Lecture 6: Multivariate generating functions

Robin Pemantle

University of Pennsylvania
pemantle@math.upenn.edu

Minerva Lectures at Columbia University
16 November, 2016

Dinner at the Pemutzle house

Rational series: examples and phenomena

One variable

Let

$$
f(z)=\frac{p(z)}{q(z)}=\sum_{r \geq 0} a_{r} z^{r}
$$

be a rational function.
Then f has a partial fraction expansion as a sum of terms of the form $c(1-t z)^{d}$ and therefore there is an exact expression for the coefficient a_{r}, namely

$$
a_{t}=\sum_{(t, d, c)} c\binom{n+d}{d} t^{r}
$$

summed over triples (t, d, c) in the partial fraction expansion. In short, the theory is trivial.

Several variables

Now turn all the indices into multi-indices, which we denote by upper case letters:

$$
F(Z)=\frac{P(Z)}{Q(Z)}=\sum_{R} a_{R} Z^{R}
$$

Here, and throughout, this stands for

$$
F\left(z_{1}, \ldots, z_{d}\right)=\frac{P\left(z_{1}, \ldots, z_{d}\right)}{Q\left(z_{1}, \ldots, z_{d}\right)}=\sum_{r_{1}, \ldots, r_{d}} a_{r_{1}, \ldots, r_{d}} z_{1}^{r_{1}} \cdots z_{d}^{r_{d}}
$$

What phenomena are possible for the behavior of the multi-dimensional array $\left\{a_{R}\right\}$?

Binomial coefficients

$$
F(x, y)=\frac{1}{1-x y / 2-y / 2}
$$

2-D quantum walk

$$
F(x, y)=\frac{1}{1-(1-x) y / \sqrt{2}-x y^{2}}
$$

shown: $a_{i, 200}$

3-D quantum walk

$F(x, y)=\operatorname{det}(I-y M U)^{-1}$, where M is a diagonal matrix of monomials and U is a real orthogonal matrix.

shown: grey scale plot of $a_{i, j, 200}$

Dimer tiling

$$
F(x, y)=\frac{z / 2}{(1-y z)\left[1-\left(x+x^{-1}+y+y^{-1}\right) z+z^{2}\right]}
$$

shown: plot of
$(r, s) \mapsto \lim _{t \rightarrow \infty} a_{r t, s t, t}$

Double-dimer tiling

$$
\begin{aligned}
& F=P / Q \text { where } Q(x, y, z)=63 x^{2} y^{2} z^{2}-62(x+y+z) x y z- \\
& \left(x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2}\right)+62(x y+y z+z x)+\left(x^{2}+y^{2}+z^{2}\right)-63
\end{aligned}
$$

shown: sample tiling, limiting boundaries

Possible behavior along a ray

Let $R=|R| \cdot \hat{R}$ decompose R into magnitude and direction.
The possible behaviors ${ }^{1}$ for a_{R} with \hat{R} roughly fixed are asymptotically, for some rational β, and nonnegative integer γ,

$$
a_{R}=C(\hat{R})|R|^{\beta}|\log (R)|^{\gamma} Z(\hat{R})^{-R}
$$

Also possible: a finite sum of such terms.
Such formulae hold piecewise, with β and γ constant on each piece and C and Z varying analytically within each piece.

Phase boundaries are algebraic curves;
One expects Airy-type behavior at the boundaries.

[^0]Analytic framework

Cauchy integral

Recall the one variable Cauchy integral

$$
a_{r}=\frac{1}{2 \pi i} \int z^{-r} f(z) \frac{d z}{z}
$$

Cauchy integral

Recall the one variable Cauchy integral

$$
a_{r}=\frac{1}{2 \pi i} \int z^{-r} f(z) \frac{d z}{z}
$$

In d variables it is nearly the same:

$$
a_{R}=\frac{1}{(2 \pi i)^{d}} \int_{\mathcal{C}} Z^{-R} \frac{P(Z)}{Q(Z)} \frac{d Z}{Z}
$$

Cauchy integral

Recall the one variable Cauchy integral

$a_{r}=\frac{1}{2 \pi i} \int z^{-r} f(z) \frac{d z}{z}$
In d variables it is nearly the same:

$$
a_{R}=\frac{1}{(2 \pi i)^{d}} \int_{\mathcal{C}} Z^{-R} \frac{P(Z)}{Q(Z)} \frac{d Z}{Z}
$$

- $d Z$ is the holomorphic volume form;
- integrand is holomorphic in $\mathcal{M}:=\mathbb{C}^{d} \backslash\left\{Q \prod_{j=1}^{d} z_{j}=0\right\}$;
- \mathcal{C} is a chain of integration topologically equivalent to the torus
$\prod_{j=1}^{d} \gamma_{j}$ where γ_{j} is a circle about the origin in the $j^{t h}$ coordinate and the equivalence is in $H_{d}(\mathcal{M})$.

\mathcal{M} is everything other than V and the coordinate axes

Two levels of accuracy

We want an asymptotic formula for $\mathbf{a}_{\mathbf{r}}$ as $\mathbf{r} \rightarrow \infty$ with $\mathbf{r} /|\mathbf{r}| \rightarrow \hat{\mathbf{r}}$.
Two levels of accuracy, to be done in two steps:
(1) Exponential rate
(2) Asymptotic formula

To see how to execute these two steps, recall the univariate case.

Recall the univariate case

Step 1: let ρ be the radius of convergence.

$$
\lim \sup \frac{\log \mathbf{a}_{\mathbf{n}}}{\mathbf{n}} \leq-\log \rho
$$

This completes step one.
Step 2: Use singularity analysis. Find the particular singularity \mathbf{z}_{*} on the radius of convergence and integrate on a contour designed to capture behavior near \mathbf{z}_{*}.

Dominant singularity

Logarithmic coordinates

Instead of a radius of convergence there is a different multi-radius in every direction.

The domain of convergence of a power series or Laurent series is a union of tori

$$
\mathbf{T}_{\mathbf{x}}:=\left\{\left|\mathbf{z}_{1}\right|=\mathbf{e}^{\mathbf{x}_{\mathbf{1}}}, \ldots,\left|\mathbf{z}_{\mathbf{d}}\right|=\mathbf{e}^{\mathbf{x}_{\mathbf{d}}}\right\} .
$$

The set of $\mathbf{X} \in \mathbb{R}^{\mathbf{d}}$ for which a series converges is convex.
Map $\mathbb{C}^{\mathbf{d}}$ to $\mathbb{R}^{\mathbf{d}}$ via the log-modulus map $\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{\mathbf{d}}\right) \mapsto\left(\log \left|\mathbf{z}_{1}\right|, \ldots, \log \left|\mathbf{z}_{\mathbf{d}}\right|\right)$.

Amoebas

The amoeba of \mathbf{Q} is the set $\{\log |\mathbf{Z}|: \mathbf{Q}(\mathbf{Z})=0\}$ where the \log modulus map is taken coordinatewise.

On each component of the complement of the amoeba there is a convergent Laurent expansion $\mathbf{P} / \mathbf{Q}=\sum_{\mathbf{R}} \mathbf{a}_{\mathbf{R}} \mathbf{Z}^{\mathbf{R}}$.

Components of the amoeba complement (white regions) are convex.

Imaginary fiber through a point on the boundary

Letting $\mathbf{Z}=\exp (\mathbf{X}+\mathbf{i} \mathbf{Y})$ and sending \mathbf{X} through a component of the complement, to a point on the boundary of the amoeba, the Cauchy integral becomes

$$
\begin{aligned}
\mathbf{a}_{\mathbf{R}} & =(2 \pi \mathbf{i})^{-\mathbf{d}} \int \mathbf{Z}^{-\mathbf{R}} \mathbf{F}(\mathbf{Z}) \mathbf{d Z} \\
& =(2 \pi)^{-\mathbf{d}} \mathbf{e}^{-\mathbf{R} \cdot \mathbf{x}} \int \exp (-\mathbf{i} \mathbf{R} \cdot \mathbf{Y}) \mathbf{f}(\mathbf{Y}) \mathbf{d} \mathbf{Y}
\end{aligned}
$$

where $\mathbf{f}(\mathbf{Y})=\mathbf{F}(\exp (\mathbf{X}+\mathbf{i} \mathbf{Y}))$.

Legendre transform

Choose $\mathbf{X}=\mathbf{X}_{*}$ to minimize the magnitude of the integrand.
For fixed $\hat{\mathbf{R}}$, this means to make $-\hat{\mathbf{R}} \cdot \mathbf{X}_{*}$ as small as possible. This is a convex minimization problem (the Legendre transform).

B is a region of the complement corresponding to an ordinary power series;
\hat{R} is given;
X_{*} is the minimizing point.

Upper bound

The upper bound is immediate:

$$
\lim \sup \frac{1}{|R|} \log \left|a_{R}\right| \leq-\hat{R} \cdot X_{*}(R)
$$

where $X_{*}(R)$ is the support point on ∂B normal to R.

Asymptotic evaluation

Contributing points

We turn now to Step 2, namely the asymptotic evaluation of a_{R}.
This is the only way to provide a matching lower bound (in fact the limsup and liminf behavior of the coefficients might not be the same).

Recall that every X in the amoeba of Q is $\log |Z|$ for some at least one $\mathbb{Z} \in \mathcal{V}$. The Cauchy integral near some of these is what determines the asymptotics in direction R.

We next discuss the identification of point(s) $\exp \left(X_{*}+i Y\right) \in \mathcal{V}$ that are responsible for the coefficient asymptotics in direction R.

Tangent cones

Finally... we get back to hyperbolicity.
Let $T:=\mathcal{V} \cap\left\{\exp \left(X_{*}+i Y\right): Y \in(\mathbb{R} / 2 \pi \mathbb{Z})^{d}\right\}$.
At each $Z \in T$, let $p=p_{Z}$ be the homogeneous polynomial defined by the leading term of $Q(Z+\cdot)$.

The polynomial p_{Z} is the algebraic tangent cone of Q at Z.

Proposition (Baryshnikov+P 2011)

1. For every $Z:=\exp (X+i Y)$ with X on the boundary of the amoeba of Q, the polynomial p_{Z} is hyperbolic.
2. p_{Z} has a cone of hyperbolicity contaning the support cone B to the amoeba complement at X.

Family of cones

This is the key construction for evaluating the Cauchy integral.

Theorem (semi-continuous family of cones)

Let p be any hyperbolic homogeneous polynomial and let B be a cone of hyperbolicity for p. There is a family of cones $K(x)$ indexed by the points x at which p vanishes, such that the following hold.
(i) Each $K(x)$ is a cone of hyperbolicity for the tangent cone p_{x}.
(ii) All of the cones $K(x)$ contain B.
(iii) $K(x)$ is semi-continuous in x, meaning that if $x_{n} \rightarrow x$, then $K(x) \subseteq \liminf K\left(x_{n}\right)$.

Proof - examples to follow

Step 1: By the previous proposition p_{x} is hyperbolic. Now show that any vector hyperbolic for p is also hyperbolic for p_{x}. This result was originally proved by Atiyah-Bott-Gårding (1970); Borcea (personal communication) gave a short, self-contained proof.

Step 2: Pick u in B. Define $K(x)$ to be the cone of hyperbolicity of p_{x} that contains u. This gives (i) and also (ii) because the construction is the same for any $u \in B$.

Step 3: Prove (iii) by showing that these cones obey a condition similar to that of Whitney stratification. This takes a few geometric steps.

Example: orthant

Example: product of two linear polynomials

If $x=1$, the common intersection of the two divisors, then $K(x)=B$.

If x is on only one of the lines then $K(x)$ is a halfspace tangent to one of the two factor amoebas.

Shown: the amoeba for $p=(3 z-x-2 y)(3 z-2 x-y)$.
The amoeba of the product is the union of the two factor amoebas.

Counterexample: when p is not hyperbolic

Along the line $(0, y, 0), K(y)$ cones of hyperbolicity for p_{y} can be chosen but are forced to select the positive or negative z direction.

One of these violates semicontinuity for $K\left(0^{+}, y, 0\right)$ while the other choice violates semicontinutiy at $K\left(0^{-}, y, 0\right)$.

Semi-continuous cones give vector field

Theorem (Morse deformation; BP2011, after ABG1970)

If $\{K(x)\}$ is a semi-continuous family of cones, then a continuous vector field Ψ may be constucted with $\Psi(x) \subseteq K(x)$ for each x.

This allows the chain of integration for the Cauchy integral to be deformed so that the integrand is very small except in a neighborhood of Z.

The deformation is locally projective.

The Cauchy integral and the Riesz kernel

Recall the integral in logarithmic coordinates

$$
a_{R}=(2 \pi)^{(1-d) / 2} \exp (-R \cdot X) \int \exp -(i R \cdot Y) f(Y) d Y
$$

Pushing the chain of integration from the imaginary fiber outward in a conical manner produces a homogeneous inverse Fourier transform.

Leading asymptotic behavior only depends on leading behavior of the homogenization $1 / p_{Z}$. We recognize the IFT

$$
\int_{\gamma} p_{z}^{-1} \exp (i R \cdot Y)
$$

as the Riesz kernel for the homogeneous hyperbolic polynoimal p_{z}.

Inverse Fourier transforms

The estimates needed to establish the existence of the integral rely on the projective deformation.

Relating it to previously computed IFT's (in, e.g., [ABG1970]) uses the theory of boundaries of holomorphic functions, laid out by Hörmander (1990).

For example, the IFT of a linear function $a x+b y+c z$ is a delta function on the ray $\lambda\langle a, b, c\rangle$ in the dual space. (Here the index space \mathbb{Z}^{d} is the dual space and the real/complex space in which the generating function variables live is the primal space.)

Examples of computed IFT's

Example (orthant)

The IFT of $1 /(x y z)$ is the constant 1 on the orthant. This corresponds to the generating function

$$
\frac{1}{(1-x)(1-y)(1-z)}
$$

Quadratic times linear

"Quadratic times linear" describes the homogeneous part of the Aztec Diamond probability generating function

$$
\frac{z / 2}{(1-y z)\left[1-\left(x+x^{-1}+y+y^{-1}\right) z+z^{2}\right]} .
$$

Example: Aztec diamond tilings

IFT is a convolution of a delta function on the ray $(0, \lambda, \lambda)$ with the IFT of a circular quadratic. The quadratic is self-dual, with IFT equal to $t^{2}-r^{2}-s^{2}$.

shown: plot of
$(r, s) \mapsto \lim _{t \rightarrow \infty} a_{r t, s t, t}$

General case

Inverse Fourier transforms for general hyperbolic homogeneous polynomials have not been effectively computed although quite a number have been worked out, e.g., Atiyah-Bott-Gårding (Acta Math. 1970) "Lacunas for hyperbolic differential operators with constant coefficients, I."

More to be done

General cubic and quartic integrals are a little trickier to evaluate explicitly than are the quadratics and factored cubics. The so-called fortress tillings are an example of this (work in progress with Y. Baryshnikov).

This cubic arises in analysis of the hexahedron recurrence. Its IFT gives a limit shape theorem (work in progress). At present we can describe the feasible region but not the limit statistics within the region. For a particular parameter value,
 the central collar becomes a plane and the results for Quardatic times Linear apply.

Analytic Combinatorics in Several Variables

EOF

References I

M. Atiyah, R. Bott, and L. Gårding.

Lacunas for hyperbolic differential operators with constant coefficients, I.
Acta Mathematica, 124:109-189, 1970.

Y. Baryshnikov and R. Pemantle.

Asymptotics of multivariate sequences, part III: quadratic points.
Adv. Math., 228:3127-3206, 2011.
Lars Hörmander.
An Introduction to Complex Analysis in Several Variables.
North-Holland Publishing Co., Amsterdam, third edition, 1990.

R. Pemantle and M.C. Wilson.

Asymptotics of multivariate sequences. I. Smooth points of the singular variety. J. Combin. Theory Ser. A, 97(1):129-161, 2002.

R. Pemantle and M.C. Wilson.

Asymptotics of multivariate sequences, II. Multiple points of the singular variety. Combin. Probab. Comput., 13:735-761, 2004.

References II

R. Pemantle and M.C. Wilson.

Twenty combinatorial examples of asymptotics derived from multivariate generating functions.
SIAM Review, 50:199-272, 2008.

R. Pemantle and M.C. Wilson.

Asymptotic expansions of oscillatory integrals with complex phase.
In Algorithmic Probability and Combinatorics, volume 520, pages 221-240.
American Mathematical Society, 2010.

[^0]: ${ }^{1}$ Precise statement not proved.

