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Cauchy integral

Recall the one variable Cauchy integral
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In d variables it is nearly the same:
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dZ is the holomorphic volume form;

integrand is holomorphic in M := Cd \ {Q
Q

d

j=1 zj = 0};
C is a chain of integration topologically equivalent to the torusQ

d

j=1 �j where �
j

is a circle about the origin in the j th

coordinate and the equivalence is in H
d

(M).
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Imaginary fiber through a point on the boundary

Letting Z = exp(X+ iY) and sending X through a component of
the complement, to a point on the boundary of the amoeba, the
Cauchy integral becomes
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exp(�iR · Y) f(Y)dY

where f(Y) = F(exp(X+ iY)).
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Family of cones

This is the key construction for evaluating the Cauchy integral.

Theorem (semi-continuous family of cones)

Let p be any hyperbolic homogeneous polynomial and let B be a
cone of hyperbolicity for p. There is a family of cones K (x)
indexed by the points x at which p vanishes, such that the
following hold.

(i) Each K (x) is a cone of hyperbolicity for the tangent cone p
x

.

(ii) All of the cones K (x) contain B .

(iii) K (x) is semi-continuous in x , meaning that if x
n

! x , then
K (x) ✓ lim inf K (x

n

).



Hyperbolicity
Partial di↵erential equations

Other uses: interior point methods for convex programming
Other uses: matrix theorems and conjectures

Theorem (Riesz kernel supported on the dual cone)

(i) For each cone K of hyperbolicity of p there is a soluton Ex to
DpEx = �x in Rd supported on the dual cone K ⇤.

(ii) This solution is called the Riesz kernel and is defined by

Ex(r) := (2⇡)�d

Z

Rd

q(x + iy)�1 exp[r · (x + iy)] dy .

(iii) The boundary value problem Dpf = 0 on the halfspace
x · r > 0 with boundary values g and normal derivatives
vanishing to order deg(p)� 1 is given by

R
Ex(r)g(x)dx .

We will discuss the proof next lecture when extracting coe�cients
of rational multivariate generating functions.
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