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Overview of six lectures

I Zeros and coefficients of random polynomials

II What the location of zeros tells us about coefficients of
univariate polynomials

III Multivariate theory:
Boolean variables and the strong Rayleigh property

IV Multivariate Applications:
random trees, determinantal measures and sampling

V Hyperbolic polynomials

VI Coefficient asymptotics for multivariate generating functions
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I: Zeros and coefficients of random polynomials and series

Mostly throughout these lectures we will be placing hypotheses on
the locations of zeros and asking questions about the behavior of
the coefficients.

We start, however, with a different approach, asking about the
locations of zeros of random polynomials and series.

Random polynomials with specified coefficient law

Random polynomials whose zeros have specified law:
behavior under differentiation

Random series whose zeros have specified law:
behavior under repeated differentiation
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II: Coefficients of polynomials with restricted zero set

This lecture concerns coefficient properties of polynomials with
only real roots (or more generally, roots forbidden to lie in some
region).

Limit theorems and inequalities that follow from having only
real roots, or having no roots in some specified region

Examples from combinatorics and statistical physics

How to prove real-rootedness: closure properties and
Pólya-Schur theory.
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III: Binary variables and strong Rayleigh distributions

This lecture develops the theory of strong Rayleigh distributions for
binary valued random variables.

Background: negative dependence properties of distributions
on Boolean lattices

Stable polynomials

The multi-affine case: strong Rayleigh distributions

Closure properties of the strong Rayleigh class

Stochastic properties of strong Rayleigh measures
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IV: Negatively dependent measures and sampling schemes

The companion lecture to Lecture 3, this lecture is entirely devoted
to examples of strong Rayleigh distributions and consequences of
the strong Rayleigh property.

Determinantal measures

Spanning trees

Sampling proceudres
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V: Hyperbolic polynomials

The last two lectures concern the geometry of multivariate
generating functions and the asymptotic extraction of coefficients.

Outline of analytic combinatorics in several variables

Hyperbolicity: definitions and origins

Theorems and conjectures on determinants

Amoebas and hyperbolicity lemma

Convex programming and self-concordant barriers
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VI: Asymptotics for multivariate generating functions

Amoebas and the exponential order

Morse theory and contour deformations

Generalized Fourier transforms

Examples: random tilings, lattice recursions, quantum walks
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Classical random polynomial models:

Random coefficients
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Random coefficients

We begin with a model from a seminal paper by Marc Kac [Kac43].

He considers a polynomial defined by random coefficients and asks
how many of the zeros are real. More specifically, what is the
expected number of zeros in each real interval?

Let a0, a1, . . . , aN be real numbers

Let {Zj : 0 ≤ j ≤ N} be IID standard normal

Let f be the random polynomial f (x) :=
∑N

j=0 ajZjx
j

Object: determine the expected number of zeros of f in [t, t + dt].
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Gaussian process

The values of f form a centered Gaussian process, with

K (s, t) := Ef (s)f (t) =
N∑
j=0

a2
j (st)j .

Kac said, roughly (this doesn’t require Gaussian assumption):

f has a zero in [t − ε, t + ε]⇐⇒ |f (t)| ≤ ε|f ′(t)| .

Sending ε→ 0 and multiplying by ε−1, the expectation goes to

(density of f (t) at 0) · E
[
|f ′(t)| | f (t) = 0

]
.
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Gaussian expectation

For any Gaussian pair (X ,Y ) with covariances

[
a b
b c

]
the

density of X at zero is 1/
√
a and E(|Y | |X = 0) =

√
∆/a where

∆ is the determinant ac − b2. Thus

(density of X at 0) · E [|Y | | X = 0] =

√
∆

a
.

The vector (f (t), f ′(t)) has covariance structure[
K (t, t) Ks(s, t)|s=t

Ks(s, t)|s=t Kst(s, t)|s=t

]
.

Conveniently,
√

∆/a =
√
∂st logK .
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Kac-Rice formula

Theorem (Kac-Rice formula)

Let µ(I ) denote the expected number of zeros of f in the real
interval I . Then µ is a measure with density

ρ(x) =
1

π

√
∂2

∂s∂t
logK (s, t)|s=t=x .
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Example: standard Gaussian polynomial

Example

Let ak = 1 for all k . Plugging in K (s, t) =
1− (st)N+1

1− st
and

integrating over R yields an expected number of real zeros∫
ρ(x) dx =

2

π
(logN + C + o(1))

for an explicitly evaluatable C ≈ 0.6257 . . ..

In other words, out of N total zeros, the number of real zeros is
only of order logN.
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Random Gaussian series

Now let {aj : j ≥ 0} be a sequence in `2 and define a random

infinite series f (x) :=
∞∑
j=0

ajZjx
j .

There are many interesting examples, some of which you can read
about in the monograph [HKPV09].

Example

If ak = 1/
√
k! then the zeros form a point process invariant under

translations in the complex plane.
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Self-intersections of a random curve

A nice recent application of Kac-Rice theory involves the random
closed curve which is the image of the complex unit circle under
the Gaussian random polynomial f (x) :=

∑N
j=1 j

−βZjz
j .
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Figure: Random closed curves with β = 2 (left) and β = 1 (right).
N = 100 and 1000 respectively
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Self-intersections of a random curve

Theorem ([Riv16])

Suppose the coefficient decay exponent satisfies β > 3/2. Then
the number of self-intersections of the plane curve is finite and its
expectation is O(β − 3/2)−1.
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The random
curve when
β = 3/2
(the critical
value) and
N = 1000.
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Two-parameter Kac-Rice formula

Proof.

Self-intersections are non-diagonal zeros of the two-parameter
process f (s)− f (t). Apply the two-parameter Kac-Rice formula to

f (s, t) =
f (e is)− f (e it)

s − t
.
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Randomly placed zeros
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Polynomial with zeros IID∼ µ

Let µ be a probability measure on C. Let {Xi} be IID ∼ µ and
define the random function fN by

fN(z) :=
N∏
j=1

(z − Xj) .

Let µ̂N denote the empirical measure N−1
∑N

j=1 δXj
. Of course

µ̂N → µ by the strong law of large numbers.

Theorem (P+Rivin 2013; Subramanian 2014; Kabluchko 2014)

Let νN denote the empirical distribution of the zeros of f ′. Then
νN → µ as N →∞.
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Rouché’s Theorem

Three different proofs are known, in increasing generality.

1 Original proof with Rivin uses Rouché’s Theorem to marry
most of the zeros of f to nearby zeros of f ′.

µ is planar
Gaussian.

Most points are
well married
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Symmetric functions

The second proof, for measures on the unit circle via symmetric
function theory, was in Sneha Subramanian’s Ph.D. thesis (2014).

2 Sneha’s argument:

The coefficients of f are elementary symmetric functions
ej(X1, . . . ,XN).

The coefficients of zf ′ are jej(X1, . . . ,XN).

For j = N − o(N), the coefficients of f and f ′ are similar;
similarity of ej ’s implies similarity of power sums; these give
the moments, which gives the distribution of the arguments of
the zeros, the radii concentrating near 1.

We will come back to coefficient analysis when discussing random
series.
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Potential theory

3 Potential theoretic argument by Kabluchko [Kab14]:

As generalized functions,
1

2π
∆ log |g | =

∑
z:g(z)=0

δz .

Integrating with g = f ′N/fN counts critical points minus zeros.

f ′N(z)

fN(z)
=

N∑
j=1

1

z − Xj
.

Outside of an exceptional set of measure zero,

log

∣∣∣∣∣∣
N∑
j=1

1

z − Xj

∣∣∣∣∣∣ = o(N) in probability.
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Poisson random zeros
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The Poisson random series

Let N : (Ω,F ,P)× (R,B)→ Z+ be a unit intensity point process.

We use the notation x ∈ N to denote the event
{ω : N(ω, {x}) = 1}.

For M > 0, denote by fM the random polynomial defined by

fM(z) :=
∏

x∈N,|x |≤M

(
1− z

x

)
.

M

][

−M
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The Poisson random series

Proposition (convergence)

The limit limM→∞ fM exists almost surely and defines an
entire function f with zeros precisely at points of the Poisson
process.

The law of f is translation invariant up to constant multiple.

The logarithmic derivative f ′/f is given by the conditionally
convergent symmetric sum∑

x∈N

1

z − x
.

�
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Behavior of zeros under differentiation

The zeros of f ′ are a translation-invariant point process. How is
this point process related to the original one?

Differentiation smooths zeros and makes them more real.

Facts:

1. If g is a real polynomial with real zeros, then the minimum
distance between consecutive zeros of g ′ is at least the
minimum distance betwen consecutive zeros of g .

2. If g is a real polynomial with 2k non-real zeros then g ′ has at
most 2k non-real zeros.
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Iterated differentiation

What happens to the zeros of f under iterated differentiation?

It was believed that these should even out and approach perfect
spacing.

Figure: As time increases (y -direction), the spacings become more even
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Lattice limit

Theorem (P+Subrmanian 2015)

Let f (n) denote the nth derivative of f , with zero set denoted by
Zn. Then Zn converges in distribution to U + Z, a random
translate of the integer lattice by a uniform [0, 1] random variable.

In the remaining time, I will sketch the argument.

This invokes a number of the ideas that will come up on the last
day, in the discussion of multivariate coefficient extraction.
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Wouldn’t it be nice. . .

Think of a nice function whose zeros are a random translate of Z:

g(z) := cos(πz + U[0, 2π])) .

Of course there are many others, such as g(z)eφ(z) where φ is any
entire function.

But wouldn’t it be nice if somehow f (n) were converging to g?

The z r coefficient of g is cos
(
U − r

π

2

) πr
r !

.

Random phase with period 4, and magnitude πr/r !.
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. . . and indeed it’s true!

Lemma

Let an,k := [zk ]f (n)(z). There are random An and θn such that for
any fixed k , as n→∞,

an,k = An

[
cos
(
θn −

π

2
k
)

+ o(1)
] πk
k!

in probability.

Suprising? Up to some factorials, an,k is the same as
en+k{−1/x : x ∈ N}, the (n + k)th elementary symmetric function
of the reciprocal roots. The reciprocal roots are themselves a
Poisson process with intensity x−2 dx , on which the functions em
are conditionally convergent sums. So, why are these elementary
symmetric functions 4-period in sign?
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Cauchy formula

Write an,k = en+k
(n + k)!

n!
and use Cauchy’s formula to get

an,k =
(n + k)!

n!

1

2πi

∫
z−mf (z)

dz

z
.

Strategy: Show that the integral comes from contributions near
dominant saddle points s = ±i(k/π).

This will give em ∼ 2K <{s−mf (s)} (take m = n + k). The value

K =
√

2π
φ′′(s) is not hard to compute but is not important; the

location of the saddles already implies that the amplitude of
successive terms decreases by k/m and the phase increases by π/2.
(Compare to previous slide)
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Saddle points

The saddle points are critical points for the phase function
φ(z) := log(z−mf (z)). Recalling the logarithmic derivative of f ,

φ′(z) = −m

z
+
∑
x∈N

1

z − x
.

Substitute y = z/m, hoping that y ≈ ±i/π will be a zero of:

−1

y
+
∑

x∈N/m

1/m

y − x
.

The RHS is an integral against a Poisson process of points with
density m, weighted at 1/m each.

−→ Lebesgue measure
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Wrapping up

The conditionally convergent symmetric integral∫
dx

y − x

is equal to −iπ in the UHP and iπ in the LHP (it does not
converge on the real line). Therefore at y ≈ ±i/π,

−1

y
+
∑

x∈N/m

1/m

y − x/m
≈ − 1

i/π
− iπ = 0

as desired.
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End of Lecture 1
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