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Definitions

Definition (stability)

A polynomial q is said to be stable if q(z) 6= 0 whenever each
coordinate zj is in the strict upper half plane.

Definition (hyperbolicity)

A homogeneous polynomial p of degree m is said to be hyperbolic
in direction x 2 Rd if p(x+ iy) 6= 0 for all y 2 Rd.

Proposition (equivalences)

Hyperbolicity in direction x is equivalent to the univariate
polynomial p(y + tx) having only real roots for all y 2 Rd.

A real homogeneous polynomial is stable if and only if it is
hyperbolic in every direction in the positive orthant.
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Cones of hyperbolicity

The real variety V := {p = 0} ✓ Rd plays a special role in
hyperbolicity theory.

Proposition (cones of hyperbolicity)

Let ⇠ be a direction of hperbolicity for p and let K(p, ⇠) denote the
connectied component of the set Rd \ V that contains ⇠.

p is hyperbolic in direction x for every x 2 K(p, ⇠).

The set K(p, ⇠) is an open convex cone; we call this a cone
of hyperbolicity for p.
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Stable evolution of PDE’s

Let p be a polynomial in d variables and denote by Dp the
operator p(@/@x) obtained by replacing each xi by @/@xi.

Let r be a vector in Rd, let Hr be the hyperplane orthogonal to r,
and consider the equation

Dp(f) = 0 (1)

in the halfspace {r · x � 0} with boundary conditions specified on
Hr (typically, f and its first d� 1 normal derivatives).

We say that (1) evolves stably in direction r if convergence of the
boundary conditions to 0 implies convergence1 of the solution to 0.

1
Uniform convergence of the function and its derivatives on compact sets.
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Gårding’s Theorem

Theorem ([Går51, Theorem III])

The equation Dpf = 0 evolves stably in direction r if and only if p
is hyperbolic in direction r .

Let us see why this should be true.
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Inequalities that make this work well

Suppose � 2 C 3 is defined on the interior of a convex cone K , is
homogeneous of degree �m, and goes to infinity at @K .

If F := log � satisfies

|D3F (x)[h, h, h]|  2
�
D2F (x)[x , x ]

�3/2

then � serves as a barrier function. If, in addition,

|DF (x)[h]|2  mD2F (x)[h, h]|

then the interior method will converge well.
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van der Waerden conjecture

Theorem (van der Waerden conjecture)

The minimum permanent of an n ⇥ n doubly stochastic matrix is
n!/nn, uniquely obtained when all entries are 1/n.

This was proved by Falikman (value of the minimum) and
Egorychev (uniqueness) in 1981.

Gurvits (2008) found a much simpler proof using stability. Let Cn
be the set of homogeneous polynomials of degree n in n variables
with nonnegative coe�cients.
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Permanent as a stable polynomial in Cn

If A is an n⇥ n matrix then its permanent may be represented as a
mixed partial derivative of a homogeneous stable polynoimal.

Define

pA(x) :=
nY

i=1

nX

j=1

aijxj .

Proposition (Gurvits 2008)

The polynomial p is stable and

per (A) =
@n

@x1 · · · @xn
pA(0, . . . , 0) .
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