Cauchy integral

Recall the one variable Cauchy integral

$a_{r}=\frac{1}{2 \pi i} \int z^{-r} f(z) \frac{d z}{z}$
In d variables it is nearly the same:

$$
a_{R}=\frac{1}{(2 \pi i)^{d}} \int_{\mathcal{C}} Z^{-R} \frac{P(Z)}{Q(Z)} \frac{d Z}{Z}
$$

- $d Z$ is the holomorphic volume form;
- integrand is holomorphic in $\mathcal{M}:=\mathbb{C}^{d} \backslash\left\{Q \prod_{j=1}^{d} z_{j}=0\right\}$;
- \mathcal{C} is a chain of integration topologically equivalent to the torus
$\prod_{j=1}^{d} \gamma_{j}$ where γ_{j} is a circle about the origin in the $j^{t h}$ coordinate and the equivalence is in $H_{d}(\mathcal{M})$.

Imaginary fiber through a point on the boundary

Letting $\mathbf{Z}=\exp (\mathbf{X}+\mathbf{i} \mathbf{Y})$ and sending \mathbf{X} through a component of the complement, to a point on the boundary of the amoeba, the Cauchy integral becomes

$$
\begin{aligned}
\mathbf{a}_{\mathbf{R}} & =(2 \pi \mathbf{i})^{-\mathbf{d}} \int \mathbf{Z}^{-\mathbf{R}} \mathbf{F}(\mathbf{Z}) \mathbf{d Z} \\
& =(2 \pi)^{-\mathbf{d}} \mathbf{e}^{-\mathbf{R} \cdot \mathbf{x}} \int \exp (-\mathbf{i} \mathbf{R} \cdot \mathbf{Y}) \mathbf{f}(\mathbf{Y}) \mathbf{d} \mathbf{Y}
\end{aligned}
$$

where $\mathbf{f}(\mathbf{Y})=\mathbf{F}(\exp (\mathbf{X}+\mathbf{i} \mathbf{Y}))$.

Family of cones

This is the key construction for evaluating the Cauchy integral.

Theorem (semi-continuous family of cones)

Let p be any hyperbolic homogeneous polynomial and let B be a cone of hyperbolicity for p. There is a family of cones $K(x)$ indexed by the points x at which p vanishes, such that the following hold.
(i) Each $K(x)$ is a cone of hyperbolicity for the tangent cone p_{x}.
(ii) All of the cones $K(x)$ contain B.
(iii) $K(x)$ is semi-continuous in x, meaning that if $x_{n} \rightarrow x$, then $K(x) \subseteq \liminf K\left(x_{n}\right)$.

Theorem (Riesz kernel supported on the dual cone)

(i) For each cone K of hyperbolicity of p there is a soluton E_{x} to $D_{p} E_{x}=\delta_{x}$ in \mathbb{R}^{d} supported on the dual cone K^{*}.
(ii) This solution is called the Riesz kernel and is defined by

$$
E_{x}(r):=(2 \pi)^{-d} \int_{\mathbb{R}^{d}} q(x+i y)^{-1} \exp [r \cdot(x+i y)] d y
$$

(iii) The boundary value problem $D_{p} f=0$ on the halfspace $x \cdot r>0$ with boundary values g and normal derivatives vanishing to order $\operatorname{deg}(p)-1$ is given by $\int E_{x}(r) g(x) d x$.

We will discuss the proof next lecture when extracting coefficients of rational multivariate generating functions.

References I

M. Atiyah, R. Bott, and L. Gårding.

Lacunas for hyperbolic differential operators with constant coefficients, I.
Acta Mathematica, 124:109-189, 1970.

Y. Baryshnikov and R. Pemantle.

Asymptotics of multivariate sequences, part III: quadratic points.
Adv. Math., 228:3127-3206, 2011.
Lars Hörmander.
An Introduction to Complex Analysis in Several Variables.
North-Holland Publishing Co., Amsterdam, third edition, 1990.

R. Pemantle and M.C. Wilson.

Asymptotics of multivariate sequences. I. Smooth points of the singular variety. J. Combin. Theory Ser. A, 97(1):129-161, 2002.

R. Pemantle and M.C. Wilson.

Asymptotics of multivariate sequences, II. Multiple points of the singular variety. Combin. Probab. Comput., 13:735-761, 2004.

References II

R. Pemantle and M.C. Wilson.

Twenty combinatorial examples of asymptotics derived from multivariate generating functions.
SIAM Review, 50:199-272, 2008.

R. Pemantle and M.C. Wilson.

Asymptotic expansions of oscillatory integrals with complex phase.
In Algorithmic Probability and Combinatorics, volume 520, pages 221-240.
American Mathematical Society, 2010.

