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Outline

• Background on Greeks, problems with barrier options

• Representation of Greeks as an expected value

• Capriotti’s method for determining a good importance sampling
distribution

• Combining variance reduction methods for a specific problem
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Background on the Greeks

Option prices can be expressed as the expected value of the discounted
option payoff under the risk neutral measure, p = E(G(S))

The derivatives of option prices with respect to various parameters, e.g.
∂p
∂S0

, ∂p
∂σ

,− ∂p
∂T

, ∂2p

∂S2

0

, play an important role in understanding:

• the sensitivity of prices to relevant parameters,

• in constructing a hedging portfolio,

• in approximating the loss distribution for risk management,

Both option prices and their derivatives often must be calculated
numerically, often using Monte Carlo simulation. For payoff functions
that are discontinuous (for example barrier options), straightforward
procedures such as numerical differentiation may perform poorly.
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Example: Knock-in Digital Option

Consider an example (4.6.4, p264-267 in Glasserman’s text):

{St, t ≥ 0} is a GBM with parameters µ, σ, so

dSt = rStdt + σdWt,

under the risk neutral measure.

A continuous European knock-in digital option has a payoff function
given by

G(S) = ce−rT I{min0≤t≤T St} · I{ST≥K}.

The discrete version would replace the event {min0≤t≤T St ≤ H} with
{min0≤i≤N Sih ≤ H}.

The prices and Greeks are different but will converge as N increases.
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Estimating Delta for the Knock-in Digital Option

The most obvious way to estimate a derivative is to set up a numerical
difference quotient, e.g.

δ̂ ≈
p̂(S0 + h) − p̂(S0 − h)

2h

= (

n
∑

i=1

I(x + h) −

n
∑

i=1

I(x − h))/2nh

= (
n

∑

i=1

(I(x + h) − I(x − h)))/2nh

The summands will be 0, +1 or -1, and the probability of ±1 is O(h ∗ δ).

The estimate is biased and the variance is O((nh)−1). Consequently, a
very large sample size is needed to overcome the h in the denominator.
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Numerical derivatives for the Glasserman Example

Consider 1,000,000 paths for S0 = 95, H = 90, K = 96

• 619,351 did not reach H

• 337,826 reached H but not K

• 42,819 both x-h and x+h paid off, but they cancelled each other

• 4 made a contribution to the numerator
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Representing the Greeks as an Expected Value
In 1996, Broadie and Glasserman developed two methods to represent
Greeks as expected values as opposed to numerical derivatives: pathwise
and log-likelihood derivatives. For S0 = x and s = (s1, . . . , sN ),
price(x) = p(x) =

∫

. . .
∫

G(s)f(s|x)ds.

∂p(x)

∂x
=

∂

∂x

∫

. . .

∫

G(s)f(s|x)ds

=

∫

. . .

∫

∂

∂x
G(s)f(s|x)ds

=

∫

. . .

∫

G(s)
∂

∂x
f(s|x)ds

=

∫

. . .

∫

G(s)(
∂

∂x
log f(s|x))f(s|x)ds

= E(G(S)
∂

∂x
log f(S|x)).
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Formalization Using Malliavin Calculus

The two methods of Broadie and Glasserman express the Greeks (delta in
the case at hand) as an expectation which can be unbiasedly estimated by
Monte Carlo simulation.

The log-likelihood approach required determination of ∂
∂x

log f(S|x),
which is easy for GBM, but requires an Euler discretization in general, for
which the transitions are conditionally normal.

A general method was developed by Fournie, Lasry, Lebuchoux, Lions
and (Touzi) in 1999 and 2001 based on an integration by parts formula
from the Malliavin Calculus.
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Fournie et al Results for Delta
Assume

dXt = b(X(t))dt + σ(X(t))dW (t),

and the discounted payoff, G, is determined by a set of times
0 ≤ t1 < . . . < tN = T , so

p(x) = E(G(Xt1 , . . . , XtN
)|X0 = x).

Yt, t ≥ 0, Y (t) = dXt/dx is the first variation process or pathwise
derivative satisfies.

dYt = b′(Xt)Ytdt + σ
′

(Xt)YtdWt,

then (FLLLT I, Proposition 3.2, p399)

p
′

(x) = E(G(Xt1 , . . . , XtN
)
1

T

∫ T

0

Yt

σ(Xt)
dWt).
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Malliavin-Based Greeks

The expression for δ and other Greeks does not require knowledge of the
likelihood function as required by the Broadie and Glasserman approach.
In general, one needs to discretize X and Y .

In 2007, Chen and Glasserman began with the likelihood approach and
introduced an Euler discretization for the underlying X process. The
transition densities are conditionally normal, and the log-likelihood is
easily written.

They showed that as the time increments converge to 0, the
log-likelihood-based estimates converge to the Malliavin calculus-based
estimates, so either approach can be used.
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Partial List of work on the Greeks

• Broadie and Glasserman, 1996 “Estimating security price derivatives
using simulation,” Management Science.

• Fournie, Lasry, Lebuchoux, Lions and Touzi, 1999, “Applications of
Malliavin calculus to Monte Carlo Method in Finance, I” Finance
and stochastics.

• Fournie, Lasry, Lebuchoux, and Lions, 2001, “Applications of
Malliavin calculus to Monte Carlo Method in Finance, II” Finance
and Stochastics

• Benhamou 2003 “Optimal Malliavin weighting function for the
computation of Greeks,” Mathematical Finance
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Partial List of Work on the Greeks

• Gobet and Kohatsu-Higa, 2003 “Computation of Greeks for barrier
and lookback options using Malliavin calculus” Electronic
Communications in Probability.

• Cvitanic, Ma and Zhang, 2003 “Efficient computation of hedging
portfolios for options with discontinuous payoffs,” Mathematical
Finance.

• Davis and Johansson, 2006 “Malliavin Monte Carlo Greeks for jump
diffusions,” Stochastic Processes and their Applications.x

• Chen and Glasserman, 2007 “Malliavin Greeks without Malliavin
calculus”, Stochastic Processes and Their Application.
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The Knock-in Barrier Option Issues: 1

In considering Glasserman’s example, there are a number of issues and
approaches that arise:

• Numerical derivatives will be biased and require huge sample sizes
for sufficient accuracy.

• The Likelihood method or the Malliavin derivative approach will
recast the Greek to be an expected value, i.e.
δ = E(G(S) · weight function)

• The likelihood method is still vulnerable to failure of the knock-in
condition to be satisfied, especially if S0, K, and H are somewhat far
apart. This problem can be solved by importance sampling. Will
discuss Capriotti’s method to determine an optimal importance
sampling distribution.
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The Knock-in Barrier Option Issues: 2

• The variance can be further reduced by combining conditional Monte
Carlo methods. For delta under GBM, once the knock-in condition is
satisfied, if ever, the price of the Greek can be determined
analytically. Using this can reduce the variance significantly.

• Extensions to other Greeks and to more general price processes
possibly using Euler discretization.
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Importance Sampling: Capriotti’s Method 1

In 2008, L. Capriotti (Quantitative Finance, 8, 485-497) developed a
method to find a good importance sampling distribution based on a
non-linear least squares approach.

Suppose P0 corresponds to the risk-neutral measure, and suppose there is
a family of possible importance sampling distributions indexed by θ,
{Pθ, θ ∈ Θ}. The goal is to find θ to minimize the variance of the
importance sampled estimator.

For example, Θ = {θ = (µ, η); µ ∈ (−∞,∞), η > 0} corresponding to
changes from N(0, 1) to N(µ, η2).

The above example assumes that all random variables used to construct a
path have the same distribution. But this can be generalized to allow
different changes for different parts of the path; for example allowing the
mean to vary with time to price an Asian option.
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Importance Sampling: Capriotti’s Method 2

A preliminary simulation-based non-linear least squares analysis is
conducted to determine a good θ using a sample of size M . This is
followed by a relatively large study with sample size n >> M using
importance sampling to reach the desired low-variance estimate.

Let
Wθ =

dP0

dPθ

, ∀θ ∈ Θ.

Note
E0(G(S)) = Eθ(G(S)Wθ(S)), θ ∈ Θ

where G is the discounted payoff function.
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Importance Sampling: Capriotti’s Method 3

Using importance sampling, one would generate a random sample of
paths, S1, . . . ,SM from Pθ and form the estimator of Eθ(G(S)Wθ(S)),
namely 1

M

∑M

i=1
G(Si)Wθ(Si).

We want to choose θ ∈ Θ to minimize the variance of this estimator.
Since the mean is the same, independent of θ, we can, instead, focus on
minimizing the second moment.

Using the second moment, this means that we want to choose θ to
minimize Eθ((G(S)Wθ(S))2).
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Importance Sampling: Capriotti’s Method 4

Eθ((G(S)Wθ(S))2) =

∫

(G(S)Wθ(S))2dPθ(S)

=

∫

G2(S)Wθ(S)Wθ(S)dPθ(S)

=

∫

G2(S)Wθ(S)dP0(S)

= E0(G
2(S)Wθ(S)).

It follows that we want to minimize the final quantity, E0(G
2(S)Wθ(S)),

where the random paths, S, now come from the original probability
distribution, P0.
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Importance Sampling: Capriotti’s Method 5

Now, E0(G
2(S)Wθ(S)) can be estimated from the paths S1, . . . ,SM by

1

M

∑M

i=1
G2(Si)Wθ(Si). Ignoring the constant 1

M
, we want to minimize

∑M

i=1
G2(Si)Wθ(Si).

To solve this optimization problem, consider the statistical model

Y = G(X)
√

Wθ(X) + ε.

This is a non-linear model. Suppose we have values X1, . . . ,XM , and we
use those values to create model data given by
{(G(Xi)

√

Wθ(Xi), 0), 1 ≤ i ≤ M} (so the dependent variable values
are all 0.
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Importance Sampling: Capriotti’s Method 6

The least squares solution given these data will find the θ that minimizes
the squared residuals, i.e.

∑M

i=1
(Yi − G(Xi)

√

Wθ(Xi))
2.

However, since Yi = 0, this minimizes
∑M

i=1
G2(Xi)Wθ(Xi), the second

moment expression we sought to minimize.

Thus, approximating the optimal importance sampling distribution is
equivalent to finding the non-linear least squares estimator in the above
statistical model with Y = 0. The resulting θ̂ is approximately optimal,
since it is, in fact, a random variable derived from the initial X data.

Capriotti suggest using the Levenberg-Marquandt non-linear least squares
algorithm. This is implemented in Matlab by nlinfit.
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Results for Glasserman Example: Delta

For T = .25, N = 50, r = .05, σ = .15, S0 = 95 and payoff = $10,000,
Pθ = N(θ, 1).

H K Delta Var Ratio 1 Var Ratio 2 θ

94 96 -544.7 2.62 3.32 -.24
90 96 -136.68 6.65 22.21 -.36
85 96 -2.86 52.71 1714 -.56
90 106 -6.51 120.64 774.9 -.52

Var Ratio 1 = Standard MC versus Conditional MC
Var Ratio 2 = Standard MC versus Cond. MC and Imp. Sampling
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