nHere Zn = min

0≤k<n
|β (k)

1 |, γ∗n = max
0≤k≤n

γk , γk = sup
{
t ≤ 1 : β (k)

t = 0
}.

Working a bit harder, one can obtain that both X and Y are invariant, and
I Either Y = 0 a.s.,
I or 0 < P (Y = 0) < 1 and T is not ergodic,
I or Y > 0 a.s. and then Y =∞ and T is strongly mixing.

Also
I Either X = 1,
I or 0 < P (X = 1) < 1 and T is not ergodic,
I or X < 1 a.s. and then X = 0 and Y =∞ and T is strongly mixing.

Remark: There is a hope that P (X = 1) = 1 is impossible. Then
I P (X = 1) > 0 =⇒ X is not constant, hence X is a nontrivialinvariant variable.
I Both X , and Y characterize ergodicity: X < 1 ⇔ Y > 0 ⇔ T isstrongly mixing.
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lim infx↘0
|β (ν(x ))

1 |
x < 1 ⇔ X = lim infn→∞

Zn+1

Zn

I Here ν(x ) = inf
{
n ≥ 0 : |β (n)

1 | < x
} and Zn = mink≤0<n |β (k)

1 |.
I

X = lim inf
n→∞

Zn+1

Zn
= lim inf

x↘0

|β (ν(x ))
1 |
x

.
Zn−1 Zn Zn+1 Zn+2

x |β (ν(x ))
1 |

I Claim. {xν(x ) : x ∈ (0, 1)} is tight =⇒ X = lim infx↘0
|β(ν(x ))

1 |
x < 1a.s. =⇒ T is strongly mixing.

I Proof: 1(X>1−δ) ≤ lim inf 1(|β(ν(x ))
1 |/x>1−δ).

B

y Fatou–lemma
P (X > 1− δ ) ≤ lim inf

x→0+ P
(
|β (ν(x ))

1 | > (1− δ)x)

≤ lim inf
x→0+ P (xν(x ) > K ) + (1 + K /x )P (1− δ < |β1 | /x < 1)

≤ sup
x∈(0,1)P (xν(x ) > K ) + (1 + K )δ.

P (X = 1) ≤ inf
K

inf
δ
P (xν(x ) > K ) + (1 + K )δ.
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Is {xν(x ) : x > 0} tight?
Recall that
supx∈(0,1) E (xν(x )) < ∞ =⇒ {xν(x ) : x ∈ (0, 1)} is thight (by Markovinequality) =⇒ T is strongly mixing.
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Figure: E (ν∗(x )) estimated from long runs of a SRW (number of iteration: 105,number of steps of SRW: 109).On the x-axis the probability p(x ) = P
(
|β (0)

1 | < x
) is given.



Density of 1
x |β

(ν(x ))
1 |

I Consider the natural extension of (Ω,B,P,T ). Then T is an invertiblemeasure preserving transformation on the extension.That is
I Ω = C[0,∞)Z,
I for ω = (ωn)n∈Z (Tω)n = ωn+1 and β (n)(ω) = ωn ,
I P is such that β (k), β (k+1), . . . has the same joint law as (β,T1β, . . . ) forall k ∈ Z.

I Put ν∗(x ) = inf
{
n ≥ 1 : |β (−n)

1 | < x
}, the return time for the inverseLévy transform.

I Then by the tower decomposition of Ω, for A ⊂ C [0,∞) and
Ã = {β (0) ∈ A

}.
P
(
β (ν(x )) ∈ A

) = E
(
ν∗(x )1{|β(0)

1 |<x}1{β(0)∈A}
)

...
{ν = 0} ∩ Ã

{ν∗ = 1}

{ν = 1}

{ν∗ = 2}
T

{ν = 2}

{ν∗ = 3}
T

T

{ν = 3}

{ν∗ = 4}
T

T

TT

I The density fx of 1
x |β

(ν(x ))
1 | is obtained by conditioning

fx (y ) = 2φ(yx )E (xν∗(x ) ∣∣∣ |β (0)
1 | = yx

)
, for y ∈ (0, 1)
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The density E
(
xν∗(x ) ∣∣∣ |β (0)

1 | = yx
)?
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Joint behaviour of |β (0)
1 | and ν∗(x ) given |β (0)

1 | < x . Both are rescaled touniform variables.
1
x |β

(0)
1 | seems to be conditionally independent of xν∗(x ),(From one long random walk: number of steps 1013, number of iterated paths 106.)



limx→0+ E
(
xν∗(x ) ∣∣∣ |β (0)

1 | = yx
) =?

I Conjecture: 1
x |β

(ν(x ))
1 | converges in distribution to a uniform variable.Actually the density seems to go to 1 as x → 0+.

I Playing with two types of expected return times one can show that
lim inf
x→0+ P

(
|β (ν(x ))

1 | < x/2
)
> 0.

I This is enough
lim inf
x→0+

|β (ν(x ))
1 |
x

< 1 with positive probability.
I Recall that then both

X = lim inf
x→0+

min0≤k≤n |β (k)
1 |

min0≤k<n |β (k)
1 |

, Y = lim sup
x→0+

min0≤k<n |β (k)
γ∗n |√

1− γ∗ncharacterize ergodicity: X < 1 ⇔ Y > 0 ⇔ T is strongly mixing ⇔ Tis ergodic.



Conclusion
I Marc Malric has proved that the orbit of a typical sample path meetsevery open set.
I To prove strong mixing only certain open sets has to be considered.
I For these open sets
• Tightness of the family rescaled hitting times would be enough.
• or a quantitative result is needed: the expected hitting times do notgrowth faster than the inverse of the size of these open sets.



Thank you for your attention!
Happy birthday!


