Lectures on Mean Field Games: I. The Two Pronged Probabilistic Approach \& First Examples

René Carmona
Department of Operations Research \& Financial Engineering
PACM
Princeton University

Minerva Lectures, Columbia U. October 2016

Credits

Joint Works with

François Delarue (Nice)

series of papers and two-volume book (forthcoming)

Colleagues and Ph.D. students

J.P. Fouque, A. Lachapelle, D. Lacker, P. Wang, G. Zhu

Agent Based Models and Mean Field Games

- Agent Based Models for large systems
- Behavior prescribed at the individual (microscopic) level
- Exogenously specified interactions
- Large scale simulations possible
- If symmetries in the system, interactions can be Mean Field
- Possible averaging effects for large populations
- Mean Field limits easier to simulate and study
- Net result: Macroscopic behavior of the system

Mean Field Games vs Agent Based Models

- Mean Field Games
- At the (microscopic) level individuals control their states
- Exogenously specified interaction rules
- Individuals are rational: they OPTIMIZE !!!!
- Search for equilibria: very difficult, NP hard in general
- If symmetries in the system, interactions can be Mean Field
- Possible averaging effects for large populations
- Mean Field limits easier to study
- Macroscopic behavior of the system thru solutions of

Mean Field Games
Lasry - Lions (MFG) Caines - Huang - Malhamé (NCE)

- Examples: flocking, schooling, herding, crowd behavior, percolation of information, price formation, hacker behavior and cyber security,

A Few Examples

Example I: A Model of "Flocking"

Deterministic dynamical system model (Cucker-Smale)

$$
\left\{\begin{aligned}
d x_{t}^{i} & =v_{t}^{i} d t \\
d v_{t}^{i} & =\frac{1}{N} \sum_{j=1}^{N} w_{i, j}(t)\left[v_{t}^{i}-v_{t}^{j}\right] d t
\end{aligned}\right.
$$

for the weights

$$
w_{i, j}(t)=w\left(\left|x_{t}^{i}-x_{t}^{j}\right|\right)=\frac{\kappa}{\left(1+\left|x_{t}^{i}-x_{t}^{j}\right|^{2}\right)^{\beta}}
$$

for some $\kappa>0$ and $\beta \geq 0$.
If N fixed, $0 \leq \beta \leq 1 / 2$

- $\lim _{t \rightarrow \infty} v_{t}^{i}=\bar{v}_{0}^{N}$, for $i=1, \cdots, N$
- $\sup _{t \geq 0} \max _{i, j=1, \cdots, N}\left|x_{t}^{i}-x_{t}^{j}\right|<\infty$

Many extensions/refinements since original C-S contribution.

A MFG Formulation

(Nourian-Caines-Malhamé)
$X_{t}^{i}=\left[x_{t}^{i}, v_{t}^{i}\right]$ state of player i

$$
\begin{cases}d x_{t}^{i} & =v_{t}^{i} d t \\ d v_{t}^{i} & =\alpha_{t}^{i} d t+\sigma d W_{t}^{i}\end{cases}
$$

For strategy profile $\alpha=\left(\alpha^{1}, \cdots, \alpha^{N}\right)$, the cost to player i

$$
J^{i}(\boldsymbol{\alpha})=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}\left(\frac{1}{2}\left|\alpha_{t}^{i}\right|^{2}+\frac{1}{2}\left|\frac{1}{N} \sum_{j=1}^{N} w\left(\left|x_{t}^{i}-x_{t}^{j}\right|\right)\left[v_{t}^{i}-v_{t}^{j}\right]\right|^{2}\right) d t
$$

- Ergodic (infinite horizon) model;
- $\beta=0$, Linear Quadratic (LQ) model;
- if $\beta>0$, asymptotic expansions for $\beta \ll 1$?

Reformulation

$$
J^{i}(\boldsymbol{\alpha})=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} f^{i}\left(t, X_{t}, \bar{\mu}_{t}^{N}, \alpha_{t}\right) d t
$$

with

$$
f^{i}(t, X, \mu, \alpha)=\frac{1}{2}\left|\alpha^{i}\right|^{2}+\frac{1}{2}\left|\int w\left(\left|x-x^{\prime}\right|\right)\left[v-v^{\prime}\right] \mu\left(d x^{\prime}, d v^{\prime}\right)\right|^{2}
$$

where $\alpha=\left(\alpha^{1}, \cdots, \alpha^{N}\right), X=[x, v]$, and $X^{\prime}=[x, v]$.
Unfortunately
f^{i} is not convex !

Example II: Congestion \& Forced Exit

Lasry-Lions-Achdou-

- bounded domain D in \mathbb{R}^{d}
- exit only possible through $\Gamma \subset \partial D$

$$
d X_{t}^{i}=\alpha_{t}^{i} d t+d W_{t}^{i}+d K_{t}^{i}, \quad t \in[0, T], X_{0}^{i}=x_{0}^{i} \in D
$$

- reflecting boundary conditions on $\partial D \backslash \Gamma$
- Dirichlet boundary condition on Γ

$$
J^{i}\left(\boldsymbol{\alpha}^{1}, \cdots, \boldsymbol{\alpha}^{N}\right)=\mathbb{E}\left[\int_{0}^{T \wedge \tau^{i}}\left(\frac{1}{2} \ell\left(X_{t}^{i}, \mu_{t}^{N}\right)\left|\alpha_{t}\right|^{2}+f(t)\right) d t\right]
$$

- f penalizes the time spent in D before the exit
- $\ell(x, \mu)$ models congestion around x if μ is the distribution of the individuals (e.g. $\left.\ell(x, \mu)=m(x)^{\alpha}\right)$

Congestion \& Exit of a Room

Figure: Left: Initial distribution m_{0}. Right: Time evolution of the total mass of the distribution m_{t} of the individuals still in the room at time t without congestion (continuous line) and with moderate congestion (dotted line).

Room Exit Densities

Total Mass

Total
Mass

Total Mass

Total
Mass
$\left[\begin{array}{l}-8 \\ -6 \\ -4 \\ -2 \\ -2\end{array}\right.$

Room Exit Densities

Example III: Toy Model for Systemic Risk

R.C. + J.P. Fouque

- $X_{t}^{i}, i=1, \ldots, N$ log-monetary reserves of N banks
- $W_{t}^{i}, i=0,1, \ldots, N$ independent Brownian motions, $\sigma>0$
- Borrowing, lending, and re-payments through the drifts:

$$
d X_{t}^{i}=\left[\alpha_{t}^{i}-\alpha_{t-\tau}^{i}\right] d t+\sigma\left(\sqrt{1-\rho^{2}} d W_{t}^{i}+\rho d W_{t}^{0}\right), \quad i=1, \cdots, N
$$

α^{i} is the control of bank i which tries to minimize

$$
J^{i}\left(\alpha^{1}, \cdots, \alpha^{N}\right)=\mathbb{E}\left\{\int_{0}^{T}\left[\frac{1}{2}\left(\alpha_{t}^{i}\right)^{2}-q \alpha_{t}^{i}\left(\bar{X}_{t}-X_{t}^{i}\right)+\frac{\epsilon}{2}\left(\bar{X}_{t}-X_{t}^{i}\right)^{2}\right] d t+\frac{\epsilon}{2}\left(\bar{X}_{T}-X_{T}^{i}\right)^{2}\right\}
$$

Regulator chooses $q>0$ to control the cost of borrowing and lending.

- If X_{t}^{i} is small (relative to the empirical mean \bar{X}_{t}) then bank i will want to $\operatorname{borrow}\left(\alpha_{t}^{i}>0\right)$
- If X_{t}^{i} is large then bank i will want to lend $\left(\alpha_{t}^{i}<0\right)$

Example of Mean Field Game (MFG) with a common noise W^{0} and delay in the controls. No delay in these lectures !

MFG Models for Systemic Risk

- Interesting features
- Multi-period (continuous time) dynamic equilibrium model
- Explicitly solvable (without delay !)
- in open loop form
- in closed loop form
- solutions are different for N finite !
- Shortcomings
- Naive model of bank lending, borrowing, and re-payments
- Only a small jab at stability of the system
- Challenging Extensions:
- Introduction of major and minor players
- Better solutions \& understanding of time delays
- Introduction of constraints

Example IV: Price Impact of Traders

X_{t}^{i} number of shares owned at time t, α_{t}^{i} rate of trading

$$
d X_{t}^{i}=\alpha_{t}^{i} d t+\sigma^{i} d W_{t}^{i}
$$

K_{t}^{i} amount of cash held by trader i at time t

$$
d K_{t}^{i}=-\left[\alpha_{t}^{i} s_{t}+c\left(\alpha_{t}^{i}\right)\right] d t
$$

where S_{t} price of one share, $\alpha \rightarrow c(\alpha) \geq 0$ cost for trading at rate α Price impact formula:

$$
d S_{t}=\frac{1}{N} \sum_{i=1}^{N} h\left(\alpha_{t}^{i}\right) d t+\sigma_{0} d W_{t}^{0}
$$

Trader i tries to minimize

$$
J^{i}\left(\boldsymbol{\alpha}^{1}, \ldots, \boldsymbol{\alpha}^{N}\right)=\mathbb{E}\left[\int_{0}^{T} c_{X}\left(X_{t}^{i}\right) d t+g\left(X_{T}^{i}\right)-V_{T}^{i}\right]
$$

where V_{t}^{i} is the wealth of trader i at time t :

$$
v_{t}^{i}=K_{t}^{i}+X_{t}^{i} S_{t}
$$

Example of an Extended Mean Field Game

Figure: Time evolution (from t ranging from 0.06 to $T=1$) of the marginal density of the optimal rate of trading $\hat{\alpha}_{t}$ for a representative trader.

Terminal Inventory of a Typical Trader

Figure: Expected terminal inventory as a function of m and c_{X} (left), and as a function of m and \bar{h} (right).

Terminal Inventory of a Typical Trader

Figure: Expected terminal inventory as a function of c_{α} and \bar{h} (left), and as a function of c_{X} and \bar{h} (right).

Example V: Macro - Economic Growth Model

Krusell - Smith in Aiyagari's diffusion form

- Z_{t}^{i} labor productivity of worker $i \in\{1, \cdots, N\}$
- A_{t}^{i} wealth at time t
- $\sigma_{Z}(\cdot)$ and $\mu_{Z}(\cdot)$ given functions

$$
\left\{\begin{aligned}
d Z_{t}^{i} & =\mu_{Z}\left(Z_{t}^{i}\right) d t+\sigma_{Z}\left(Z_{t}^{i}\right) d W_{t}^{i} \\
d A_{t}^{i} & =\left[w_{t}^{i} Z_{t}^{i}+r_{t} A_{t}^{i}-c_{t}^{i}\right] d t
\end{aligned}\right.
$$

- r_{t} interest rate, w_{t}^{i} wages of worker i at time t
- c_{t}^{i} consumption (control) of worker i

In a competitive equilibrium

$$
\left\{\begin{aligned}
r_{t} & =\left.\left[\partial_{K} F\right]\left(K_{t}, L_{t}\right)\right|_{L_{L}=1}-\delta \\
w_{t} & =\left.\left[\partial_{L} F\right]\left(K_{t}, L_{t}\right)\right|_{L_{t}=1}
\end{aligned}\right.
$$

where $(K, L) \mapsto F(K, L)$ production function and

$$
K_{t}=\int a \bar{\mu}_{X_{t}}^{N}(d z, d a)=\frac{1}{N} \sum_{i=1}^{N} A_{t}^{i}
$$

Mean Field Interaction

Example V (CONT.)L

Optimization Problem

$$
\max \quad J^{i}\left(\boldsymbol{c}^{1}, \cdots, \boldsymbol{c}^{N}\right)=\mathbb{E} \int_{0}^{\infty} e^{-\rho t} U\left(c_{t}^{i}\right) d t, \quad i=1, \cdots, N
$$

with CRRA isoelastic utility function

$$
U(c)=\frac{c^{1-\gamma}-1}{1-\gamma}
$$

Cobb - Douglas production function

$$
F(K, L)=\bar{a} K^{\alpha} L^{1-\alpha}
$$

for some constants $a>0$ and $\alpha \in(0,1)$ so in equilibrium:

$$
r_{t}=\alpha \bar{a} K_{t}^{\alpha-1} L_{t}^{1-\alpha}-\delta, \quad \text { and } \quad w_{t}=(1-\alpha) \overline{\mathrm{a}} K_{t}^{\alpha} L_{t}^{-\alpha}
$$

Normalize the aggregate supply of labor to $L_{t} \equiv 1$,

$$
r_{t}=\frac{\alpha \bar{a}}{K_{t}^{1-\alpha}}-\delta, \quad \text { and } \quad w_{t}=(1-\alpha) \bar{a} K_{t}^{\alpha}
$$

Singular coefficients !

Example VI: Finite State Spaces

Cyber Security (Bensoussan - Kolokolstov)

- Finite state space $E=\{1, \cdots, M\}$,
- Markovian models.
- Dynamics given by Q-matrices (rates of jump)
- Controls given by feedback functions of the current state.

Example VII: Games with Major and Minor Players

Examples:

- Financial system
- Finite (small) number of SIFIs
- Large number of small banks
- Population Biology (Bee swarming)
- Finite (small) number of streakers
- Large number of worker bees
- Economic Contract Theory
- Regulator proposing a contract
- Utilities operating under the regulation
- Open Question: Nash versus Stackelberg

Ex. VIII: Games with Major and Minor Players

$$
\begin{cases}d X_{t}^{0} & =b_{0}\left(t, X_{t}^{0}, \bar{\mu}_{t}, \alpha_{t}^{0}\right) d t+\sigma_{0}\left(t, X_{t}^{0}, \bar{\mu}_{t}, \alpha_{t}^{0}\right) d W_{t}^{0} \\ d X_{t}^{i} & =b\left(t, X_{t}^{i}, \bar{\mu}_{t}, X_{t}^{0}, \alpha_{t}^{i}, \alpha_{t}^{0}\right) d t+\sigma\left(t, X_{t}^{i}, \bar{\mu}_{t}, X_{t}^{0}, \alpha_{t}^{i}, \alpha_{t}^{0} d W_{t}, \quad i=1, \cdots, N\right.\end{cases}
$$

where $\bar{\mu}_{t}^{N}$ is the empirical distribution of $X_{t}^{1}, \cdots, X_{t}^{N}$.

Cost functionals:

$$
\begin{cases}J^{0}\left(\boldsymbol{\alpha}^{0}, \boldsymbol{\alpha}^{1}, \cdots, \boldsymbol{\alpha}^{N}\right) & =\mathbb{E}\left[\int_{0}^{T} f_{0}\left(t, X_{t}^{0}, \bar{\mu}_{t}, \alpha_{t}^{0}\right) d t+g^{0}\left(X_{T}^{0}, \bar{\mu}_{T}\right)\right] \\ \left.J^{\left(\boldsymbol{\alpha}^{0}\right.}, \boldsymbol{\alpha}^{1}, \cdots, \boldsymbol{\alpha}^{N}\right) & =\mathbb{E}\left[\int_{0}^{T} f\left(t, X_{t}^{i}, \bar{\mu}_{t}^{N}, X_{t}^{0}, \alpha_{t}^{i}, \alpha_{t}^{0}\right) d t+g\left(X_{T}^{i}, \bar{\mu}_{T}\right)\right], \quad i=1, \cdots, N\end{cases}
$$

Example IX: Mean Field Games of Timing

Last Lecture.

- Illiquidity Modeling and Bank Runs
- Modeling the large issuance of a convertible bond

The Mean Field Game Strategy \& the Mean Field Game Problem

Classical Stochastic Differential Control

$$
\begin{aligned}
& \inf _{\alpha \in \mathbb{A}} \mathbb{E}\left[\int_{0}^{T} f\left(t, X_{t}, \alpha_{t}\right) d t+g\left(X_{T}, \mu_{T}\right)\right] \\
& \text { subject to } \quad d X_{t}=b\left(t, X_{t}, \alpha_{t}\right) d t+\sigma\left(t, X_{t}, \alpha_{t}\right) d W_{t} ; \quad x_{0}=x_{0}
\end{aligned}
$$

- Analytic Approach (by PDEs)
- HJB equation
- Probabilistic Approaches (by FBSDEs)

1. Represent value function as solution of a BSDE
2. Represent the gradient of the value function as solution of a FBSDE (Stochastic Maximum Principle)

I. First Probabilistic Approach

Assumptions

- σ is uncontrolled
- σ is invertible

Reduced Hamitonian

$$
H(t, x, y, \alpha)=b(t, x, \alpha) \cdot y+f(t, x, \alpha)
$$

For each control $\boldsymbol{\alpha}$ solve BSDE

$$
d Y_{t}^{\alpha}=-H\left(t, X_{t}, Z_{t} \sigma\left(t, X_{t}\right)^{-1}, \alpha_{t}\right) d t+Z_{t} \cdot d W_{t}, \quad Y_{T}^{\alpha}=g\left(X_{T}\right)
$$

Then

$$
Y_{0}^{\alpha}=J(\boldsymbol{\alpha})=\mathbb{E}\left[\int_{0}^{T} f\left(t, X_{t}, \alpha_{t}\right) d t+g\left(X_{T}, \mu_{T}\right)\right]
$$

So by comparison theorems for BSDEs, optimal control $\hat{\boldsymbol{\alpha}}$ given by:

$$
\hat{\alpha}_{t}=\hat{\alpha}\left(t, X_{t}, Z_{t} \sigma\left(t, X_{t}\right)^{-1}\right), \quad \text { with } \quad \hat{\alpha}(t, x, y) \in \operatorname{argmin}_{\alpha \in A} H(t, x, y, \alpha)
$$

and $Y_{0}^{\alpha}=J(\hat{\boldsymbol{\alpha}})$

II. Pontryagin Stochastic Maximum Approach

Assumptions

- Coefficients b, σ and f differentiable
- f convex in (x, α) and g convex

Hamitonian

$$
H(t, x, y, z, \alpha)=b(t, x, \alpha) \cdot y+\sigma(t, x, \alpha) \cdot z+f(t, x, \alpha)
$$

For each control $\boldsymbol{\alpha}$ solve BSDE for the adjoint processes $\mathbf{Y}=\left(Y_{t}\right)_{t}$ and $\mathbf{Z}=\left(Z_{t}\right)_{t}$

$$
d Y_{t}=-\partial_{x} H\left(t, X_{t}, Y_{t}, Z_{t}, \alpha_{t}\right) d t+Z_{t} \cdot d W_{t}, \quad Y_{T}=\partial_{x} g\left(X_{T}\right)
$$

Then, optimal control $\hat{\alpha}$ given by:

$$
\hat{\alpha}_{t}=\hat{\alpha}\left(t, X_{t}, Y_{t}, Z_{t}\right), \quad \text { with } \quad \hat{\alpha}(t, x, y, z) \in \operatorname{argmin}_{\alpha \in A} H(t, x, y, z, \alpha)
$$

Summary

In both cases (σ uncontrolled), need to solve a FBSDE

$$
\left\{\begin{array}{l}
d X_{t}=B\left(t, X_{t}, Y_{t}, Z_{t}\right) d t+\Sigma\left(t, X_{t}\right) d W_{t} \\
d Y_{t}=-F\left(t, X_{t}, Y_{t}, Z_{t}\right) d t+Z_{t} d W_{t}
\end{array}\right.
$$

First Approach

$$
\begin{aligned}
& B(t, x, y, z)=b\left(t, x, \hat{\alpha}\left(t, x, z \sigma(t, x)^{-1}\right)\right) \\
& F(t, x, y, z)=-f\left(t, x, \hat{\alpha}\left(t, x, z \sigma(t, x)^{-1}\right)\right. \\
& \quad-\left(z \sigma(t, x,)^{-1}\right) \cdot b\left(t, x, \hat{\alpha}\left(t, x, z \sigma(t, x)^{-1}\right)\right) .
\end{aligned}
$$

Second Approach

$$
\begin{aligned}
& B(t, x, y, z)=b(t, x, \hat{\alpha}(t, x, y)) \\
& F(t, x, y, z)=-\partial_{x} f(t, x, \hat{\alpha}(t, x, y))-y \cdot \partial_{x} b(t, x, \hat{\alpha}(t, x, y)) .
\end{aligned}
$$

FBSDE DEcoupling Field

To solve the standard FBSDE

$$
\left\{\begin{array}{l}
d X_{t}=B\left(t, X_{t}, Y_{t}\right) d t+\Sigma\left(t, X_{t}\right) d W_{t} \\
d Y_{t}=-F\left(t, X_{t}, Y_{t}\right) d t+Z_{t} d W_{t}
\end{array}\right.
$$

with $X_{0}=x_{0}$ and $Y^{T}=g\left(X_{T}\right)$,
a standard approach is to look for a solution of the form $Y_{t}=u\left(t, X_{t}\right)$

- $(t, x) \hookrightarrow u(t, x)$ is called the decoupling field of the FBSDE
- If u is smooth,
- apply Itô's formula to $d u\left(t, X_{t}\right)$ using forward equation
- identify the result with $d Y_{t}$ in backward equation
$(t, x) \hookrightarrow u(t, x)$ is the solution of a nonlinear PDE
Oh well, So much for the probabilistic approach !

Propagation of Chaos \& McKean-Vlasov SDEs

System of N particles $X_{t}^{N, i}$ at time t with symmetric (Mean Field) interactions

$$
d X_{t}^{N, i}=b\left(t, X_{t}^{N, i}, \bar{\mu}_{X_{t}^{N}}^{N}\right) d t+\sigma\left(t, X_{t}^{N, i}, \bar{\mu}_{X_{t}^{N}}^{N}\right) d W_{t}^{i}, \quad i=1, \cdots, N
$$

where $\bar{\mu}_{x_{t}^{N}}^{N}$ is the empirical measure $\bar{\mu}_{\mathbf{x}}^{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{x^{i}}$

Large population asymptotics ($N \rightarrow \infty$)

1. The N processes $\mathbf{X}^{N, i}=\left(X_{t}^{N, i}\right)_{0 \leq t \leq T}$ become asymptotically i.i.d.
2. Each of them is (asymptotically) distributed as the solution of the McKean-Vlasov SDE

$$
d X_{t}=b\left(t, X_{t}, \mathcal{L}\left(X_{t}\right)\right) d t+\sigma\left(t, X_{t}, \mathcal{L}\left(X_{t}\right)\right) d W_{t}
$$

Frequently used notation:

$$
\mathcal{L}(X)=\mathbb{P}_{X} \quad \text { distribution of the random variable } X
$$

Forward SDEs of McKean-Vlasov Type

$$
d X_{t}=B\left(t, X_{t}, \mathcal{L}\left(X_{t}\right)\right) d t+\Sigma\left(t, X_{t}, \mathcal{L}\left(X_{t}\right)\right) d W_{t}, \quad T \in[0, T] .
$$

Assumption. There exists a constant $c \geq 0$ such that
(A1) For each $(x, \mu) \in \mathbb{R}^{d} \times \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$, the processes

$$
\begin{aligned}
& B(\cdot,, x, \mu): \Omega \times[0, T] \ni(\omega, t) \mapsto B(\omega, t, x, \mu) \text { and } \\
& \Sigma(\cdot,,, x, \mu): \Omega \times[0, T] \ni(\omega, t) \mapsto \Sigma(\omega, t, x, \mu) \text { are } \mathbb{F} \text {-progressively }
\end{aligned}
$$

$$
\text { measurable and belong to } \mathbb{H}^{2, d} \text { and } \mathbb{H}^{2, d \times d} \text { respectively. }
$$

(A2) $\forall t \in[0, T], \forall x, x^{\prime} \in \mathbb{R}^{d}, \forall \mu, \mu^{\prime} \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$, with probability 1 under \mathbb{P},

$$
\left|B(t, x, \mu)-B\left(t, x^{\prime}, \mu^{\prime}\right)\right|+\left|\Sigma(t, x, \mu)-\Sigma\left(t, x^{\prime}, \mu^{\prime}\right)\right| \leq c\left[\left|x-x^{\prime}\right|+W_{2}\left(\mu, \mu^{\prime}\right)\right],
$$

where W_{2} denotes the 2-Wasserstein distance on the space $\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$.

Result. if $X_{0} \in L^{2}\left(\Omega, \mathcal{F}_{0}, \mathbb{P} ; \mathbb{R}^{d}\right)$, then there exists a unique solution $\mathbf{X}=\left(X_{t}\right)_{0 \leq t \leq T}$ in $\mathbb{S}^{2, d}$ s.t. for every $p \in[1,2]$

$$
\mathbb{E}\left[\sup _{0 \leq t \leq T}\left|X_{t}\right|^{p}\right]<+\infty
$$

Sznitmann

N-Player Stochastic Differential Games

Assume Mean Field Interactions (symmetric game)

$$
d X_{t}^{N, i}=b\left(t, X_{t}^{N, i}, \bar{\mu}_{X_{t}^{N}}^{N}, \alpha_{t}^{i}\right) d t+\sigma\left(t, X_{t}^{N, i}, \bar{\mu}_{X_{t}^{N}}^{N}, \alpha_{t}^{i}\right) d W_{t}^{i} \quad i=1, \cdots, N
$$

Assume player i tries to minimize

$$
J^{i}\left(\boldsymbol{\alpha}^{1}, \cdots, \boldsymbol{\alpha}^{N}\right)=\mathbb{E}\left[\int_{0}^{T} f\left(t, X_{t}^{N, i}, \bar{\mu}_{X_{t}^{N}}^{N}, \alpha_{t}^{i}\right) d t+g\left(X_{T}, \bar{\mu}_{X_{T}^{N}}^{N}\right)\right]
$$

Search for Nash equilibria

- Very difficult in general, even if N is small
- ϵ-Nash equilibria? Still hard.
- How about in the limit $N \rightarrow \infty$?

Mean Field Games Lasry - Lions, Caines-Huang-Malhamé

MFG Paradigm

A typical agent plays against a field of players whose states he/she feels through the statistical distribution distribution μ_{t} of their states at time t

1. For each Fixed measure flow $\boldsymbol{\mu}=\left(\mu_{t}\right)$ in $\mathcal{P}(\mathbb{R})$, solve the standard stochastic control problem

$$
\hat{\boldsymbol{\alpha}}=\arg \inf _{\alpha \in \mathbb{A}} \mathbb{E}\left\{\int_{0}^{T} f\left(t, X_{t}, \mu_{t}, \alpha_{t}\right) d t+g\left(X_{T}, \mu_{T}\right)\right\}
$$

subject to

$$
d X_{t}=b\left(t, X_{t}, \mu_{t}, \alpha_{t}\right) d t+\sigma\left(t, X_{t}, \mu_{t}, \alpha_{t}\right) d W_{t}
$$

2. Fixed Point Problem: determine $\boldsymbol{\mu}=\left(\mu_{t}\right)$ so that

$$
\forall t \in[0, T], \quad \mathcal{L}\left(X_{t}^{\hat{\alpha}}\right)=\mu_{t}
$$

$\boldsymbol{\mu}$ or $\hat{\boldsymbol{\alpha}}$ is called a solution of the MFG.

Once this is done one expects that, if $\hat{\alpha}_{t}=\phi\left(t, X_{t}\right)$,

$$
\alpha_{t}^{j *}=\phi^{*}\left(t, X_{t}^{j}\right), \quad j=1, \cdots, N
$$

form an approximate Nash equilibrium for the game with N players.

Solving MFGs by Solving FBSDEs of McKean-Vlasov Type

Minimization of the (Reduced) Hamiltonian

Recall

$$
H(t, x, \mu, y, \alpha)=y \cdot b(t, x, \mu, \alpha)+f(t, x, \mu, \alpha)
$$

and we want to use

$$
\hat{\alpha}(t, x, \mu, y) \in \arg \in_{\alpha \in A} H(t, x, \mu, y, \alpha)
$$

(A.1) b is affine in $\alpha: b(t, x, \mu, \alpha)=b_{1}(t, x, \mu)+b_{2}(t) \alpha$ with b_{1} and b_{2} bounded.
(A.2) Running cost f uniformly λ-convex for some $\lambda>0$:

$$
f\left(t, x^{\prime}, \mu, \alpha^{\prime}\right)-f(t, x, \mu, \alpha)-\left\langle\left(x^{\prime}-x, \alpha^{\prime}-\alpha\right), \partial_{(x, \alpha)} f(t, x, \mu, \alpha)\right\rangle \geq \lambda\left|\alpha^{\prime}-\alpha\right|^{2}
$$

Then

$\hat{\alpha}(t, x, \mu, y)$ is unique and

$$
[0, T] \times \mathbb{R}^{d} \times \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \times \mathbb{R}^{d} \ni(t, x, \mu, y) \rightarrow \hat{\alpha}(t, x, \mu, y)
$$

is measurable, locally bounded and Lipschitz-continuous with respect to (x, y), uniformly in $(t, \mu) \in[0, T] \times \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$

I. Value Function Representation

Recall

$$
\sigma(t, x, \mu, \alpha)=\sigma(t, x) \text { uniformly Lip-1 and uniformly elliptic }
$$

- If $A \subset \mathbb{R}^{k}$ is bounded (not really needed),
- if $\mathbf{X}^{t, x}=\left(X_{s}^{t, x}\right)_{t \leq s \leq T}$ is the unique strong solution of $d X_{t}=\sigma\left(t, X_{t}\right) d W_{t}$ over $[t, T]$ s.t. $\chi_{t}^{t, x}=x$,
- if $\left(\hat{\boldsymbol{Y}}^{t, x}, \hat{\boldsymbol{Z}}^{t, x}\right)$ is a solution of the BSDE

$$
\begin{aligned}
& d \hat{Y}_{s}^{t, x}=-H\left(t, X_{s}^{t, x}, \mu_{s}, \hat{Z}_{s}^{t, x} \sigma\left(s, X_{s}^{t, x}\right)^{-1}, \hat{\alpha}\left(s, X_{s}^{t, x}, \mu_{s}, \hat{Z}_{s}^{t, x} \sigma\left(s, X_{s}^{t, x}\right)^{-1}\right)\right) d s-\hat{Z}_{s}^{t, x} d W_{s}, \\
& \text { for } t \leq s \leq T \text { with } \hat{Y}_{T}=g\left(X_{T}^{t, x}, \mu_{T}\right),
\end{aligned}
$$

then

$$
\hat{\alpha}_{t}=\hat{\alpha}\left(s, X_{s}^{t, x}, \mu_{s}, \hat{Z}_{s}^{t, x} \sigma\left(s, X_{s}^{t, x}\right)^{-1}\right)
$$

is an optimal control over the interval $[t, T]$ and the value of the problem is given by:

$$
V(t, x)=\hat{Y}_{t}^{t, x}
$$

The value function appears as the decoupling field of an FBSDE.

Fixed Point Step \Longrightarrow McKean-Vlasov FBSDE

Starting from $t=0$ and dropping the superscript ${ }^{t, x}$, for each fixed flow $\boldsymbol{\mu}=\left(\mu_{t}\right)_{0 \leq t \leq T}$

$$
\left\{\begin{array}{l}
d X_{t}=b\left(t, X_{t}, \mu_{t}, \hat{\alpha}\left(t, X_{t}, \mu_{t}, Z_{t} \sigma\left(t, X_{t}\right)^{-1}\right)\right) d t+\sigma\left(t, X_{t}\right) d W_{t} \\
d Y_{t}=-H\left(t, X_{t}, \mu_{t}, Z_{t} \sigma\left(t, X_{t}\right)^{-1}, \hat{\alpha}\left(t, X_{t}, \mu_{t}, Z_{t} \sigma\left(t, X_{t}\right)^{-1}\right)\right) d t-Z_{t} d W_{t}
\end{array}\right.
$$

for $0 \leq t \leq T$, with $\hat{Y}_{T}=g\left(X_{T}, \mu_{T}\right)$.
Implementing the fixed point step

$$
\mu_{t} \quad \hookrightarrow \quad \mathcal{L}\left(X_{t}\right)
$$

gives an FBSDE of McKean-Vlasov type!

II. Pontryagin Stochastic Maximum Principle

Again, freeze $\boldsymbol{\mu}=\left(\mu_{t}\right)_{0 \leq t \leq T}$,
Recall (reduced) Hamiltonian

$$
H(t, x, \mu, y, \alpha)=b(t, x, \mu, \alpha) \cdot y+f(t, x, \mu, \alpha)
$$

Adjoint processes

Given an admissible control $\boldsymbol{\alpha}=\left(\alpha_{t}\right)_{0 \leq t \leq T}$ and the corresponding controlled state process $\mathbf{X}^{\alpha}=\left(X_{t}^{\alpha}\right)_{0 \leq t \leq T}$, any couple $\left(Y_{t}, Z_{t}\right)_{0 \leq t \leq T}$ satisfying:

$$
\left\{\begin{array}{l}
d Y_{t}=-\partial_{x} H\left(t, X_{t}^{\alpha}, \mu_{t}, Y_{t}, \alpha_{t}\right) d t+Z_{t} d W_{t} \\
Y_{T}=\partial_{x} g\left(X_{T}^{\alpha}, \mu_{T}\right)
\end{array}\right.
$$

is called a set of adjoint processes.

Stochastic Control Step

Use

$$
\hat{\alpha}(t, x, \mu, y)=\arg \inf _{\alpha} H(t, x, \mu, y, \alpha),
$$

inject it in FORWARD and BACKWARD dynamics and SOLVE

$$
\left\{\begin{array}{l}
d X_{t}=b\left(t, X_{t}, \mu_{t}, \hat{\alpha}\left(t, X_{t}, \mu_{t}, Y_{t}\right)\right) d t+\sigma\left(t, X_{t}\right) d W_{t} \\
d Y_{t}=-\partial_{x} H\left(t, X, \mu_{t}, Y_{t}, \hat{\alpha}\left(t, X_{t}, \mu_{t}, Y_{t}\right)\right) d t+Z_{t} d W_{t}
\end{array}\right.
$$

with $X_{0}=x_{0}$ and $Y_{T}=\partial_{x} g\left(X_{T}, \mu_{T}\right)$
Standard FBSDE (for each fixed $t \hookrightarrow \mu_{t}$)

Fixed Point Step

Solve the fixed point problem

$$
\boldsymbol{\mu}=\left(\mu_{t}\right)_{0 \leq t \leq T} \quad \longrightarrow \quad \mathbf{X}=\left(X_{t}\right)_{0 \leq t \leq T} \quad \longrightarrow \quad\left(\mathcal{L}\left(X_{t}\right)\right)_{0 \leq t \leq T}
$$

Note: if we enforce $\mu_{t}=\mathcal{L}\left(X_{t}\right)$ for all $0 \leq t \leq T$ in FBSDE we have

$$
\left\{\begin{array}{l}
d X_{t}=b\left(t, X_{t}, \mathcal{L}\left(X_{t}\right), \hat{\alpha}\left(t, X_{t}, \mathcal{L}\left(X_{t}\right), Y_{t}\right)\right) d t+\sigma\left(t, X_{t}\right) d W_{t}, \\
d Y_{t}=-\partial_{x} H\left(t, X_{t}^{\alpha}, \mathcal{L}\left(X_{t}\right), Y_{t}, \hat{\alpha}\left(t, X_{t}, \mathcal{L}\left(X_{t}\right), Y_{t}\right)\right) d t+Z_{t} d W_{t}
\end{array}\right.
$$

with

$$
x_{0}=x_{0} \quad \text { and } \quad Y_{T}=\partial_{x} g\left(X_{T}, \mathcal{L}\left(X_{T}\right)\right)
$$

FBSDE of McKean-Vlasov type !!!
Very difficult

FBSDEs of McKean - Vlasov Type

In both probabilistic approaches to the MFG problem the problem reduces to the solution of an FBSDE

$$
\left\{\begin{array}{l}
d X_{t}=B\left(t, X_{t}, \mathcal{L}\left(X_{t}\right), Y_{t}, Z_{t}\right) d t+\Sigma\left(t, X_{t}, \mathcal{L}\left(X_{t}\right)\right) d W_{t} \\
d Y_{t}=-F\left(t, X_{t}, \mathcal{L}\left(X_{t}\right), Y_{t}, Z_{t}\right) d t+Z_{t} d W_{t}
\end{array}\right.
$$

with, in the first approach

$$
\left\{\begin{aligned}
& B(t, x, \mu, y, z)=b\left(t, x, \mu, \hat{\alpha}\left(t, x, \mu, z \sigma(t, x)^{-1}\right)\right) \\
& F(t, x, \mu, y, z)==-f\left(t, x, \mu, \hat{\alpha}\left(t, x, \mu, z \sigma(t, x)^{-1}\right)\right. \\
&-z \sigma(t, x)^{-1} b\left(t, x, \mu, \hat{\alpha}\left(t, x, \mu, z \sigma(t, x)^{-1}\right)\right)
\end{aligned}\right.
$$

and in the second:

$$
\left\{\begin{array}{l}
B(t, x, \mu, y, z)=b(t, x, \mu, \hat{\alpha}(t, x, \mu, y)) \\
F(t, x, \mu, y, z)=-\partial_{x} f(t, x, \mu, \hat{\alpha}(t, x, \mu, y))-y \partial_{x} b(t, x, \mu, \hat{\alpha}(t, x, \mu, y))
\end{array}\right.
$$

A Typical Existence Result

We try to solve:

$$
\left\{\begin{array}{l}
d X_{t}=B\left(t, X_{t}, Y_{t}, Z_{t}, \mathbb{P}_{\left(X_{t}, Y_{t}\right)}\right) d t+\Sigma\left(t, X_{t}, Y_{t}, \mathbb{P}_{\left(X_{t}, Y_{t}\right)}\right) d W_{t} \\
\left.d Y_{t}=-F\left(t, X_{t}, Y_{t}, Z_{t}, \mathbb{P}_{\left(X_{t}\right)}, Y_{t}\right)\right) d t+Z_{t} d W_{t}, \quad 0 \leq t \leq T,
\end{array}\right.
$$

with $X_{0}=x_{0}$ and $Y_{T}=G\left(X_{T}, \mathbb{P}_{X_{T}}\right)$.

Assumptions

(A1). B, F, Σ and G are continuous in μ and uniformly (in μ) Lipschitz in (x, y, z)
(A2). Σ and G are bounded and

$$
\left\{\begin{array}{l}
|B(t, x, y, z, \mu)| \leq L\left[1+|x|+|y|+|z|+\left(\int_{\mathbb{R}^{d} \times \mathbb{R}^{p}}\left|\left(x^{\prime}, y^{\prime}\right)\right|^{2} d \mu\left(x^{\prime}, y^{\prime}\right)\right)^{1 / 2}\right] \\
|F(t, x, y, z, \mu)| \leq L\left[1+|y|+\left(\int_{\mathbb{R}^{d} \times \mathbb{R}^{p}}\left|y^{\prime}\right|^{2} d \mu\left(x^{\prime}, y^{\prime}\right)\right)^{1 / 2}\right]
\end{array}\right.
$$

(A3). Σ is uniformly elliptic

$$
\Sigma(t, x, y, \mu) \Sigma(t, x, y, \mu)^{\dagger} \geq L^{-1} I_{d}
$$

and $[0, T] \ni t \hookrightarrow \Sigma\left(t, 0,0, \delta_{(0,0)}\right)$ is also assumed to be continuous.
Under (A1-3), there exists a solution $(\mathbf{X}, \mathbf{Y}, \mathbf{Z}) \in \mathbb{S}^{2, d} \times \mathbb{S}^{2, p} \times \mathbb{H}^{2, p \times m}$

More Generally

- Lipschitz coefficients: existence and uniqueness in small time
- Lipschitz + Bounded coefficients + Non-degenerate Σ :
- existence by Schauder type argument (previous slide)
- Nice but, as such, does not apply to Linear Quadratic Models !
- If FBSDE comes from MFG model with
- linear dynamics
- convex costs
existence + uniqueness

Solutions of Specific Applications

The following applications need special attention:

- Price Impact Model:
- interaction through the controls (extended MFG)
- Congestion + Exit of a Room:
- McKean-Vlasov FBSDEs in a bounded domain with boundary conditions
- C-S Flocking:
- non-convex cost function
- degenerate volatility
- still, find "explicif" decoupling field for $\boldsymbol{\mu}$ fixed
- Krusell-Smith Growth Model:
- degenerate diffusion
- singular coefficients (blow up at origin)

Optimization Problem

Simultaneous Minimization of

$$
J^{i}\left(\boldsymbol{\alpha}^{1}, \cdots, \boldsymbol{\alpha}^{N}\right)=\mathbb{E}\left\{\int_{0}^{T} f\left(t, X_{t}^{i}, \bar{\mu}_{t}^{N}, \alpha_{t}^{i}\right) d t+g\left(X_{T}, \bar{\mu}_{T}^{N}\right)\right\}, \quad i=1, \cdots, N
$$

under constraints of the form

$$
d X_{t}^{i}=b\left(t, X_{t}^{i}, \bar{\mu}_{t}^{N}, \alpha_{t}^{i}\right) d t+\sigma\left(t, X_{t}\right) d W_{t}^{i}+\sigma^{0}\left(t, X_{t}^{i}\right) \circ d W_{t}^{0}, \quad i=1, \cdots, N .
$$

where:

$$
\bar{\mu}_{t}^{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{t}}
$$

GOAL: search for equilibria
especially when N is large

Example of Model Requirements

- Each player cannot on its own, influence significantly the global output of the game
- Large number of statistically identical players $(N \rightarrow \infty)$
- Closed loop controls in feedback form

$$
\alpha_{t}^{i}=\phi^{i}\left(t,\left(X_{t}^{1}, \cdots, X_{t}^{N}\right)\right), \quad i=1, \cdots, N .
$$

- Restricted controls in feedback form

$$
\alpha_{t}^{i}=\phi^{i}\left(t,\left(X_{t}^{i}, \bar{\mu}_{t}^{N}\right)\right), \quad i=1, \cdots, N .
$$

- By symmetry, Distributed controls

$$
\alpha_{t}^{i}=\phi^{i}\left(t, X_{t}^{i}\right), \quad i=1, \cdots, N .
$$

- Identical feedback functions

$$
\phi^{1}(t, \cdot)=\cdots=\phi^{N}(t, \cdot)=\phi(t, \cdot), \quad 0 \leq t \leq T .
$$

Touted Solution (Wishful Thinking)

- Identify a (distributed closed loop) strategy ϕ from effective equations (from stochastic optimization for large populations)
- Each player is assigned the same function ϕ
- So at each time t, player i take action $\alpha_{t}^{i}=\phi\left(t, X_{t}^{i}\right)$

What is the resulting population behavior?

- Did we reach some form of equilibrium?
- If yes, what kind of equilibrium?

Mean Field Game (MFG) Standard Strategy

for the search of Nash equilibria

- By symmetry, interactions depend upon
empirical distributions
- When constructing the best response map

ALL stochastic optimizations should be "the same"

- When N is large
- empirical distributions should converge
- capture interactions with limits of empirical distributions
- ONE standard stochastic control problem for each possible limit
- Still need a fixed point

2006 Lasry - Lions (MFG) Caines - Malhamé - Huang (NCE)

Large Game Asymptotics with Common Noise

Conditional Law of Large Numbers

- Search for effective equations in the asymptotic regime $N \rightarrow \infty$
- Then, solve (in this asymptotic regime) for
- a Nash equilibrium?
- a stochastic control problem?
- If we consider exchangeable equilibria, $\left(\alpha_{t}^{1}, \cdots, \alpha_{t}^{N}\right)$, then
- By LLN

$$
\lim _{N \rightarrow \infty} \bar{\mu}_{t}^{N}=\mathbb{P}_{\chi_{t}^{1} \mid \mathcal{F}_{t}^{0}}
$$

- Dynamics of player 1 (or any other player) becomes

$$
d X_{t}^{1}=b\left(t, X_{t}^{1}, \mu_{t}, \alpha_{t}^{1}\right) d t+\sigma\left(t, X_{t}^{1}\right) d W_{t}+\sigma^{0}\left(t, X_{t}\right) \circ d W_{t}^{0}
$$

with $\mu_{t}=\mathbb{P}_{X_{t}^{1} \mid \mathcal{F}_{t}^{0}}$.

- Cost to player 1 (or any other player) becomes

$$
\mathbb{E}\left\{\int_{0}^{T} f\left(t, X_{t}, \mu_{t}, \alpha_{t}^{1}\right) d t+g\left(X_{T}, \mu_{T}\right)\right\}
$$

MFG Problem with Common Noise

1. Fix a measure valued $\left(\mathcal{F}_{t}^{0}\right)$-adapted process $\left(\mu_{t}\right)$ in $\mathcal{P}(\mathbb{R})$;
2. Solve the standard stochastic control problem

$$
\hat{\alpha}=\arg \inf _{\alpha} \mathbb{E}\left\{\int_{0}^{T} f\left(t, X_{t}, \mu_{t}, \alpha_{t}\right) d t+g\left(X_{T}, \mu_{T}\right)\right\}
$$

subject to

$$
d X_{t}=b\left(t, X_{t}, \mu_{t}, \alpha_{t}\right) d t+\sigma\left(t, X_{t}\right) d W_{t}+\sigma^{0}\left(t, X_{t}\right) \circ d W_{t}^{0}
$$

3. Fixed Point Problem: determine $\left(\mu_{t}\right)$ so that

$$
\forall t \in[0, T], \quad \mathbb{P}_{X_{t} \mid \mathcal{F}_{t}^{0}}=\mu_{t} \quad \text { a.s. }
$$

Once this is done, if $\hat{\alpha}_{t}=\phi\left(t, X_{t}\right)$, go back to N player game and show that:

$$
\alpha_{t}^{j *}=\phi^{*}\left(t, X_{t}^{j}\right), \quad j=1, \cdots, N
$$

form an approximate Nash equilibrium for the game with N players.

Recent Results by Probabilistic Methods

R.C. - F. Delarue (two-volume book to appear)

- MFG version of Cucker-Smale flocking model
- Crowd motion with congestion, e.g. exit of a room
- Price impact model
- Diffusion form of Krusell - Smith growth model
- Interacting OU model for systemic risk with delay (RC - Fouque)
- MFGs of timing for bank runs (R. - Lacker)
- MFGs with Major and Minor players (RC - Zhu), in finite spaces (R.C. - Wang)

In each case, we prove existence, sometimes uniqueness, often give numerical illustrations, unfortunately (so far) computations rarely stable away from LQ models.

Solving MFGs by Solving FBSDEs of McKean-Vlasov Type

Probabilistic Approach: First Prong

BSDE Representation of the Value Function: $Y_{t}=V^{\mu}\left(t, X_{t}\right)$ (Reduced) Hamiltonian

$$
H^{\mu}(t, x, y, \alpha)=b\left(t, x, \mu_{t}, \alpha\right) \cdot y+f\left(t, x, \mu_{t}, \alpha\right)
$$

Determine (assume existence of):

$$
\hat{\alpha}^{\mu}(t, x, y)=\arg \inf _{\alpha} H^{\mu}(t, x, y, \alpha)
$$

Inject in FORWARD and BACKWARD dynamics and SOLVE

$$
\left\{\begin{array}{l}
d X_{t}=b\left(t, X_{t}, \mu_{t}, \hat{\alpha}^{\mu}\left(t, X_{t}, Z_{t} \sigma^{-1}\left(t, X_{t}\right)\right)\right) d t+\sigma\left(t, X_{t}\right) d W_{t} \\
d Y_{t}=-f\left(t, X, Z_{t} \sigma^{-1}\left(t, X_{t}\right), \hat{\alpha}^{\mu}\left(t, X_{t}, Z_{t} \sigma^{-1}\left(t, X_{t}\right)\right)\right) d t+Z_{t} d W_{t}
\end{array}\right.
$$

with $X_{0}=x_{0}$ and $Y_{T}=g\left(X_{T}, \mu_{T}\right)$
Standard FBSDE (for each fixed $t \hookrightarrow \mu_{t}$)

Probabilistic Approach: Second Prong

Stochastic Maximum Principle: $Y_{t}=\partial_{x} V^{\mu}\left(t, X_{t}\right)$
Inject in FORWARD and BACKWARD dynamics and SOLVE

$$
\left\{\begin{array}{l}
d X_{t}=b\left(t, X_{t}, \mu_{t}, \hat{\alpha}^{\mu}\left(t, X_{t}, Y_{t}\right)\right) d t+\sigma\left(t, X_{t}\right) d W_{t} \\
d Y_{t}=-\partial_{x} H^{\mu}\left(t, X_{t}^{\alpha}, Y_{t}, \hat{\alpha}^{\mu}\left(t, X_{t}, Y_{t}\right)\right) d t+Z_{t} d W_{t}
\end{array}\right.
$$

with $X_{0}=x_{0}$ and $Y_{T}=\partial_{x} g\left(X_{T}, \mu_{T}\right)$
Standard FBSDE (for each fixed $t \hookrightarrow \mu_{t}$)

Fixed Point Step

Solve the fixed point problem

$$
\boldsymbol{\mu}=\left(\mu_{t}\right)_{0 \leq t \leq T} \quad \longrightarrow \quad \mathbf{X}^{\mu}=\left(X_{t}\right)_{0 \leq t \leq T} \quad \longrightarrow \quad \boldsymbol{\nu}=\left(\nu_{t}=\mathbb{P}_{X_{t}}\right)_{0 \leq t \leq T}
$$

Note: if we enforce $\mu_{t}=\mathbb{P}_{X_{t}}$ for all $0 \leq t \leq T$ in FBSDE we have

$$
\left\{\begin{array}{l}
d X_{t}=b\left(t, X_{t}, \mathbb{P}_{X_{t}}, \hat{\alpha}^{\mathbb{P}_{t}}\left(t, X_{t}, Y_{t}\right)\right) d t+\sigma d W_{t} \\
d Y_{t}=-\Psi\left(t, X, Y_{t}, \mathbb{P}_{X_{t}}\right) d t+Z_{t} d W_{t}
\end{array}\right.
$$

with

$$
X_{0}=x_{0} \quad \text { and } \quad Y_{T}=G\left(X_{T}, \mathbb{P}_{x_{T}}\right)
$$

FBSDE of (Conditional) McKean-Vlasov type !!!
Very difficult

FBSDEs of McKean-Vlasov Type

RC - Delarue

$$
\left\{\begin{array}{l}
d X_{t}=B\left(t, X_{t}, Y_{t}, Z_{t}, \mathbb{P}_{\left(X_{t}, Y_{t}\right)}\right) d t+\Sigma\left(t, X_{t}, Y_{t}, \mathbb{P}_{\left(X_{t}, Y_{t}\right)}\right) d W_{t} \\
d Y_{t}=-\Psi\left(t, X, Y_{t}, Z_{t}, \mathbb{P}_{\left(x_{t}, Y_{t}\right)}\right) d t+Z_{t} d W_{t}
\end{array}\right.
$$

- Lipschitz coefficients: existence and uniqueness in small time
- Lipschitz + Bounded coefficients + Non-degenerate Σ : existence
- FBSDE from linear MFG with convex costs: existence + uniqueness

Solutions of Specific Applications

- Price Impact Model:
- interaction through the controls (extended MFG)
- Congestion + Exit of a Room:
- McKean-Vlasov FBSDEs in a bounded domain with boundary conditions
- C-S Flocking:
- non-convex cost function
- degenerate volatility
- still, find "explicif" decoupling field for $\boldsymbol{\mu}$ fixed
- Krusell-Smith Growth Model:
- degenerate diffusion
- singular coefficients (blow up at origin)

Back to the MFG Problem

- For $\boldsymbol{\mu}=\left(\mu_{t}\right)_{t}$ fixed, assume decoupling field $u^{\boldsymbol{\mu}}:[0, T] \times \mathbb{R}^{d} \hookrightarrow \mathbb{R}$ exists so that

$$
Y_{t}=u^{\mu}\left(t, X_{t}\right)
$$

- Dynamics of X

$$
d X_{t}=b\left(t, X_{t}, \mu_{t}, \hat{\alpha}\left(t, X_{t}, \mu_{t}, u^{\mu}\left(t, X_{t}\right)\right)\right) d t+\sigma d W_{t}
$$

- In equilibrium $\mu_{t}=\mathbb{P}_{X_{t}}$

$$
Y_{t}=u^{\mathbb{P} X_{t}}\left(t, X_{t}\right)
$$

- Could the function

$$
(t, x, \mu) \hookrightarrow U(t, x, \mu)=u^{\mu}\left(t, X_{t}\right)
$$

be the solution of a PDE, with time evolving in one single direction?

MASTER EQUATION touted by P.L. Lions in his lectures. (Lecture II).

