
Sampling
Determinantal measures

Lipschitz functionals
Open questions

Lecture 4: Applications: random trees,
determinantal measures and sampling

Robin Pemantle

University of Pennsylvania

pemantle@math.upenn.edu

Minerva Lectures at Columbia University

09 November, 2016



Sampling
Determinantal measures

Lipschitz functionals
Open questions

Sampling



Sampling
Determinantal measures

Lipschitz functionals
Open questions

Sampling problem

The most common sampling problem is how to sample from a
distribution on a finite but exponentially large set.

The problem is algorithmic.

Often some type of approximation to the distribution will suffice.

Markov Chain Monte Carlo is a major tool.

See also: Metropolis algorithm; importance sampling; simulated
annealing; etc.
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π-p-s sampling

I will discuss a different kind of sampling problem.

We wish to sample a subset S of [n] of size k , such that the
probabilities P(i ∈ S) are equal to given numbers p1, . . . , pn
summing to k. Often we extend this to

∑n
i=1 pi 6= k via

P(i ∈ S) =
kpi∑n
j=1 pj

.

This problem is known as π-p-s sampling (apparently this stood for
“probability proportional to size”).
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π-p-s sampling with negative correlations

When the sample is used for estimation, it is desirable that the
events {i ∈ S} and {j ∈ S} be nonpositively correlated for all
i , j ∈ [n].

This follows whenever the binary random variables Xi := 1i∈S are
strong Rayleigh, and in fact this is how we establish negative
correlation in all but one of the examples below.

Thus we are led to the problem:

What measures can one construct on Bn with given marginals {pi}
and negative correlations?
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Conditioned Bernoulli sampling

Let {πi : 1 ≤ i ≤ n} be numbers in [0, 1]. Let P be the product
measure making EXi = πi for each i . Let P′ = (P|S = k). The
measure P′ is called conditioned Bernoulli sampling.

Theorem (conditioned Bernoulli is SR)

For any choice of parameter values, the measure P′ is strong
Rayleigh.

Proof: P is strong Rayleigh; SR is closed under conditioning on
{S = k}. �
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Properties of conditioned Bernoulli πps sampling

Given any probabilities p1, . . . , pn summing to k, there is a
one-parameter family of vectors (q1, . . . , qn) whose
conditional Bernoulli sampling law has marginals p1, . . . , pn.

All of these produce the same law.

This law maximizes entropy among all laws with marginals
p1, . . . , pn.

For a discussion of the maximum entropy property, see Chen
(2000), or Singh and Vishnoi (2013).
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π-p-s sampling with negative correlations

This is one solution to the negative correlation sampling problem,
with nice theoretical properties but poor algorithmic properties (at
least in the offline sense: the quantities q1, . . . , qn are in general
hard to compute).

A number of other schemes with better properties are reviewed by
Brändén and Jonasson (2012) and shown to be strong Rayleigh.
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Pivot sampling

Once more let {pi} be probabilities summing to an integer k < n.
Recursively, define a sampling scheme as follows.

If p1 + p2 ≤ 1 then set X1 or X2 to zero with respective
probabilities p2/(p1 + p2) and p1/(p1 + p2), then to choose the
variables other than what was set to zero, run pivot sampling on
(p1 + p2, p3, . . . , pn).

If p1 + p2 > 1, do the same thing except set one of X1 or X2 equal
to 1 instead of 0 and the other to p1 + p2 − 1.

This method is very quick and does not involve having to compute
auxilliary numbers such as the numbers pi in conditional Bernoulli
sampling.



Sampling
Determinantal measures

Lipschitz functionals
Open questions

Example of pivot sampling

5/8
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Proof that pivot sampling is SR

Induct on n. Assume WLOG that p1 + p2 ≤ 1. Let P denote the
law of pivot sampling with probabilities (p1 + p2, p3, . . . , pn). By
induction P is strong Rayleigh.

Let P′ be the product of the degenerate law δ0 with P, that is,
sample from P then prepend a zero. This is trivially SR as well.

Let P′′ be the law qP′ + (1− q)(P′)12, obtained from P′ by
transposing 1 and 2 with probability q := p1/(p1 + p2).

P′′ is strong Rayleigh by closure under stirring.

But P′′ is the law of pivot sampling on (p1, . . . , pn); this completes
the induction.
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Sampling without replacement

Negative dependence for conditioned Bernoulli sampling appears to
come from the fact that all n elements are competing for a fixed
number k of slots.

Sampling without replacement is another means of inducing
negative dependence. One might wonder whether this can also be
used to obtain a negatively correlated π-p-s sampling scheme.
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Weighted sampling without replacement scheme

Let r1, . . . , rn be positive real weights. Weighted sampling without
replacement is the measure on subsets of size k obtained as
follows. Let Y1 ≤ n have P(Y1 = `) proportional to r`. Next, let
P(Y2 = m|Y1 = `) be proportional to rm for m 6= `. Continue in
this way until Yi is chosen for all i ≤ k and let Xi =

∑k
j=1 1Yj=i .

There is a strong intuition that this law should be negatively
associated. The law of a sample of size k is stochastically
increasing in k, a property shared with strong Rayleigh measures.

WRONG!

In a brief note in the Annals of Statistics, K. Alexander (1989)
showed that weighted sampling without replacement is not, in
general, even negatively correlated.
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Determinantal measures and spanning trees
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Determinantal measures

The law P on Bn is determinantal if there is a Hermitian matrix M
such that for all subsets A of [n], the minor det(M|A) computes
E
∏

k∈A Xk .

It is easy to see that determinantal measures have negative
correlations. The diagonal elements give the marginals. By the
Hermitian property, the determinant of M|ij must be less than
MiiMjj . Thus,

(EXi )(EXj) = MiiMjj ≤ MiiMjj −MijMij = EXiXj .
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SR property for determinantal measures

Theorem

Determinantal measures are strong Rayleigh.

Sketch of proof: By the theory of determinantal measures, the
eigenvalues of M must lie in [0, 1]. Taking limits later if necessary,
assume they lie in the open interval.

Then F = C det(H − Z ) where Z is the diagonal matrix with
entries (x1, . . . , xn) and H = M−1 − I is positive definite. This is a
sufficient criterion for stability (Gårding, circa 1951).
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Determinantal sampling

Theorem (Lyons)

Given probabilities p1, . . . , pn summing to an integer k < n, we can
always accomplish πps-sampling via a determinantal measure.

Proof: The sequence {pi : 1 ≤ i ≤ n} is majorized by the
sequence which is k ones followed by n − k zeros. This
majorization is precisely the criterion in the Schur-Horn Theorem,
for existence of a Hermitian matrix M with p1, . . . , pn on the
diagonal and eigenvalues consisting of 1 with mulitplicity k and 0
with multiplicity n − k . The matrix M defines the desired
determinantal processes.
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Spanning tree measures

Let G = (V ,E ) be a graph with positive edge weights {w(e)}.

The weighted spanning tree measure is the measure WST on
spanning trees proportional to

∏
e∈T w(e).
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Spanning trees are strong Rayleigh

The WST is determinantal; see, e.g., Burton and Pemantle (1993).

It follows that the random variables {Xe := 1e∈T} have the strong
Rayleigh property. In particular, they are NA.

Oveis Gharan et al. (2013) use the strong Rayleigh property for
spanning trees in a result concerning TSP approximation. From
the strong Rayleigh property, they deduce a lower bound on the
probability of a given two vertices simultaneously having degree
exactly 2.
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Lipschitz functionals
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Concentration inequalities

We have seen that the sum S :=
∑n

k=1 Xk of strong Rayleigh
distributions satisfies a central limit theorem.

Often what one wants from a CLT is a large deviation estimate
such as a Gaussian tail bound P(S − µ > λσ) ≤ exp(−cλ2),
holding for a more general functional f in place of S .
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Lipschitz functionals

A Lipschitz function f : Bn → R is one that changes by no more
than some constant c (without loss of generality c = 1) when a
single coordinate of ω ∈ Bn changes.

Example 1: S :=
∑n

k=1 Xk is Lipschitz-1.

Example 2: Let {1, . . . , n} index edges of a graph G whose degree
is bounded by d . Let Y be a random subgraph of G and let
Xe := 1e∈Y . Let f count one half the number of isolated vertices
of Y . Then f is Lipschitz-1 because adding or removing an edge
cannot affect the isolation of an vertex other than an endpoint of e.
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Example Lipschitz function counting isolated vertices

d

a

b

c

The function counting isolated vertices is Lipschitz-2. For example,
removing the edge ab alters the number of isolated vertices by +2,
adding an edge cd alters the count by −1, and so forth.
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Concentration for Lipschitz functionals

Strong tail bounds are available for Lipschitz functions of
independent variables. These are based on classical exponential
bounds going back to the 50’s (Chernoff) and 60’s (Hoeffding).

E. Mossel asked about generalizing from sums to Lipschitz
functions assuming negative association. We don’t know, but we
can do it if we assume the strong Rayleigh property.

Theorem (Pemantle and Peres, 2015)

Let f : Bn → R be Lipschitz-1. If P is k-homogeneous then

P(|f − Ef | ≥ a) ≤ 2 exp

(
−a2

8k

)
.

Without the homogeneity assumption, the bound becomes
5 exp(−a2/(16(a + 2µ)) where µ is the mean.
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Sketch of proof

Strong Rayleigh measures have the stochastic covering
property.

The classical Azuma martingale, Zk := E(f |X1, . . . ,Xk) can
now be shown to have bounded differences, due to Lipschitz
condition on f and coupling of the different conditional laws.

(See illustration)

Note: this actually proves that any law with the SCP satisfies the
same tail bounds for Lipschitz-1 functionals.
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Illustration

? ? ? ? ? ? ? ?

? ? ? ? ? ? ??

There is a coupling such that the upper row samples from P, the
lower row samples from (P|X1 = 1), and the only difference is in
the X1 variable and at most one other variable.

A similar picture holds for (P|X1 = 0).

Therefore, f varies by at most 2 from the upper to the lower row,
hence |Ef − E(f |X1)| ≤ 2.
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Example (number of leaves)

The proportion of vertices in a uniform spanning tree in Z2 that
are leaves is known to be 8/π2 − 16/π3 ≈ 0.2945. Let us bound
from above the probability that a UST in an N × N box has at
least N2/3 leaves. Letting f count half the number of leaves, we
see that f is Lipschitz-1. The law of {Xe := 1e∈T} is SR and
N2 − 1 homogeneous. Therefore,

P(f − Ef ≥ a) ≤ 2 exp(−a2/(8N2 − 8)) .

The probability of a vertex being a leaf in the UST on a box is
bounded above by the probability for the infinite UST. Plugging in
a = N2(1/3− 8π−2 + 16π−3) and replacing the denominator by
8N2 therefore gives an upper bound of

2 exp

[(
1

3
− 8

π2
+

16

π3

)2

N2

]
≈ 2e−0.0015N2

.
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Open questions

1. Are there natural measures that are negatively associated but
not strong Rayleigh?

2. What are the most interesting measures for which negative
association is conjectured, and is it possible they are strong
Rayleigh?
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1. NA but not SR?

Negative association does not imply strong Rayleigh. The only
published examples, however, are highly contrived.

Problem

Find natural measures which are NA but not SR.

There are some candidates: classes of measures that are known to
be NA but for which it is not known whether they are SR. I will
briefly discuss two of these, namely Gaussian threshhold measures
and sampling via Brownian motion in a polytope.



Sampling
Determinantal measures

Lipschitz functionals
Open questions

Gaussian threshhold measures

Let M be a positive semi-definite matrix with no positive entries
off the diagonal. The multivariate Gaussian Y with covariances
EYiYj = Mij has pairwise negative (or zero) correlations. It is well
known, for the multivariate Gaussian, that this implies negative
association.

Let {aj} be arbitrary real numbers and let Xj = 1Yj≥aj . For
obvious reasons, we call the law P of X on Bn a Gaussian
threshhold measure.

Any monotone function f on Bn lifts to a function f̃ on Rn with
Ef̃ (Y ) = Ef (X ). Thus, negative association of the Gaussian
implies negative association of P.

Problem

Is the Gaussian threshhold sampling law, P, strong Rayleigh?
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Sampling and polytopes

Sampling k elements out of n chooses a random k-set. Suppose
we wish to restrict the set to be in a fixed list, M. If we embed Bn
in Rn, then each set in M becomes a point in the hyperplane
{ω :

∑n
i=1 ωi = k}.

The set of probability measures on M maps to the convex hull of
M. The inverse image of p is precisely the set of measures with
marginals given by (p1, . . . , pn). Thus, the πps-sampling problem is
just the problem of choosing a point in the inverse image of p.

A point p in the polytope is
a mixture of vertices in many
ways, each corresonding to a
measure supported on M that
has mean p.
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Brownian vertex sampling

Based on an idea of Lovett and Meka, M. Singh proposed to
sample by running Brownian motion started from p. At any time,
the Brownian motion is in the relative interior of a unique face, in
which it constrained to remain thereafter. It stops when a vertex is
reached. The martingale property of Brownian motion guarantees
that this random set has marginals p.
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Brownian vertex sampling restricted to a matroid

It turns out that the resulting scheme is negatively associated as
long as the set system M is a matroid. This notion generalizes
many others, such as spanning trees and vector space bases. For
balanced matroids it is known that the uniform measure is strong
Rayleigh, but even negative correlation can fail for other matroids.

Nevertheless...
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Negative association of Brownian vertex sampling

Theorem (Peres and Singh, 2014)

For any matroidM, the random k-set chosen by Brownian vertex
sampling is negatively associated.

Sketch of proof: Let f and g be monotone functions
depending on different sets of coordinates. Then f (Bt)g(Bt) can
be seen to be a supermartingale. At the stopping time, one gets∫

fg dP = Ef (Bτ )g(Bτ ) ≤ Ef (B0)Eg(B0) =

∫
f dP

∫
g dP .
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Is Brownian sampling strong Rayleigh?

Problem

Is the Brownian sampler strong Rayleigh?
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2. conjectured NC/NA/SR

I will conclude by mentioning some measures where negative
dependence is conjectured but it is not known whether any of the
properties from negative correlation to strong Rayleigh holds.

A spanning tree is a connected acyclic graph. A seemingly small
perturbation of the uniform or weighted spanning tree is the
uniform or weighted acyclic subgraph – we simply drop the
condition that the graph be connected.

Problem

Is the uniform acyclic graph strong Rayleigh? Is it even NC?

Note: one might ask the same question for the dual problem,
namely uniform or weighted connected subgraphs. This problem is
open. I don’t know offhand whether the two are equivalent.
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The random cluster model

The random cluster model is a statistical physics model in which a
random subset of the edges of a graph G is chosen. The probability
of H ⊆ G is proportional to a product of edge weights

∏
e∈H λe ,

times qN where N is the number of connected components of H.
When q ≥ 1, it is easy to check the positive lattice condition,
hence positive association. When q ≤ 1, is is conjectured to be
negatively dependent (all properties from negative correlation to
strong Rayleigh being equivalent for this model).

Problem (random cluster model)

Prove that the random cluster model has negative correlations.

Warning: this one has withstood a number of attacks.
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End of Lecture 4
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