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Elementary properties

Let RR denote the set of real polynomials all of whose roots are
real. Let RR+ ⊆ RR denote the subset of polynomials all of whose
roots are in (−∞, 0].

For probability generating functions the two notions coincide.

A number of properties follow. The most important are central
limit behavior and ultra-log-concavity (Newton’s inequalities) from
which also follow log-concavity, unimodality and proximity of mean
and mode.
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Theorem (CLT)

Let {pj : 0 ≤ j ≤ N} be a probability sequence with generating

polynomial f(x) =
∑N

j=0 p(j)xj. Let

µ := f ′(1) =
∑

j

jp(j)

σ2 := f ′′(1) + µ(1− µ) =
∑

j

j2p(j)− µ2

be the mean and variance respectively. If f ∈ RR then∣∣∣∣∣∣Φ(t)−
∑

j≤µ+tσ

p(j)

∣∣∣∣∣∣ ≤ C

σ
,

where Φ is the normal CDF.
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Proof.

Factor f as a product of binomials. The constants can be
distributed so that each binomial is the generating function
(1− p) + px of a Bernoulli.

Thus the distribution is that of independent Bernoulli trials and
the result follows from the Lindeberg-Feller CLT.

An easy improvement: let LHP be the set of all polynomials whose
roots have nonpositive real part.

Polynomials in LHP can be factored into trinomials with
nonnegative coefficients. Therefore the same argument yields the

same conclusion,

∣∣∣∣∣∣Φ(t)−
∑

j≤µ+tσ

p(j)

∣∣∣∣∣∣ ≤ C

σ
for all f ∈ LHP.
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A surprising further improvement

Theorem (LPRS2015)

Suppose the zero set of f avoids a ball of radius δ about 1. Then∣∣∣∣∣∣Φ(t)−
∑

j≤µ+tσ

p(j)

∣∣∣∣∣∣ ≤ CδN

σ3
.

Proof: Again factor into real trinomials, giving a convolution of
signed measures with generating functions

fz(x) :=
(x− z)(x− z)

(1− z)(1− z)
.

These signed measures satisfy logEzeit = −itµz − t2σ2
z/2 + O(t3),

uniformly in z, as long as z stays away from 1. Sum N of these,
recenter to kill µ, and evaluate at t/σ to obtain the result. �
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Early literature

From the modern point of view the CLT is obvious.

But in 1967 it was worth a publication in the Annals of
Mathematical Statistics [Har67] to show asymptotic normality for
Stirling numbers of the second kind by showing that their
generating polynomial is real-rooted and then deriving the CLT.

A 1964 article [Dar64] made the reverse connection: from Bernoulli
trials to real-rootedness to the other well known consequences of
real-rootedness, which we now list.
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Further properties

Proposition (properties of real-rooted polynomials)

1 (Newton, 1707) A nonnegative coefficient sequence of a
polynomial with real roots is log concave. In fact the sequence
is ultra-logconcave, meaning that {ak/

(n
k

)
} is log-concave.

2 (Edrai, 1953) A polynomial with nonnegative real coefficients
has real roots if and only if its sequence of coefficients
(a0, . . . , an) is a Pólya frequency sequence, meaning that all
the minors of the matrix (ai−j) have nonnegative determinant.

3 Such a sequence is unimodal and its mean is within 1 of its
mode.
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Newton’s inequalities

What do Newton’s inequalities say?

Because the sequence {
(n

k

)
: 0 ≤ k ≤ n} is it self log-concave, this

says that the sequence {ak} is “ultra-log-concave”, a stronger
property than log-concavity.

For the distribution Bin (n,p) Newton’s inequalities hold with
equality because the sequence

Bin (n,p)(k)(n
k

) = (1− p)n

(
p

1− p

)k

is log-linear.
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Proof of Newton’s inequalities

A polynomial of degree n can be reduced to a quadratic by
differentiating k times with respect to x, reversing the coefficient
sequence, then differentiating n− k− 2 more times.

anxn + · · ·+ ak+2xk+2 + ak+1xk+1 + akxk + · · ·+ a0x0

XXXXXXXXXXz

XXXXXXXXXXz

XXXXXXXXXXz

(
d
dx

)k

· · · + (k+2)!
2 ak+2 x2 + (k + 1)!ak+1 x + k! ak

�������9 n!
(

d
dx−1

)n−k−2
ak+2

2( n
k+2)

x2 + ak+1

( n
k+1)

ak+1 x + ak

(n
k)

ak

B2 ≥ 4AC :
ak+2( n
k+2

) ak(n
k

) ≤ ( ak+1( n
k+1

))2

.
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Derangements

Example (generalized derangements)

Let Dr(n) denote the subset of permutations in Sn all of whose
cycles have length at least r. For example, D2(n) is the number of
derangements. Let m(σ) denote the number of cycles of a
permutation σ and let fn,r(x) :=

∑
σ∈Dr(n) xm(σ) be the generating

function of cycles in Dr(n) counted by number of cycles.

Example: f6,2(x) = 15x3 + 130x2 + 120x

Type: (123456) (1234)(56) (123)(456) (12)(34)(56)

Count: 120 90 40 15

Using a bijection, an induction, and some facts from an early
edition of EC I, Brenti [Bre95] showed that fn,r ∈ RR.
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Function digraphs

Example (functions from [n] to [n])

Given a function f : [n]→ [n], the cycle number κ(f) denotes the
number of cycles in the digraph defined by f (alternatively the
number of irreducible closed classes in the degenerate Markov
chain defined by f).

Shown: a function
with cycle number 2

Let gn(x) :=
∑

f xκ(f) be the generating polynomial counting
functions by their cycle number. Brenti [Bre89] shows that g is
real-rooted.
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Family of determinants

Example (hyperbolicity of the determinant)

Let A be a nonnegative definite Hermitian matrix and let B be any
Hermitian matrix. Set

f(z) := det(zA + B) .

In the lingo of [Går51], this is the hyperbolic property of the
determinant. The multivariate version of this plays a big role in the
theory of strong Rayleigh distributions.

Proof: Multiplying on the right by A−1 it suffices to prove the
result for A = I. The eigenvalues of zI + B are those of B shifted
by z, so the determinant of B has n real roots iff the determinant
of zI + B does. �
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Rooted spanning forests

Example (rooted spanning forests)

Let G be a finite graph. If F is a forest on G (an acyclic subgraph)
let |F| denote the number of components and let γ(F) denote the
product of the component sizes (the number of ways of choosing a
root for each component).

Let fG(x) :=
∑

F γ(F)x|F| count the rooted forests by number of
components. Then fG ∈ RR.

Proof: Let A be the matrix with Aij = −1 when there is an edge
from i to j, Aii = deg(i) and Aij = 0 otherwise. Then
fG(z) = det(A + zI) [Sta97, attributed to Kelmans] and the result
follows from nonnegative-definiteness of A.
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Matchings

A weighted matching of a graph G = (V,E) is a subset of E
consisting of disjoint edges, together with a weight function
w : E→ R+.
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Figure: The red matching has weight 5/2 and defect n − 2|M| = 3
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Matchings

Example (matchings)

Let M denote the set of matchings of G , weighted multiplicatively
by a weight function w .

The matching defect polynomial f is defined by

f (x) =
∑

M∈M
(−1)|M|w(M)x |E |−2|M| .

The Heilmann-Lieb Theorem states that the matching polynomial
is real-rooted.

The proof uses an interlacing argument, to be examined shortly.
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Establishing the RR property

How does one establish the RR property? Three general methods.

1. Interlacing

2. Elementary closure properties

3. Pólya-Schur theory

Multivariate analogues of these methods are crucial to the
Borcea-Brändén-Liggett theory of strong Rayleigh distributions.
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Interlacing

For a recursively defined sequence of polynomials {Pn}, one can
sometimes inductively that Pn ∈ RR and the n − 1 roots of Pn−1

interlace the n roots of Pn.

For example, if

Pn+1 = αn·x ·Pn − βn · Pn−1

for αn, βn > 0, then by checking the signs of Pn+1 at the zeros of
Pn and Pn−1, one can identify n − 1 zeros of Pn+1 interlacing the
zeros of Pn.

Examination of the leading term shows Pn+1 has a zero greater
(and also one less) than any zero of Pn.
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Examples

Chebyshev: Cn+1 = 2xCn − Cn−1

Laguerre: Ln+1 = (2n − 1− x)Ln − nLn−1

Hermite: Hn+1 = x Hn − H ′n

Chebyshev polynomials are of the correct form, as are Laguerre
polynomials (moving the origin to 2n − 1).

Hermite polynomials use H ′n in place of Hn−1 so one obtains
interlacing without assuming it for induction.

The matching defect polynomial requires only a little more care in
the induction.
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Elementary closure properties of RR

(i) Scaling: if f ∈ RR then f (bz) ∈ RR.
geometric reweighting

(ii) Translation: if f ∈ RR then f (a + z) ∈ RR.
binomial killing

(iii) Differentiation: if f ∈ RR then f ′ ∈ RR.
size biasing

(iv) Product: if f , g ∈ RR then fg ∈ RR.
convolution

(v) Inversion: if f ∈ RR has degree n then znf (1/z) ∈ RR.
reversal

In each case, the class RR+ is also preserved, providing a and b are
positive in (i) and (ii) respectively.
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Hadamard product

The previous properties follow more or less immediately from the
definitions. A useful closure property that is more difficult but still
long understood is the Hadamard or term-by-term product.

Proposition (Hadamard product)

If f (x) :=
∑

k akx
k and g(x) :=

∑
k bk are in RR+ then

f � g(x) :=
∑

akbkx
k ∈ RR+ as well.

In fact the original proof of E. Maló (1895) shows the slightly
stronger result that f ∈ RR, g ∈ RR+ implies f � g ∈ RR.

We will prove this result using Pólya-Schur theory. Another proof
follows from multivariate results in the next lecture.
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Pólya-Schur theory

One might ask whether a converse holds: if multiplication by the
coefficients of f preserves real-rootedness then must f be real
rooted?

No!

In fact there is a century-old complete characterization of
sequences (finite or infinite), coefficientwise multiplication by
which preserves RR. We will state but not prove it.

Definition (multiplier sequence)

A sequence λ := {λ0, λ1, λ2, . . .} is called a multiplier sequence
if for every polynomial g =

∑n
k=0 akx

k ∈ RR+, the polynomial∑n
k=0 λkakx

k is also in RR+.
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Theorem (Pólya-Schur 1914)

Denote by Φ the formal power series Φ(z) :=
∞∑
k=0

λk
k!

zk . Then the

following are equivalent.

(i) λ is a multiplier sequence;

(ii) Φ is an entire function and is the limit, uniformly on compact
sets, of the polynomials with all zeros real and of the same
sign;

(iii) Φ is entire and either Φ(z) or Φ(−z) has a representation

Czneα0z
∞∏
k=1

(1 + αkz)

where n is a nonnegative integer, C is real, and αk are real,
nonnegative and summable.
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Trinomial

Example (trinomial)

Up to renormalization, a three term sequence is (1, 1, α). This is a
multiplier sequence if and only if α ≤ 1/2.

Note that 1 + x + x2/2 /∈ RR, showing that the converse of the
Hadamard product result is false.

Whereas a trinomial A + Bx + Cx2 in RR satisfies B2 ≤ 4AC , a
sequence of arbitrary length in RR that begins (A,B,C , . . .) must
satisfy only B2 ≤ 2AC .

Truncating to the first three terms necessitates a factor of 1/2.
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Inverse factorials

Example (finite inverse factorial sequence)

Generalizing this, we consider the finite sequence {1/k!}nk=0.

To see this is a multiplier sequence, observe it is the reverse of
{1/(n − k)!}nk=0. This has exponential generating function
C (1 + x)n, therefore satisfies (ii).

Taking a limit, this implies that {1/k!}∞k=0 is a multiplier sequence.
This fact, due to Laguerre, pre-dates the Pólya-Schur theorem.

If one allows also a factor of ebx
2
, one obtains the so-called

Laguerre-Pólya class, which are exponential generating functions
for multiplier sequences maping RR+ to RR.
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Back to Hadamard products

Proof that RR+ is closed under Hadamard products.

The classical proof of closure under Hadamard products is via the
Pólya-Schur Theorem.

Fix f =
∑n

k=0 akxk ∈ RR.

Applying multiplier sequence {1/k!} (either the finite or infinite
sequence) shows that Φ(x) :=

∑n
k=0 akx

k/k! has all real roots.

Hence {ak} is a multiplier sequence by criterion (ii) of the
Pólya-Schur Theorem.



Real rooted polynomials
Examples from combinatorics

Closure properties

Conditioned Bernoullis
Example

Let {X1,X2, . . . ,Xn,Y1,Y2, . . .Ym} be independent Bernoulli
variables with arbitrary means. Let S :=

∑n
i=1 Xi and

T :=
∑m

i=1 Yi . Fix k and let P(x) =
∑n

i=0 pjx
j be the generating

function for the conditional law of S given S + T = k , that is,
pj := P(S = j | S + T = k). Then P ∈ RR+.

Let f , g ∈ RR+ be the generating polynomials for S and T .

Case 1: k ≥ m.

P = f � xkg(1/x) .

Case 2: k < m.

xm−kP = xm−k f � x−mg(1/x) .

�
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G. Pólya and J. Schur.
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