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Ubiquity of zeros of polynomials

“The one contribution of mine that I hope will be
remembered has consisted in pointing out that all sorts
of problems of combinatorics can be viewed as problems
of the location of the zeros of certain polynomials...”

– Gian-Carlo Rota (1985)

PDE’s (hyperbolicity)

Number theory (zeta function)

Statistical physics and probability (Lee-Yang theory)
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Basics of the theory

PDE’s

Other uses: convex programming and matrix theorems

Lecture 6: Applications to multivariate generating functions
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Hyperbolicity: equivalences and examples
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Definitions

Definition (stability)

A polynomial q is said to be stable if q(z) 6= 0 whenever each
coordinate zj is in the strict upper half plane.

Definition (hyperbolicity)

A homogeneous polynomial p of degree m is said to be hyperbolic
in direction x ∈ Rd if p(x + iy) 6= 0 for all y ∈ Rd.

Proposition (equivalences)

Hyperbolicity in direction x is equivalent to the univariate
polynomial p(y + tx) having only real roots for all y ∈ Rd.

A real homogeneous polynomial is stable if and only if it is
hyperbolic in every direction in the positive orthant.
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Example: Lorentzian quadratic

Let p be the Lorentzian quadratic t2 − x2
2 − · · · − x2

d, where we
have renamed x1 as “t” because of its interpretation as the time
axis in spacetime; then p is hyperbolic in every timelike direction,
that is, for each direction x with p(x) > 0.

The time axis is left-right
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Example: coordinate planes

The coordinate function xj is hyperolic in direction y if and only if
yj 6= 0 (this is true for any linear polynomial).

It is obvious from the definition that the product of polynomials
hyperbolic in direction y is again hyperbolic in direction y.

It follows that
∏d

j=1 xj is hyperbolic in every direction not
contained in a coordinate plane, that is, in every open orthant.
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Cones of hyperbolicity

The real variety V := {p = 0} ⊆ Rd plays a special role in
hyperbolicity theory.

Proposition (cones of hyperbolicity)

Let ξ be a direction of hperbolicity for p and let K(p, ξ) denote the
connectied component of the set Rd \ V that contains ξ.

p is hyperbolic in direction x for every x ∈ K(p, ξ).

The set K(p, ξ) is an open convex cone; we call this a cone
of hyperbolicity for p.
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Examples, continued

Every component of
R3 \V is a cone of hyper-
bolicity for p := xyz

The forward and backward light
cones are cones of hypebolicity
for p := x2 − y2 − z2
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Example: Fortress polynomial

w4 − u2w2 − v2w2 +
9

25
u2v2

is the projective localization of the denominator (cleaned up a bit)
of the so-called Fortress generating polynomial. It follows
from [BP11, Proposition 2.12] that this polynomial is hyperbolic in
certain directions, e.g., forward and backward cones (pictured
pointing NE and SW).
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Hyperbolicity and PDE’s

These results are not needed for applications to other areas but
they serve to explain where the consructions originate.
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Stable evolution of PDE’s

Let p be a polynomial in d variables and denote by Dp the
operator p(∂/∂x) obtained by replacing each xi by ∂/∂xi.

Let r be a vector in Rd, let Hr be the hyperplane orthogonal to r,
and consider the equation

Dp(f) = 0 (1)

in the halfspace {r · x ≥ 0} with boundary conditions specified on
Hr (typically, f and its first d− 1 normal derivatives).

We say that (1) evolves stably in direction r if convergence of the
boundary conditions to 0 implies convergence1 of the solution to 0.

1Uniform convergence of the function and its derivatives on compact sets.
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Gårding’s Theorem

Theorem ([Går51, Theorem III])

The equation Dpf = 0 evolves stably in direction r if and only if p
is hyperbolic in direction r .

Let us see why this should be true.
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We begin with the observation that if ξ ∈ Cd is any vector with
p(ξ) = 0 then fξ(x) := exp(iξ · x) is a solution to Dpf = 0. (Our
solutions are allowed to be complex but live on Rd .)

 

ξ .

v is realξ .

r

v is complex

Exponential
growth in
direction v
when ξ · v is
non-real;

Bounded
growth when
ξ · v is real.
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Stability implies hyperbolicity:

Assume WLOG that r = (0, . . . , 0, 1).

Suppose p is not hyperbolic. Unraveling the definition, p has at
least one root ξ = (a1, . . . , ad−1, ad ± bi), with {ai} and b real and
nonzero. In other words, v 7→ ξ · v is real when restricted to r⊥

and non-real on 〈r〉.
Therefore, fξ grows exponen-
tially in direction r but is
bounded on r⊥.

The same is true for fλξ. Send-
ing λ→∞, we may take initial
conditions going to zero such
that fλξ(r) = 1 for all λ.
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Hyperbolicity implies stable evolution

Sketch: Suppose q is hyperbolic and
WLOG r = ed . For every real r ′ =
(r1, . . . , rd−1) in frequency space there are
d real values of rd such that q(r) :=
q(r ′, rd) = 0. For each such r , the func-
tion fr is a solution to Dq(f ) = 0, travel-
ing unitarily.

 

d bounded
solutions

These d solutions are a unitary basis for the space Vr ′ that they
span, of solutions to (1) that restrict on Hξ to e ir

′·x , and the same
is true at any later time. Difficult argument: d independent
solutions in the boundary plane, for each frequency, is enough to
give boundary values up to d − 1 derivatives. �
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Light cone

Hyperbolicity can also be used to establish finite propagation
speed. Contrast to parabolic equations such as the heat equation,
where f (x , t) depends on f (y , 0) for all y .

Example (2-D wave equation)

Let f solve ftt − fyy = 0 with
boundary conditions f (0, y) =
g(y) and ft(0, y) = h(y). Then
an explicit formula for f in the
right half plane is given by

y

f(t,y)

y−t

y+t

t

f (t, y) =
1

2

[
g(y + t) + g(y − t) +

∫ y+t

y−t
h(u) du

]
.
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Dual cone

The more general result is that the solution from δ-function initial
conditions propagates on the dual cone (Paley-Wiener Theorem)
and that the solution in general is given by the Riesz kernel. Let
K ⊆ Rd be a cone and let K ∗ denote the dual cone, that is the set
of all y such that x · y ≥ 0 for all x ∈ K .

K

K*
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Theorem (Riesz kernel supported on the dual cone)

(i) For each cone K of hyperbolicity of p there is a soluton Ex to
DpEx = δx in Rd supported on the dual cone K ∗.

(ii) This solution is called the Riesz kernel and is defined by

Ex(r) := (2π)−d
∫
Rd

q(x + iy)−1 exp[r · (x + iy)] dy .

(iii) The boundary value problem Dpf = 0 on the halfspace
x · r > 0 with boundary values g and normal derivatives
vanishing to order deg(p)− 1 is given by

∫
Ex(r)g(x)dx.

We will discuss the proof next lecture when extracting coefficients
of rational multivariate generating functions.
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Convex programming and self-concordant
barriers
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Interior point method

Convex programming is the algorithmic location of the minimum of
a convex function f on a convex set K ∈ Rd .

Without loss of generality, f (x) = cT x is linear (intersect K with
the region above the graph of f ) and the minimum on K occurs on
∂K .

The interior point method is to let φ be a barrier function going
to infinity at ∂K and to define a family of interior minima

x∗(t) := argminx cT x + t−1φ(x)

converging to the true minimum x∗ as t →∞. This is useful
because from x∗(t), it is often possible to approximate x∗(t + ∆t)
very quickly.
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Inequalities that make this work well

Suppose φ ∈ C 3 is defined on the interior of a convex cone K , is
homogeneous of degree −m, and goes to infinity at ∂K .

If F := log φ satisfies

|D3F (x)[h, h, h]| ≤ 2
(
D2F (x)[x , x ]

)3/2

then φ serves as a barrier function. If, in addition,

|DF (x)[h]|2 ≤ mD2F (x)[h, h]|

then the interior method will converge well.
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Hyperbolicity and self-concordant barriers

Theorem (Nesterov and Todd 1997; Guler 1997)

If p is a homogeneous polynomial vanishing on the boundary of a
convex cone K, then φ(x) = p(x)−α satisfies the above
inequalities, bounding second directional derivative from below by
constant multiples of the 2/3-power of the third derivative and the
square first derivative, all in the same direction.
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Hyperbolicity is universal for homogeneous cones

This establishes a long-step interior point algorithm on the cone of
hyperbolicity of any hyperbolic polynomial. It turns out this is
more general than one might think. Say a cone is homogeneous if
the linear maps preserving it as a set act transitively on its interior.

Proposition

All homogenous convex cones are cones of hyperbolicity for some
polynomial.
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Matrix theorems and conjectures
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van der Waerden conjecture

Theorem (van der Waerden conjecture)

The minimum permanent of an n × n doubly stochastic matrix is
n!/nn, uniquely obtained when all entries are 1/n.

This was proved by Falikman (value of the minimum) and
Egorychev (uniqueness) in 1981.

Gurvits (2008) found a much simpler proof using stability. Let Cn
be the set of homogeneous polynomials of degree n in n variables
with nonnegative coefficients.
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Permanent as a stable polynomial in Cn

If A is an n× n matrix then its permanent may be represented as a
mixed partial derivative of a homogeneous stable polynoimal.

Define

pA(x) :=
n∏

i=1

n∑
j=1

aijxj .

Proposition (Gurvits 2008)

The polynomial p is stable and

per (A) =
∂n

∂x1 · · · ∂xn
pA(0, . . . , 0) .
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Gurvits’ argument

Define Cap (p) := inf
p(x1, . . . , xn)∏n

i=1 xi
.

The following two results, also from Gurvits (2008), immediately
imply the van der Waerden conjecture.

Proposition

If A is doubly stochastic then Cap (pA) = 1.

Theorem (Gurvits’ inequality)

If p ∈ Cn is stable then

∂n

∂x1 · · · ∂xn
p(0, . . . , 0) ≥ Cap (p)

n!

nn
.
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More mileage

Note: both propositions are immediate and the theorem is a short
induction.

Further mileage may be obtained from this. The theorem also
implies the Schrijver-Valiant conjecture (1980, proved by Schrijver
in 1998), concerning the minimum permanent of n × n
nonnegative integer matrices whose row and column sums are k .
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Monotone Column Permanent (MCP) Conjecture

Say that the n × n matrix A is a monotone column matrix if its
entries are real and weakly decreasing down each column, that is,
ai ,j ≥ ai+1,j for 1 ≤ i ≤ n − 1 and 1 ≤ j ≤ n. Let Jn denote the
n × n matrix of all ones. It was conjectured (Haglund, Ono and
Wagner 1999) that whenever A is a monotone column matrix, the
univariate polynomial Per (zJn + A) has only real roots. A proof
was given there for the case where A is a zero-one matrix.



Hyperbolicity
Partial differential equations

Other uses: interior point methods for convex programming
Other uses: matrix theorems and conjectures

MCP theorem

Theorem (Brändén, Haglund, Ono and Wagner 2009)

Let Zn be the diagonal matrix whose entries are the n
indeterminates z1, . . . , zn. Let A by an n × n monotone column
matrix. Then Per (JnZn + A) is a stable polynomial in the variables
z1, . . . , zn. Specializing to zj ≡ z for all j preserves stability, hence
the original conjecture follows.

The proof is via a lemma making use of the multivariate
Pólya-Schur theorem to reduce to the special case, already proved,
where all entries are 0 or 1.
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End of Lecture 5



Hyperbolicity
Partial differential equations

Other uses: interior point methods for convex programming
Other uses: matrix theorems and conjectures

References I
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