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Introduction

A first-order model for a stock market is a model that assigns
to each stock in the market a return parameter and a variance
parameter that depend only on the rank of the stock. A
second-order model for a stock market is a model that assigns
these parameters based on both the rank and the name of the
stock. A second-order model is an example of a hybrid Atlas

model.
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Stock markets

A market is a family of stocks X = (X1, . . . ,Xn)represented by
positive absolutely continuous semimartingales defined on
[ 0,1) or on R. The value Xi(t) of the stock Xi at time t

represents the total capitalization of the company at that
time. Let Z represent the total capitalization of the market,

Z (t) , X1(t) + · · ·+ Xn(t).

Then the market weights µi , for i = 1, . . . , n, given by

µi(t) ,
Xi(t)

Z (t)
,

define the market portfolio µ.



Market stability

We shall assume that the market weight process
µ = (µ1, . . . , µn) has a stable, or steady-state, distribution,
and that the system is in that stable distribution. We shall be
interested in the relative behavior of the log-capitalizations or
log-weights. If µ(t) is in its steady-state distribution, then the
log-di↵erence processes defined by

logXi(t)� logXj(t) = log µi(t)� log µj(t),

for i , j = 1, . . . , n, will also be in their steady-state distribution.

We shall also assume that there are almost surely no triple
points for the market, i.e., there is no time t at which
Xi(t) = Xj(t) = Xk(t) for i < j < k , almost surely.



Ranked processes

Consider the ranked capitalization processes

X(1)(t) � · · · � X(n)(t),

and the corresponding ranked market weights

µ(1)(t) � · · · � µ(n)(t).

Let rt(i) represent the rank of Xi(t), and let pt be the inverse
permutation of rt , so

Xi(t) = X(rt(i))(t) and X(k)(t) = Xpt(k)(t).

The ranked market weights (µ(1)(t), . . . , µ(n)(t)) comprise the
capital distribution curve of the market at time t.



Capital distribution curve
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First-order models

A first-order model is a stock market model defined by

d log b
Xi(t) = gr̂t(i) dt + �r̂t(i) dWi(t),

for i = 1, . . . , n, where g1, . . . , gn are constants, �1, . . . , �n are
positive constants, and W = (W1, . . . ,Wn) is a Brownian
motion. We shall assume that the gk satisfy

g1 + · · ·+ gn = 0,

and
mX

k=1

gk < 0,

for m < n. With these parameters, the b
Xi form an

asymptotically stable system.



Rank-based parameters

Suppose we have a market X that is in its steady-state
distribution. We define the asymptotic rank-based relative

variances for the market by

�2
k , lim

t!1

hµpt(k)i(t)
t

,

and the asymptotic rank-based relative growth rates by

gk , lim
T!1

1

T

Z T

0

d log µpt(k)(t).

Since these parameters are based on the market weight
processes µi , the parameters represent values measured
relative to the market capitalization process X .



Rank-based variances
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Local times for the rank processes

Let ⇤k,k+1 be the local time of log(µ(k)/µ(k+1)) � 0 at the
origin. Then

d log µ(k)(t) = d log µpt(k)(t) +
1

2
d⇤k,k+1(t)�

1

2
d⇤k�1,k(t).

For k = 1, . . . , n � 1, we can define the asymptotic local time

�k,k+1 , lim
t!1

t

�1⇤k,k+1(t),

and let �0,1 = 0 = �n,n+1. It can be shown that

gk =
1

2

�
�k�1,k � �k,k+1

�
,

for k = 1, . . . , n, and it follows that g1 + · · ·+ gn = 0.



Relative growth rates
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A first-order market model

The first-order model with

d log b
Xi(t) = gr̂t(i) dt + � r̂t(i) dWi(t),

is called the first-order model for the market X . As we have
seen, the growth and variance parameters for the b

Xi are
derived from the relative growth and variance parameters
corresponding to the market weight processes µi , not directly
from the price processes Xi .

The steady-state capital distribution curve for the first-order
model of the stock market will be about the same as the
capital distribution curve for the market itself.



Mathematical characteristics of first-order models

I A first-order model is asymptotically stable.

I A first-order model may have triple points where
b
Xi(t) = b

Xj(t) = b
Xk(t) for i < j < k , but the local time

at the origin for log(bX(k)/bX(`)) � 0 is zero if ` > k + 1.

I A first-order model is ergodic in the sense that

lim
T!1

1

T

Z T

0

1{bXi (t)=bX(k)(t)} dt =
1

n

.

This ergodicity does not seem reasonable for a real market, so
we must extend our model.



Hybrid models

A hybrid (Atlas) model is a stock market model defined by

d log b
Xi(t) = (�i + gr̂t(i))dt + �i ,r̂t(i) dWi(t),

for i = 1, . . . , n, with constants gk , �i and �ik > 0, for
i , k = 1, . . . , n, and a Brownian motion W . These parameters
satisfy nX

k=1

gk =
nX

i=1

�i = 0,

and, for any permutation ⇡ 2 ⌃n,
mX

k=1

(gk + �⇡(k)) < 0, for m < n.

We shall use first-order variances, so �2
ik = �2

k for all i and k .



Occupation rates

For a market X , the expected occupation rate

✓ki , lim
T!1

1

T

Z T

0

1{Xi (t)=X(k)(t)} dt

is defined for all i and k . The matrix ✓ = (✓ki) is bistochastic,
and we shall assume that all the entries are positive. For a
hybrid model bX with occupation-rate matrix ✓̂,

ĝk = gk +
nX

i=1

✓̂ki�i

0 = �i +
nX

k=1

✓̂kigk ,

where the ĝk are the rank-based relative growth rates.



Parameter estimates based on occupation rates

In matrix form, this can be expressed

ĝ = g + ✓̂�

0 = � + ✓̂Tg ,

where �, g , and ĝ are column vectors. From this we see that

� = �✓̂Tg , (1)

so
ĝ =

�
In � ✓̂✓̂T

�
g . (2)

As we have seen, ĝ can be estimated directly, so we need to
solve (2) for g , and then � can be calculated using (1).



Second-order parameter estimation

Let ✓ be the occupation-rate matrix of the market X . Since ✓
is bistochastic with positive entries, so are ✓T and ✓✓T . By the
Perron-Frobenius theorem, ✓✓T will have a simple eigenvalue
equal to 1 with eigenvector e1 = (1, 1, . . . , 1)0, and all the
other eigenvalues will have absolute value less than 1 (see
Perron, O. (1907) Zur Theorie der Matrices, Math. Annalen

64, 248–263).

From this it follows that In � ✓✓T has rank n � 1, and its
kernel is generated by e1, so the condition that the gk sum to
zero ensures a unique solution to

g =
�
In � ✓✓T

�
g .



Exploratory second-order parameter estimation

Unfortunately, it seems to be impossible to estimate ✓, so
although we can use it to prove the existence and uniqueness
of g , we cannot actually solve the equations. Instead, we plan
to work with

gk = gk +
nX

i=1

✓ki�i

in such a way that we can solve for the gk recursively. Once we
have found g and g , we then can estimate � directly by using

�i = lim
T!1

1

T

Z T

0

�
d log µi(t)� grt(i) dt

�
.



Time reversal and parameter estimation

Let X be a stable market defined for t 2 R. We can define the
time-reversed market e

X with price processes e
Xi(t) , Xi(�t)

and weight processes eµi(t) = µi(�t). Then:

I The forward and backward occupation rates ✓ki are equal.

I The forward and backward asymptotic local times �k are
equal (see, e.g., Bertoin, J. (1987) Temps locaux et
intégration stochastique pour les processus de Dirichlet,
Séminaire de Probabilités (Strasbourg) 21, 191–205).

I Hence, the forward and backward gk are equal.

I Hence, the forward and backward gk are equal.

I Hence, the forward and backward �i are equal.

I Quadratic-variation is invariant under time reversal.



Market flow

The forward flow 'k of the market X at rank k in the market
is defined for ⌧ 2 [ 0,1) by

'k(⌧) , lim
T!1

1

T

Z T

0

log
⇣µpt(k)(t + ⌧)

µ(k)(t)

⌘
dt.

The backward flow e'k of the market is defined by

e'k(⌧) , lim
T!1

1

T

Z T

0

log
⇣eµpt(k)(t + ⌧)

eµ(k)(t)

⌘
dt.

The forward and backward flows need not be equal.



Forward and backward flow for top 250 stocks
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Forward and backward expected rank

If we follow the flow of a stock that is in rank k at time 0,
then we can estimate its expected rank at time ⌧ 2 R by

Rk(⌧) , lim
T!1

1

T

Z T

0

rs+⌧ (ps(k)) ds,

so Rk(0) = k .

We shall use the Rk to estimate the gk . Although Rk(⌧) need
not equal Rk(�⌧), the gk generated using either one provide
estimates for the solution of

g =
�
In � ✓✓T

�
g ,

so we shall use them both.



Forward and backward expected rank
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Change in rank for ⌧ = 4 years
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Expected growth rate

The expected growth rate at time ⌧ of the stock which is at
rank k at time 0 will be

Gk(⌧) , gRk (⌧)
+

nX

i=1

✓ki�i ,

for ⌧ 2 R, with

gRk (⌧)
,

�
`+ 1� Rk(⌧)

�
g` +

�
Rk(⌧)� `

�
g`+1,

where ` the largest integer such that `  Rk(⌧). We shall
estimate Gk(⌧) from the slope of the estimated flow, with

Gk(⌧) =
1

2

�
D⌧'k(⌧) + D⌧ e'k(⌧)

�
.



Dependence of G
k

(⌧ ) on k
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Recursive calculation of g
k

Recall that we have

Gk(⌧) = gRk (⌧)
+

nX

i=1

✓̂ki�i ,

and we can combine this with

gk = gk +
nX

i=1

✓̂ki�i ,

so
gRk (⌧)

= gk + Gk(⌧)� gk . (3)

We can calculate gk , Gk(⌧), and Rk(⌧) as above, and then
use (3) recursively to calculate the gk .



Recursive calculation of g
k
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An estimate of the �
i

With these values of the gk , we can estimate the �i directly by

�i =
1

2

⇣
lim

T!1

1

T

Z T

0

�
d log µi(t)� grt(i) dt

�

+ lim
T!1

1

T

Z T

0

�
d log eµi(t)� grt(i) dt

�⌘
.

Our second-order model then will be

d log b
Xi(t) = (�i + gr̂t(i))dt + �r̂t(i) dWi(t).

Here are some of the values for �i for 1990–1999:

AAPL (93) = �1.67% GE (1) = 0.14%
IBM (6) = �.10% KO (4) = 0.26%

MSFT (5) = �.12% XON (3) = 0.11%


