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Definitions
Definition (stability)

A polynomial q is said to be stable if q(z) # 0 whenever each
coordinate zj is in the strict upper half plane.

Definition (hyperbolicity)
A homogeneous polynomial p of degree m is said to be hyperbolic
in direction x € RY if p(x +iy) # 0 for all y € RY.

Proposition (equivalences)
e Hyperbolicity in direction x is equivalent to the univariate
polynomial p(y + tx) having only real roots for all y € R9.
@ A real homogeneous polynomial is stable if and only if it is
hyperbolic in every direction in the positive orthant.
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Cones of hyperbolicity

The real variety V := {p = 0} C RY plays a special role in
hyperbolicity theory.

Proposition (cones of hyperbolicity)

Let & be a direction of hperbolicity for p and let K(p, &) denote the
connectied component of the set R4\ V that contains &.

@ p is hyperbolic in direction x for every x € K(p, &).

@ The set K(p,&) is an open convex cone; we call this a cone
of hyperbolicity for p.
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Stable evolution of PDE'’s
Let p be a polynomial in d variables and denote by D, the
operator p(0/0x) obtained by replacing each x; by 9/0x;.

Let r be a vector in RY, let H, be the hyperplane orthogonal to r,
and consider the equation

Dy(f) = 0 (1)

in the halfspace {r-x > 0} with boundary conditions specified on
H, (typically, f and its first d — 1 normal derivatives).

We say that (1) evolves stably in direction r if convergence of the
boundary conditions to 0 implies convergence® of the solution to 0.

1Uniform convergence of the function and its derivatives on compact sets.
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Garding's Theorem

Theorem ([Gar51, Theorem Ill])

The equation D,f = 0 evolves stably in direction r if and only if p
is hyperbolic in direction r.

Let us see why this should be true.



Hyperbolicity

Partial differential equations

Other uses: interior point methods for convex programming
Other uses: matrix theorems and conjectures

Inequalities that make this work well

Suppose ¢ € C3 is defined on the interior of a convex cone K, is
homogeneous of degree —m, and goes to infinity at K.

If F .= log ¢ satisfies
3 2 3/2
|D°F(x)[h, h, h]| <2 (D F(x)[x,x])
then ¢ serves as a barrier function. If, in addition,

|DF(x)[A][> < mD?F(x)[h, ]|

then the interior method will converge well.
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van der Waerden conjecture

Theorem (van der Waerden conjecture)

The minimum permanent of an n X n doubly stochastic matrix is
n!/n", uniquely obtained when all entries are 1/n.

This was proved by Falikman (value of the minimum) and
Egorychev (uniqueness) in 1981.

Gurvits (2008) found a much simpler proof using stability. Let Cp,
be the set of homogeneous polynomials of degree n in n variables
with nonnegative coefficients.
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Permanent as a stable polynomial in C,

If Ais an n x n matrix then its permanent may be represented as a
mixed partial derivative of a homogeneous stable polynoimal.

Define

pa(x) : H Z ajjXj -

i=1 j=1

Proposition (Gurvits 2008)
The polynomial p is stable and
an

per (4) = Ox1 - -+ 0x

pA(O,...,O).
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