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Binary variables

In this lecture we are interested in binary variables, that is,
variables taking only the values 0 and 1.

It comes as no surprise that these are of great interest.
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Boolean lattice

A collection of n binary variables can be thought of as a random
point in the Boolean lattice Bn of rank n. The joint law of n binary
variables is therefore a probability distribution on this lattice which
we can depict by attaching probabilities to the nodes of the lattice.
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Some notation

Let Bn := {0, 1}n denote the Boolean lattice of rank n. The joint
law of n binary random variables is a measure µ on Bn. The
probability generating function f = fµ is given by

fµ(x1, . . . , xn) :=
∑
ω∈Bn

µ(ω)
n∏

j=1

x
ωj

j = Exω .

Substituting xj = 1 projects onto a smaller Boolean lattice that
“forgets” xj.

Substituting xj = 0 or taking (∂/∂xj)|xj=0 conditions on xj = 0
or 1 respectively.
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Negative correlation

Negative correlation between variables xi and xj can be tested by
the following generating function inequality:

F(1)
∂2F

∂xixj
(1) ≤ ∂F

∂xi
(1)

∂F

∂xj
(1) .

I will discuss a hierarchy of negative dependence conditions on P,
the strongest of which is called the strong Rayleigh property.

Why do we care about these fancy properties?

1. Stronger properties give stronger conclusions.

2. Sometimes to prove a weaker property the only way is to
establish a stronger property which is somehow better behaved.
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Story of positive and negative dependence

Before defining strong Rayleigh, let’s review some of the most
natural and most studied positive and negative dependence
conditions.
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Positive association

Say that the measure P on Bn is positively associated if

Efg ≥ (Ef) (Eg)

whenever f and g are both monotone increasing on Bn. Taking
f = Xi, g = Xj this implies pairwise positive correlation.

Take f = X1 and let P1 and P0 denote the conditional distribution
of P given X1 = 1 and X1 = 0 respectively. In this case positive
association says

∫
g dP1 ≥

∫
g dP0 for all increasing functions g.

We say that P1 stochastically dominates P0 and write P1 � P0.

P1 � P0 if and only if you can couple them so that the sample
from P0 is obtained from the P1 sample by changing some ones to
zeros (or doing nothing).
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Coupling for positive association

5X X X X X1 2 3 4

One can sample simultaneously from (P|X1 = 1) and (P|X1 = 0)
in such a way that turning off the bit at X1 also turns off some of

the other bits (in this case X2 and X5).
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Negative association

Negative association is a trickier business because f can’t be
negatively correlated with itself.

The measure P on Bn is negatively associated if

Efg ≤ (Ef) (Eg)

whenever f and g are both monotone increasing and they depend
on disjoint sets of coordinates.

Taking f = X1, the consequence is that the conditional law of the
remaining variables given X1 = 0 stochastically dominates the law
given X1 = 1. Thus a sample conditioned on X1 = 1 is obtained
from one conditioned on X1 = 0 by turning some ones into zeros,
except the first coordinate, which goes from zero to one.
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Coupling for negative association

5X X X X X1 2 3 4

This time, turning off the bit X1 causes the sample from
(P|X1 = 1) to gain some ones when it turns into a sample from
(P|X1 = 0).
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Lattice conditions

A 4-tuple (a,b, c,d) of the Boolean lattice Bn is a diamond if b
and c cover a and if d covers b and c, where x covers y if x ≥ y
and x ≥ u ≥ y implies u = x or u = y.

b c

d

a

 

Say that P satisfies the positive lattice condition if
P(b)P(c) ≤ P(a)P(d) for every diamond (a,b, c,d). The reverse
inequality is called the negative lattice condition.
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FKG

The positive lattice condition is very useful, due to the following
result of Fortuin, Kastelyn and Ginibre (1971).

Theorem (FKG)

If P satisfies the positive lattice condition then P is positively
associated and the projection of P to any smaller set of variables
satisfies both these conditions as well.

The positive lattice condition involves checking the ratios of
probabilities of nearby configurations. This is often much easier
than computing correlations between bits, which involves summing
over all configurations.
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Negative lattice condition

Unfortunately, the FKG theorem does not hold when the positive
lattice condition is replaced by the negative lattice condition.

As a result, negative association is very difficult to check!

A profusion of properties has been suggested that are somewhat
weaker than NA. These are not totally ordered with respect to
implication. Many concern the stochastic domination of some
conditional distribution of P by others. The litany is long,
including many ultimately failed concepts introduced in [Pem00].

The next slides define some of these properties and describe the
implications that hold between them.
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Hereditary properties

Definition (Hereditary properties)

Given a property of the atom sizes in Bn, such as the negative
lattice condition, we prepend h to denote that it should hold
hereditarily, that is for every projection onto a subset of the
variables (forgetting, the others, that is, integrating them out).
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Conditional properties

Definition (Conditional properties)

For properties defined in terms of the random variables, prepend C
to say that they hold for sublattices, that is, when conditioning on
fixed values of some of the variables.
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External fields

The superscript +
denotes a property
continuing under
impostion of an
external field:
the weights {µ(ω)}
are replaced by

Cµ(ω)
n∏

i=1

λ
ω(i)
i

for λ1, . . . , λn > 0.
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Negative dependence hierarchy

SR

CNA h−NLC

NC

NA NLC

CNA
+ +h−NLC

SR Strong Rayleigh

CNA+ CNA under external fields

h-NLC+ Hereditary CNA+

CNA Conditional NA

h-NLC Hereditary NLC

NA Negative association

NLC Negative lattice condition

NC Negative correlation
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Negative dependence hierarchy

h−NLC

SR

CNA h−NLC

NC

NA NLC

CNA
+ +

SR Strong Rayleigh

CNA+ CNA under external fields

h-NLC+ Hereditary CNA+

CNA Conditional NA

h-NLC Hereditary NLC

NA Negative association

NLC Negative lattice condition

NC Negative correlation
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The half-plane property: real stable
polynomials of several variables
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Multivariate stability

Definition (stable)

A real or complex polynomial q in d variables is said to be stable if
q(z1, . . . , zd) = 0 implies not all coordinates zj are in the open
upper half plane.

In one variable, a real polynomial f is stable if and only f ∈ RR. In
more than one variable it is a lot more complicated.

Example (bilinear functions)

The real polynomial a + bx + cy + dxy is stable if and only if
ad ≤ bc.
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Easy properties

Proposition (easy closure properties)

The class of stable polynomials is closed under the following.

(a) Products: f and g are stable implies fg is stable;

(b) Index permutations: f is stable implies f(xπ(1), ..., xπ(d)) is
stable where π ∈ Sd;

(c) Diagonalization: f is stable implies f(x1, x1, x3, . . . , xd) is
stable;

(d) Specialization: if f is stable and =(a) ≥ 0 then f(a, x2, . . . , xd)
is stable;

(e) Inversion: if the degree of x1 in f is m and f is stable then
xm

1 f(−1/x1, x2, . . . , xd) is stable;

�



Negative dependence
The half-plane property, and the multiaffine case

Strong Rayleigh distributions
Consequences

Differentiation

Lemma (differentiation)

If f is stable then ∂f/∂xj is either stable or identically zero.

Proof: Fix any values of {xi : i 6= j} in the upper half plane. As a
function of xj, f has no zeros in the upper half plane. By the
Gauss-Lucas theorem, the zeros of f ′ are in the convex hull,
therefore not in the upper half plane. �

The next property, Wagner calls an “astounding” recent
generalization of the Pólya-Schur theorem.
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Multivariate Pólya-Schur theorem

This characterizes not just multiplier sequence but all C-linear
maps preserving stability. To restrict to multiplier sequences, take
T(xα) = λ(α)xα.

Theorem ([BB09b, Theorem 1.3])

The C-linear map T : C[x]→ C[x] preserves stable polynomials if
and only if either its range is scalar multiples of a single stable
polynomial or the series∑

α∈(Z+)d

(−1)|α|T(xα)
yα

α!

is a uniform limit on compact sets of stable polynomials in C[x, y].
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Sketch of proof:

The crucial step is to show that the closure of the stable
polynomials in C[x][[y]] is characterized by requiring stability of a
collection of initial segments.

A power series
∑

α Pα(x)yα whose coefficients are
polynomials in x is in the closure of stable polynomials in
C[x, y] if and only if for all β ∈ (Z+)d,∑

α≤β
(β)αPα(x)yα

is stable in C[x, y].

Similar techniques as in the univariate case then establish that the
C-linear operator defined by such a series preserves stability.
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Multi-affine case

Definition (Strong Rayleigh)

A probability law on Bn is said to be strong Rayleigh if its
multivariate generating function is stable.

Generating polynomials for the joint law of binary variables are
multi-affine, meaning that no individual variable has degree
greater than 1.

Theorem (multi-affine equivalence)

If F is multi-affine then F is stable if and only if

F(x)
∂2F

∂xixj
(x) ≤ ∂F

∂xi
(x)

∂F

∂xj
(x)

for all x ∈ Rn.
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Rayleigh versus strong Rayleigh

An external field replaces F(1) and its derivatives by F(λ) and its
derivatives. Therefore the property h-NLC+ becomes the Rayleigh
property

F(x)
∂2F

∂xixj
(x) ≤ ∂F

∂xi
(x)

∂F

∂xj
(x) for all x ∈ (R+)n . (1)

The only difference between Rayleigh and strong Rayleigh is that
strong Rayleigh requires (1) for negative external fields!

Extending positive properties to real properties and real properties
to complex properties turns out to be the key to obtaining strong
closure properties.
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Closure properties of the strong Rayleigh
class
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Elementary closure properties

Elementary closure properties of the class of stable polynomials
translate into the following elementary closure properties of the
class of strong Rayleigh distributions.

1. Permuting the variables: F(xπ(1), . . . , xπ(n))) is stable if F is.

2. Merging independent collections: FG is stable if F and G are.

3. Conditioning on Xj:
∂F

∂xj
and F− xj

∂F

∂xj
are stable if F is.

4. Forgetting a variable: setting the indeterminate xj (as opposed
to the value of Xj) equal to 1.

5. Replacing X1 and X2 by X1 + X2: F(x1, x1, x3, . . . , xn).

6. Reversing a variable: replacing X by m− X where m is an
upper bound for X.

7. Exernal field: F(λ1x1, . . . , λnxn)/F(λ) is stable if F is.
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Less elementary: Stirring

8. Stirring: replacing F by a convex combination of F and
Fij := F(x1, . . . , xi−1, xj, xi+1, . . . , xj−1, xi, xj+1, . . . , xn).

+ 1−qq
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Proof of stirring property

To prove stirring, observe that the nonvanishing of pF + (1− p)Fij

on the upper half-plane Hn may be checked by checking that for
each fixed set of values of {xk : k 6= i, j} ∈ Hn−2, the resulting
bivariate polynomial is non-vanishing on H2.

These specializations of F are stable, 2-variable, multi-affine
polynomials with complex coefficients: α + βx + γy + δxy.

It suffices to check for this class that stability is closed under
F 7→ pF(x, y) + (1− p)F(y, x), which can be done by brute force.
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Less elementary: conditioning on the total

9. Conditioning on the total, S: (P|S = k) is SR if P is.

(P | S = 3)P
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Polarization and homogenization

The proof requires two constructions which allow us to go back
and forth between integer and binary variables.

Definition (Polarization)

Let X1, . . . ,Xn be nonnegative integer random variables, all
bounded by M. Polarization means replacing X1 by Boolean
variables {Y1, . . . ,YM} such that, conditional on X1, . . . ,Xn, the
Y variables are exchangeable and sum to X1.
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8

X  , X  ,  ...1 2 X  , X  ,  ...1 2

1

0

2

0

1  0  0  0  1  0  1  0
3

1

0

2

0

X Y  , Y   , ...  Y  1 1 2

On the left is a sample from a distribution on positive integers
where all variables are bounded by M := 8.

On the right, given that X1 = 3, this variable was replaced by 8
binary variables, three of which were chosen to be 1, uniformly

among the

(
8

3

)
possibilities.
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Polarization

Lemma (Polarization preserves stability)

If the generating function for X1, . . . ,Xn is stable then the
generating function for the polarization, Y1, . . . ,YM,X2, . . . ,Xn is
stable.

Hint of proof: The polarization construction can be described
in terms of functions of a complex variable, without reference to
probability. The complex analytic statement is proved via the
Grace-Welsh-Szegö Theorem.
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Homogenization

Often algebra works better with homogeneous polynomials.
Probabilistically, a generating function F is homogeneous if and
only if the random variable S :=

∑n
k=1 Xk is constant.

Lemma (Homogenization preserves stability)

Let F be a stable polynomial in n variables with nonnegative real
coefficients. Then the (usual) homogenization of F is a stable
polynomial in n + 1 variables.

The proof uses hyperbolicity theory, showing that nonnegative
directions are in the cone of hyperbolicity.

Probabilistic interpretaion: if {X1, . . . ,Xn} have stable generating
function then adding Xn+1 := n−

∑n
k=1 Sk preserves stability.
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Symmetric homogenization

Putting these two constructions together yields a natural stability
preserving operation within the realm of Boolean measures.

Definition (symmetric homogenization)

The symmetric homogenization of a measure on Bn is the measure
on B2n obtained by first adding the variable Xn+1 := n−

∑n
k=1 Xk

(homogenizing) and then polarizing: splitting Xn+1 into n
conditionally exchangeable Boolean variables.

Theorem

Symmetric homogenization preserves the strong Rayleigh property.
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Example of symmetric homogenization

On the left is a configuration in B9. Symmetric homogenization
extends this, on the right, to a configuration on B18 in which the
number of new 1’s is the number of old 0’s and vice versa.
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Proof that conditioning on the total preserves SR

Homogenize to obtain the new stable function
G(x1, . . . , xn, y) =

∑n
j=0 Ej(x1, . . . , xn)yj.

Differentiate k times with respect to y and n− k times with
respect to y−1 to extract the yn−k coefficient of G.

Stability is preserved under differentiation; the yn−k coefficient is
Ek, the generating function for (P |S = k). �
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Consequences of the strong Rayleigh property
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Negative association

The most important consequence is proved in the seminal paper of
Borcea, Brändén and Liggett [BBL09]:

Theorem (SR implies NA)

Strong Rayleigh measures are negative associated.

Further useful consequences are as follows.
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Definition (Stochastic covering)

A measure µ on Bn is said to stochastically cover another measure
ν on Bn if ν � µ in such a way that the coupling can always be
accomplished by changing at most one bit from 0 to 1.

Example (continued)

In a previous example the conditional law (P |X1 = 0)
stochastically dominated (P |X1 = 1). This does not exhibit the
stochastic covering relation (though it is possible that SCP holds,
witnessed by a different coupling).

5X X X X X1 2 3 4
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Consequences of the strong Rayleigh property

Theorem

Suppose µ ∈ SR, let Xi be the coordinate functions and let
S :=

∑n
i=1 Xi be the sum. Let pi := P(S = i) and let µi be the

conditional law (µ |S = i).

(i) ULC: The sequence {pi} is ultra-log-concave

(ii) Stochastic increase: The sequence {µk} is stochastically
increasing.

(iii) SCP: The conditional law (µ |Xi = 0), restricted to the
variables other than Xi, stochastically covers the restriction
of (µ |Xi = k + 1).

In the remainder of the lecture (or possibly first thing after the
break) I will sketch the proofs of these four results.
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Rank-rescaling

First a lemma which follows from the same argument used to prove
closure of SR under conditioning on the total.

Lemma (rank re-scaling)

Let P on Bn be strong Rayleigh and let {bi : 0 ≤ i ≤ n} be a finite
sequence of nonnegative numbers such that

∑n
i=0 bix

i is stable
(equivalently, has only real roots). Then the measure

n∑
i=0

bi(P|S = i)

normalized to have total mass 1, is also strong Rayleigh.
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Example of rank re-scaling

4

1

8

0

0

The sequence 1, 8, 4, 0, 0 corresponds to the polynomial
1 + 8x + 4x2, which has all real roots. A generic measure on B4 (on
the left) becomes a new measure in which ranks 3 and 4 are gone.
Points in rank 1 increase in weight by the most, followed by rank 2
and then rank 0. Resulting weights are normalized to sum to 1.
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Proof that rank re-scaling preserves SR

Proof:

1. In the special case bi = δi,k, this is just saying that (P|S = k) is
SR, which we alredy proved.

2. In general, because the reversed sequence {bn−k : 0 ≤ k ≤ n} is
real rooted, we may construct independent Bernoulli random
variables Y1, . . . ,Yn whose law Q on Bn gives
Q(
∑n

j=0 Yj = k) = bn−k for all k.

3. The product law P×Q is SR (closure under products). By Step
(1), the law (P×Q|

∑2n
j=0 ωj = n) of the product conditioned on

the sum of all the X and Y variables being equal to n is SR as
well. Forgetting about the Y variables, this is

∑n
i=0 bi(P|S = i). �
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Example: special case of rank re-scaling

Example (two consecutive levels)

Rank rescaling by the binomial xk + xk+1 shows that a strong
Rayleigh distribution restricted to two consecutive levels is still
strong Rayleigh.

Note that xk + xk+1 + xk+2 is not stable. In general, the restriction
of an SR measure to three or more consecutive levels is not SR.
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Proof that the sum of SR variables is ULC

Substituting x1 = . . . = xn = x preserves the strong Rayleigh
property. Thus the total S :=

∑n
k=1 Xk is univariate stable, i.e.,

real-rooted.

ULC then follows from Newton’s inequalities. �
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Proof of stochastically increasing levels

Step 1: Restrict to levels k and k + 1 (special case of rank
rescaling).

Step 2: Homogenize the measure (P|k ≤ S ≤ k + 1), yielding a SR
measure ν.

Step 3: Negative association (to be proved shortly) implies that
the homogenizing variable Xn+1 := 1S=k is ν-negatively
correlated with any upward event in Bn. This is the
desired conclusion. A

X
5
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Proof of SCP

Step 1: Homogenize P by adding variables Y so that the total∑n−k
i=1 Yi +

∑n
i=1 Xi is always equal to n. Call the

augmented law P′.
Step 2: Let µ and ν are the respective conditional measures on

Bn−1 × Z+ defined by µ = (P′|Xn = 1) and
ν = (P′|Xn = 0).

Step 3: Negative association (to be proved shortly) implies that
µ � ν.

Step 4: Homegenization implies that any coupling of µ and ν
witnessing µ � ν has precisely one variable increasing
from 0 to 1. Restricting to Bn−1 gives a coupling in which
at most one variable increases. �
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Feder-Mihail lemma

The argument that strong Rayleigh measures are negatively
associated requires almost no modification from Feder and Mihail’s
original proof that spanning tree measures are negatively
associated.

Theorem ([FM92, Lemma 3.2])

Let M be a class of probability measures on Boolean lattices that
are all homogeneous and pairwise negatively correlated. Suppose
M is closed under conditioning on the value of one of the variables.
Then all measures in the class M are negatively associated.
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Proof that SR implies NA

1 Extend P to P′, the symmetric homogenization.

2 SR implies (ordinary) Rayleigh which implies pairwise negative
correlation.

3 The class of homogeneous strong Rayleigh distributions is
closed under conditioning. The hypotheses of Feder-Mihail are
satisfied, therefore all strong Rayleigh measures are negatively
associated.

�
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End of Lecture 3
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G. Pólya and J. Schur.
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