LECTURES ON MEAN FIELD GAMES: I. THE TWO PRONGED PROBABILISTIC APPROACH & FIRST EXAMPLES

René Carmona

Department of Operations Research & Financial Engineering PACM Princeton University

Minerva Lectures, Columbia U. October 2016

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Joint Works with

François Delarue (Nice)

series of papers and two-volume book (forthcoming)

Colleagues and Ph.D. students

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

J.P. Fouque, A. Lachapelle, D. Lacker, P. Wang, G. Zhu

AGENT BASED MODELS AND MEAN FIELD GAMES

Agent Based Models for large systems

- Behavior prescribed at the individual (microscopic) level
- Exogenously specified interactions
- Large scale simulations possible

If symmetries in the system, interactions can be Mean Field

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Possible averaging effects for large populations
- Mean Field limits easier to simulate and study
- Net result: Macroscopic behavior of the system

MEAN FIELD GAMES VS AGENT BASED MODELS

Mean Field Games

- At the (microscopic) level individuals control their states
- Exogenously specified interaction rules
- Individuals are rational: they OPTIMIZE !!!!
- Search for equilibria: very difficult, NP hard in general
- If symmetries in the system, interactions can be Mean Field
 - Possible averaging effects for large populations
 - Mean Field limits easier to study
 - Macroscopic behavior of the system thru solutions of

Mean Field Games

Lasry - Lions (MFG)

Caines - Huang - Malhamé (NCE)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

 Examples: flocking, schooling, herding, crowd behavior, percolation of information, price formation, hacker behavior and cyber security,

A Few Examples

EXAMPLE I: A MODEL OF "FLOCKING"

Deterministic dynamical system model (Cucker-Smale)

$$\begin{cases} dx_t^i &= v_t^j dt \\ dv_t^i &= \frac{1}{N} \sum_{j=1}^N w_{i,j}(t) [v_t^j - v_t^j] dt \end{cases}$$

for the weights

$$w_{i,j}(t) = w(|x_t^i - x_t^j|) = rac{\kappa}{(1 + |x_t^i - x_t^j|^2)^{eta}}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

for some $\kappa > 0$ and $\beta \ge 0$.

If N fixed, $0 \le \beta \le 1/2$

•
$$\lim_{t\to\infty} v_t^i = \overline{v}_0^N$$
, for $i = 1, \cdots, N$

•
$$\sup_{t\geq 0} \max_{i,j=1,\cdots,N} |x_t^j - x_t^j| < \infty$$

Many extensions/refinements since original C-S contribution.

A MFG FORMULATION

(Nourian-Caines-Malhamé)

 $X_t^i = [x_t^i, v_t^i]$ state of player *i*

$$\begin{cases} dx_t^i = v_t^i dt \ dv_t^i = lpha_t^i dt + \sigma dW_t^i \end{cases}$$

For strategy profile $\alpha = (\alpha^1, \cdots, \alpha^N)$, the cost to player *i*

$$J^{i}(\alpha) = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} \left(\frac{1}{2} |\alpha_{t}^{j}|^{2} + \frac{1}{2} \left| \frac{1}{N} \sum_{j=1}^{N} w(|x_{t}^{j} - x_{t}^{j}|) [v_{t}^{j} - v_{t}^{j}] \right|^{2} \right) dt$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

- Ergodic (infinite horizon) model;
- $\beta = 0$, Linear Quadratic (LQ) model;
- if $\beta > 0$, asymptotic expansions for $\beta << 1$?

REFORMULATION

$$J^{i}(\boldsymbol{\alpha}) = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} f^{i}(t, X_{t}, \overline{\mu}_{t}^{N}, \alpha_{t}) dt$$

with

$$f^{i}(t, X, \mu, \alpha) = \frac{1}{2} |\alpha^{i}|^{2} + \frac{1}{2} \left| \int w(|x - x'|)[v - v']\mu(dx', dv') \right|^{2}$$

where $\alpha = (\alpha^{1}, \dots, \alpha^{N}), X = [x, v], \text{ and } X' = [x, v].$
Unfortunately

fⁱ is not convex !

EXAMPLE II: CONGESTION & FORCED EXIT

Lasry-Lions-Achdou-

- ▶ bounded domain D in \mathbb{R}^d
- exit only possible through $\Gamma \subset \partial D$

$$dX_t^i = \alpha_t^i dt + dW_t^i + dK_t^i, \quad t \in [0, T], \ X_0^i = x_0^i \in D$$

- reflecting boundary conditions on $\partial D \setminus \Gamma$
- Dirichlet boundary condition on Γ

$$J^{i}(\boldsymbol{\alpha}^{1},\cdots,\boldsymbol{\alpha}^{N}) = \mathbb{E}\left[\int_{0}^{T\wedge\tau'} \left(\frac{1}{2}\ell(X_{t}^{i},\mu_{t}^{N})|\alpha_{t}|^{2} + f(t)\right)dt\right]$$

- f penalizes the time spent in D before the exit
- $\ell(x,\mu)$ models congestion around x if μ is the distribution of the individuals (e.g. $\ell(x,\mu) = m(x)^{\alpha}$)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

CONGESTION & EXIT OF A ROOM

FIGURE: Left: Initial distribution m_0 . Right: Time evolution of the total mass of the distribution m_t of the individuals still in the room at time *t* without congestion (continuous line) and with moderate congestion (dotted line).

ROOM EXIT DENSITIES

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

ROOM EXIT DENSITIES

m_t

3

- 1 - 0

- 2 ³

< □ > < @ > < ≧ > < ≧ > < ≧ > ○

10

- 5

- 0

EXAMPLE III: TOY MODEL FOR SYSTEMIC RISK

R.C. + J.P. Fouque

- $X_t^i, i = 1, ..., N$ log-monetary reserves of N banks
- $W_t^i, i = 0, 1, ..., N$ independent Brownian motions, $\sigma > 0$
- Borrowing, lending, and re-payments through the drifts:

$$dX_t^i = \left[\alpha_t^i - \alpha_{t-\tau}^i\right] dt + \sigma\left(\sqrt{1 - \rho^2} dW_t^i + \rho dW_t^0\right), \quad i = 1, \cdots, N$$

 α^i is the control of bank *i* which tries to minimize

$$J^{i}(\alpha^{1},\cdots,\alpha^{N}) = \mathbb{E}\left\{\int_{0}^{T}\left[\frac{1}{2}(\alpha_{t}^{i})^{2} - q\alpha_{t}^{i}(\overline{X}_{t} - X_{t}^{i}) + \frac{\epsilon}{2}(\overline{X}_{t} - X_{t}^{i})^{2}\right]dt + \frac{\epsilon}{2}(\overline{X}_{T} - X_{T}^{i})^{2}\right\}$$

Regulator chooses q > 0 to control the cost of borrowing and lending.

- If X_t^i is small (relative to the empirical mean \overline{X}_t) then bank *i* will want to borrow($\alpha_t^i > 0$)
- If X_t^i is large then bank *i* will want to lend ($\alpha_t^i < 0$)

Example of Mean Field Game (MFG) with a common noise W^0 and delay in the controls. No delay in these lectures !

MFG MODELS FOR SYSTEMIC RISK

- Interesting features
 - Multi-period (continuous time) dynamic equilibrium model
 - Explicitly solvable (without delay !)
 - in open loop form
 - in closed loop form
 - solutions are different for N finite !
- Shortcomings
 - Naive model of bank lending, borrowing, and re-payments

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Only a small jab at stability of the system
- Challenging Extensions:
 - Introduction of major and minor players
 - Better solutions & understanding of time delays
 - Introduction of constraints

EXAMPLE IV: PRICE IMPACT OF TRADERS

 X_t^i number of shares owned at time t, α_t^i rate of trading

$$dX_t^i = \alpha_t^i \, dt + \sigma^i dW_t^i$$

 K_t^i amount of cash held by trader *i* at time *t*

$$dK_t^i = -[\alpha_t^i S_t + c(\alpha_t^i)] dt,$$

where S_t price of one share, $\alpha \rightarrow c(\alpha) \ge 0$ cost for trading at rate α **Price impact** formula:

$$dS_t = \frac{1}{N} \sum_{i=1}^{N} h(\alpha_t^i) dt + \sigma_0 dW_t^0$$

Trader / tries to minimize

$$J^{i}(\boldsymbol{\alpha}^{1},...,\boldsymbol{\alpha}^{N}) = \mathbb{E}\bigg[\int_{0}^{T} c_{X}(X_{t}^{i})dt + g(X_{T}^{i}) - V_{T}^{i}\bigg]$$

where V_t^i is the wealth of trader *i* at time *t*:

$$V_t^i = K_t^i + X_t^i S_t.$$

Example of an Extended Mean Field Game

FIGURE: Time evolution (from *t* ranging from 0.06 to T = 1) of the marginal density of the optimal rate of trading $\hat{\alpha}_t$ for a representative trader.

TERMINAL INVENTORY OF A TYPICAL TRADER

FIGURE: Expected terminal inventory as a function of *m* and c_X (left), and as a function of *m* and \overline{h} (right).

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

TERMINAL INVENTORY OF A TYPICAL TRADER

FIGURE: Expected terminal inventory as a function of c_{α} and \overline{h} (left), and as a function of c_{χ} and \overline{h} (right).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

EXAMPLE V: MACRO - ECONOMIC GROWTH MODEL

Krusell - Smith in Aiyagari's diffusion form

- ► Z_t^i labor productivity of worker $i \in \{1, \dots, N\}$
- \blacktriangleright A_t^i wealth at time t
- σ_Z(·) and μ_Z(·) given functions

$$\begin{cases} dZ_t^i = \mu_Z(Z_t^i)dt + \sigma_Z(Z_t^i)dW_t^i \\ dA_t^i = [w_t^i Z_t^i + r_t A_t^i - c_t^i]dt, \end{cases}$$

- r_t interest rate, wⁱ_t wages of worker i at time t
- cⁱ_t consumption (control) of worker i

In a competitive equilibrium

$$\begin{cases} r_t = [\partial_K F](K_t, L_t)|_{L_t=1} - \delta \\ w_t = [\partial_L F](K_t, L_t)|_{L_t=1} \end{cases}$$

where $(K, L) \mapsto F(K, L)$ production function and

$$K_t = \int a \overline{\mu}_{X_t}^N (dz, da) = \frac{1}{N} \sum_{i=1}^N A_t^i,$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Mean Field Interaction

EXAMPLE V (CONT.)L

Optimization Problem

$$\max \quad J^{i}(\boldsymbol{c}^{1},\cdots,\boldsymbol{c}^{N})=\mathbb{E}\int_{0}^{\infty}\boldsymbol{e}^{-\rho t}U(\boldsymbol{c}_{t}^{i})dt, \quad i=1,\cdots,N$$

with CRRA isoelastic utility function

$$U(c)=\frac{c^{1-\gamma}-1}{1-\gamma},$$

Cobb - Douglas production function

$$F(K,L)=\overline{a}K^{\alpha}L^{1-\alpha},$$

for some constants a > 0 and $\alpha \in (0, 1)$ so in equilibrium:

$$r_t = \alpha \overline{a} K_t^{\alpha - 1} L_t^{1 - \alpha} - \delta$$
, and $w_t = (1 - \alpha) \overline{a} K_t^{\alpha} L_t^{-\alpha}$,

Normalize the aggregate supply of labor to $L_t \equiv 1$,

$$r_t = \frac{\alpha \overline{a}}{K_t^{1-\alpha}} - \delta, \quad \text{and} \quad w_t = (1-\alpha)\overline{a}K_t^{\alpha},$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Singular coefficients !

EXAMPLE VI: FINITE STATE SPACES

Cyber Security (Bensoussan - Kolokolstov)

- Finite state space $E = \{1, \dots, M\},\$
- Markovian models.
- Dynamics given by Q-matrices (rates of jump)
- Controls given by feedback functions of the current state.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

EXAMPLE VII: GAMES WITH MAJOR AND MINOR PLAYERS

Examples:

- Financial system
 - Finite (small) number of SIFIs
 - Large number of small banks
- Population Biology (Bee swarming)
 - Finite (small) number of streakers
 - Large number of worker bees
- Economic Contract Theory
 - Regulator proposing a contract
 - Utilities operating under the regulation
 - Open Question: Nash versus Stackelberg

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

EX. VIII: GAMES WITH MAJOR AND MINOR PLAYERS

$$\begin{cases} dX_t^0 = b_0(t, X_t^0, \overline{\mu}_t, \alpha_t^0) dt + \sigma_0(t, X_t^0, \overline{\mu}_t, \alpha_t^0) dW_t^0 \\ dX_t^j = b(t, X_t^j, \overline{\mu}_t, X_t^0, \alpha_t^j, \alpha_t^0) dt + \sigma(t, X_t^j, \overline{\mu}_t, X_t^0, \alpha_t^j, \alpha_t^0) dW_t, \quad i = 1, \cdots, N \end{cases}$$
 where $\overline{\mu}_t^N$ is the empirical distribution of X_t^1, \cdots, X_t^N .

Cost functionals:

$$\begin{cases} J^{0}(\boldsymbol{\alpha}^{0},\boldsymbol{\alpha}^{1},\cdots,\boldsymbol{\alpha}^{N}) &= \mathbb{E}\left[\int_{0}^{T} f_{0}(t,X_{t}^{0},\overline{\mu}_{t},\boldsymbol{\alpha}_{t}^{0})dt + g^{0}(X_{T}^{0},\overline{\mu}_{T})\right] \\ J^{1}(\boldsymbol{\alpha}^{0},\boldsymbol{\alpha}^{1},\cdots,\boldsymbol{\alpha}^{N}) &= \mathbb{E}\left[\int_{0}^{T} f(t,X_{t}^{i},\overline{\mu}_{t}^{N},X_{t}^{0},\boldsymbol{\alpha}_{t}^{i},\boldsymbol{\alpha}_{t}^{0})dt + g(X_{T}^{i},\overline{\mu}_{T})\right], \qquad i = 1,\cdots,N \end{cases}$$

EXAMPLE IX: MEAN FIELD GAMES OF TIMING

Last Lecture.

- Illiquidity Modeling and Bank Runs
- Modeling the large issuance of a convertible bond

The Mean Field Game Strategy & the Mean Field Game Problem

CLASSICAL STOCHASTIC DIFFERENTIAL CONTROL

$$\inf_{\alpha \in \mathbb{A}} \mathbb{E} \left[\int_0^T f(t, X_t, \alpha_t) dt + g(X_T, \mu_T) \right]$$

subject to $dX_t = b(t, X_t, \alpha_t) dt + \sigma(t, X_t, \alpha_t) dW_t; \quad X_0 = x_0.$

Analytic Approach (by PDEs)

HJB equation

Probabilistic Approaches (by FBSDEs)

- 1. Represent value function as solution of a BSDE
- 2. Represent the gradient of the value function as solution of a FBSDE (Stochastic Maximum Principle)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

I. FIRST PROBABILISTIC APPROACH

Assumptions

- σ is uncontrolled
- σ is invertible

Reduced Hamitonian

$$H(t, x, y, \alpha) = b(t, x, \alpha) \cdot y + f(t, x, \alpha)$$

For each control α solve **BSDE**

$$dY_t^{\alpha} = -H(t, X_t, Z_t \sigma(t, X_t)^{-1}, \alpha_t) dt + Z_t \cdot dW_t, \qquad Y_T^{\alpha} = g(X_T)$$

Then

$$Y_0^{\boldsymbol{\alpha}} = J(\boldsymbol{\alpha}) = \mathbb{E}\left[\int_0^T f(t, X_t, \alpha_t) dt + g(X_T, \mu_T)\right]$$

So by **comparison theorems** for BSDEs, optimal control $\hat{\alpha}$ given by:

$$\hat{\alpha}_t = \hat{\alpha}(t, X_t, Z_t \sigma(t, X_t)^{-1}), \text{ with } \hat{\alpha}(t, x, y) \in \operatorname{argmin}_{\alpha \in A} H(t, x, y, \alpha)$$

and $Y_0^{\alpha} = J(\hat{\alpha})$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

II. PONTRYAGIN STOCHASTIC MAXIMUM APPROACH

Assumptions

- Coefficients *b*, σ and *f* differentiable
- f convex in (x, α) and g convex

Hamitonian

$$H(t, x, y, z, \alpha) = b(t, x, \alpha) \cdot y + \sigma(t, x, \alpha) \cdot z + f(t, x, \alpha)$$

For each control α solve **BSDE** for the adjoint processes $\mathbf{Y} = (Y_t)_t$ and $\mathbf{Z} = (Z_t)_t$

$$dY_t = -\partial_x H(t, X_t, Y_t, Z_t, \alpha_t) dt + Z_t \cdot dW_t, \qquad Y_T = \partial_x g(X_T)$$

Then, optimal control $\hat{\alpha}$ given by:

 $\hat{\alpha}_t = \hat{\alpha}(t, X_t, Y_t, Z_t), \text{ with } \hat{\alpha}(t, x, y, z) \in \operatorname{argmin}_{\alpha \in A} H(t, x, y, z, \alpha)$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

SUMMARY

In both cases (σ uncontrolled), need to **solve a FBSDE**

$$\begin{cases} dX_t = B(t, X_t, Y_t, Z_t)dt + \Sigma(t, X_t)dW_t, \\ dY_t = -F(t, X_t, Y_t, Z_t)dt + Z_t dW_t \end{cases}$$

First Approach

$$\begin{split} \mathcal{B}(t,x,y,z) &= b(t,x,\hat{\alpha}(t,x,z\sigma(t,x)^{-1})),\\ \mathcal{F}(t,x,y,z) &= -f(t,x,\hat{\alpha}(t,x,z\sigma(t,x)^{-1}))\\ &\quad - (z\sigma(t,x,)^{-1}) \cdot b(t,x,\hat{\alpha}(t,x,z\sigma(t,x)^{-1})). \end{split}$$

Second Approach

$$B(t, x, y, z) = b(t, x, \hat{\alpha}(t, x, y)),$$

$$F(t, x, y, z) = -\partial_x f(t, x, \hat{\alpha}(t, x, y)) - y \cdot \partial_x b(t, x, \hat{\alpha}(t, x, y)).$$

FBSDE DECOUPLING FIELD

To solve the standard FBSDE

$$dX_t = B(t, X_t, Y_t)dt + \Sigma(t, X_t)dW_t$$

$$dY_t = -F(t, X_t, Y_t)dt + Z_t dW_t$$

with $X_0 = x_0$ and $Y^T = g(X_T)$,

a standard approach is to look for a solution of the form $Y_t = u(t, X_t)$

- $(t, x) \hookrightarrow u(t, x)$ is called the **decoupling field** of the FBSDE
- ▶ If *u* is smooth,
 - apply Itô's formula to du(t, Xt) using forward equation
 - identify the result with dY_t in backward equation
 - $(t, x) \hookrightarrow u(t, x)$ is the solution of a nonlinear PDE

Oh well, So much for the probabilistic approach !

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

PROPAGATION OF CHAOS & MCKEAN-VLASOV SDES

System of N particles $X_t^{N,i}$ at time t with symmetric (Mean Field) interactions

$$dX_t^{N,i} = b(t, X_t^{N,i}, \overline{\mu}_{X_t^N}^N) dt + \sigma(t, X_t^{N,i}, \overline{\mu}_{X_t^N}^N) dW_t^i, \quad i = 1, \cdots, N$$

where $\overline{\mu}_{X_t^N}^N$ is the empirical measure $\overline{\mu}_{\mathbf{x}}^N = \frac{1}{N}\sum_{i=1}^N \delta_{x^i}$

Large population asymptotics ($N \rightarrow \infty$)

- 1. The *N* processes $\mathbf{X}^{N,i} = (X_t^{N,i})_{0 \le t \le T}$ become asymptotically i.i.d.
- 2. Each of them is (asymptotically) distributed as the solution of the McKean-Vlasov SDE

$$dX_t = b(t, X_t, \mathcal{L}(X_t))dt + \sigma(t, X_t, \mathcal{L}(X_t))dW_t$$

Frequently used notation:

 $\mathcal{L}(X) = \mathbb{P}_X$ distribution of the random variable X.

FORWARD SDES OF MCKEAN-VLASOV TYPE

$$dX_t = B(t, X_t, \mathcal{L}(X_t))dt + \Sigma(t, X_t, \mathcal{L}(X_t))dW_t, \qquad T \in [0, T].$$

Assumption. There exists a constant $c \ge 0$ such that

- (A1) For each $(x, \mu) \in \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d)$, the processes $B(\cdot, \cdot, x, \mu) : \Omega \times [0, T] \ni (\omega, t) \mapsto B(\omega, t, x, \mu)$ and $\Sigma(\cdot, \cdot, x, \mu) : \Omega \times [0, T] \ni (\omega, t) \mapsto \Sigma(\omega, t, x, \mu)$ are \mathbb{F} -progressively measurable and belong to $\mathbb{H}^{2,d}$ and $\mathbb{H}^{2,d \times d}$ respectively.
- (A2) $\forall t \in [0, T], \forall x, x' \in \mathbb{R}^d, \forall \mu, \mu' \in \mathcal{P}_2(\mathbb{R}^d)$, with probability 1 under \mathbb{P} , $|B(t, x, \mu) - B(t, x', \mu')| + |\Sigma(t, x, \mu) - \Sigma(t, x', \mu')| \leq c[|x - x'| + W_2(\mu, \mu')],$

where W_2 denotes the 2-Wasserstein distance on the space $\mathcal{P}_2(\mathbb{R}^d)$.

Result. if $X_0 \in L^2(\Omega, \mathcal{F}_0, \mathbb{P}; \mathbb{R}^d)$, then there exists a unique solution $\mathbf{X} = (X_t)_{0 \le t \le T}$ in $\mathbb{S}^{2,d}$ s.t. for every $p \in [1, 2]$ $\mathbb{E}\Big[\sup_{0 \le t \le T} |X_t|^p\Big] < +\infty.$

Sznitmann

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ◎ ● ●

N-PLAYER STOCHASTIC DIFFERENTIAL GAMES

Assume Mean Field Interactions (symmetric game)

$$dX_t^{N,i} = b(t, X_t^{N,i}, \overline{\mu}_{X_t^N}^N, \alpha_t^i) dt + \sigma(t, X_t^{N,i}, \overline{\mu}_{X_t^N}^N, \alpha_t^i) dW_t^i \quad i = 1, \cdots, N$$

Assume player *i* tries to minimize

$$J^{i}(\boldsymbol{\alpha}^{1},\cdots,\boldsymbol{\alpha}^{N}) = \mathbb{E}\bigg[\int_{0}^{T} f(t,X_{t}^{N,i},\overline{\mu}_{X_{t}^{N}}^{N},\alpha_{t}^{i})dt + g(X_{T},\overline{\mu}_{X_{T}^{N}}^{N})\bigg]$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Search for Nash equilibria

- Very difficult in general, even if N is small
- ϵ -Nash equilibria? Still hard.
- How about in the limit $N \to \infty$?

Mean Field Games Lasry - Lions, Caines-Huang-Malhamé

MFG PARADIGM

A **typical** agent plays against a **field** of players whose states he/she feels through the statistical distribution **distribution** μ_t of their states at time t

1. For each Fixed measure flow $\mu = (\mu_t)$ in $\mathcal{P}(\mathbb{R})$, solve the standard stochastic control problem

$$\hat{\boldsymbol{\alpha}} = \arg\inf_{\boldsymbol{\alpha}\in\mathbb{A}}\mathbb{E}\left\{\int_{0}^{T}f(t, X_{t}, \mu_{t}, \alpha_{t})dt + g(X_{T}, \mu_{T})\right\}$$

subject to

$$dX_t = b(t, X_t, \mu_t, \alpha_t) dt + \sigma(t, X_t, \mu_t, \alpha_t) dW_t$$

2. Fixed Point Problem: determine $\mu = (\mu_t)$ so that

$$\forall t \in [0, T], \quad \mathcal{L}(X_t^{\hat{\alpha}}) = \mu_t.$$

 μ or $\hat{\alpha}$ is called a solution of the MFG.

Once this is done one expects that, if $\hat{\alpha}_t = \phi(t, X_t)$,

$$\alpha_t^{j*} = \phi^*(t, X_t^j), \qquad j = 1, \cdots, N$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

form an approximate Nash equilibrium for the game with N players.

Solving MFGs by Solving FBSDEs of McKean-Vlasov Type

MINIMIZATION OF THE (REDUCED) HAMILTONIAN

Recall

$$H(t, x, \mu, y, \alpha) = y \cdot b(t, x, \mu, \alpha) + f(t, x, \mu, \alpha)$$

and we want to use

$$\hat{\alpha}(t, x, \mu, y) \in \arg \in_{\alpha \in A} H(t, x, \mu, y, \alpha).$$

(A.1) *b* is affine in α : $b(t, x, \mu, \alpha) = b_1(t, x, \mu) + b_2(t)\alpha$ with b_1 and b_2 bounded. (A.2) Running cost *f* uniformly λ -convex for some $\lambda > 0$:

$$f(t, x', \mu, \alpha') - f(t, x, \mu, \alpha) - \langle (x' - x, \alpha' - \alpha), \partial_{(x, \alpha)} f(t, x, \mu, \alpha) \rangle \geq \lambda |\alpha' - \alpha|^2$$

Then

 $\hat{\alpha}(t, x, \mu, y)$ is unique and

$$[0,T] \times \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d) \times \mathbb{R}^d \ni (t, x, \mu, y) \to \hat{\alpha}(t, x, \mu, y)$$

is measurable, locally bounded and Lipschitz-continuous with respect to (x, y), uniformly in $(t, \mu) \in [0, T] \times \mathcal{P}_2(\mathbb{R}^d)$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

I. VALUE FUNCTION REPRESENTATION

Recall

$\sigma(t, x, \mu, \alpha) = \sigma(t, x)$ uniformly Lip-1 and uniformly elliptic

- If $A \subset \mathbb{R}^k$ is **bounded** (not really needed),
- if $\mathbf{X}^{t,x} = (X^{t,x}_s)_{t \le s \le T}$ is the unique strong solution of $dX_t = \sigma(t, X_t) dW_t$ over [t, T] s.t. $X^{t,x}_t = x$,
- ► if $(\hat{\mathbf{Y}}^{t,x}, \hat{\mathbf{Z}}^{t,x})$ is a solution of the BSDE $d\hat{Y}_{s}^{t,x} = -H(t, X_{s}^{t,x}, \mu_{s}, \hat{\mathbf{Z}}_{s}^{t,x}\sigma(s, X_{s}^{t,x})^{-1}, \hat{\alpha}(s, X_{s}^{t,x}, \mu_{s}, \hat{\mathbf{Z}}_{s}^{t,x}\sigma(s, X_{s}^{t,x})^{-1}))ds - \hat{\mathbf{Z}}_{s}^{t,x}dW_{s},$ for $t \leq s \leq T$ with $\hat{Y}_{T} = g(X_{T}^{t,x}, \mu_{T}),$

then

$$\hat{\alpha}_t = \hat{\alpha}(\boldsymbol{s}, \boldsymbol{X}_{\boldsymbol{s}}^{t,x}, \mu_{\boldsymbol{s}}, \hat{\boldsymbol{Z}}_{\boldsymbol{s}}^{t,x} \sigma(\boldsymbol{s}, \boldsymbol{X}_{\boldsymbol{s}}^{t,x})^{-1})$$

is an optimal control over the interval [t, T] and the value of the problem is given by:

$$V(t,x)=\hat{Y}_t^{t,x}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The value function appears as the decoupling field of an FBSDE.

FIXED POINT STEP \implies MCKEAN-VLASOV FBSDE

Starting from t = 0 and dropping the superscript t, x, for each fixed flow $\mu = (\mu_t)_{0 \le t \le T}$

$$\begin{cases} dX_t = b(t, X_t, \mu_t, \hat{\alpha}(t, X_t, \mu_t, Z_t \sigma(t, X_t)^{-1}))dt + \sigma(t, X_t)dW_t \\ dY_t = -H(t, X_t, \mu_t, Z_t \sigma(t, X_t)^{-1}, \hat{\alpha}(t, X_t, \mu_t, Z_t \sigma(t, X_t)^{-1}))dt - Z_t dW_t, \end{cases}$$

for $0 \le t \le T$, with $\hat{Y}_T = g(X_T, \mu_T)$.

Implementing the fixed point step

$$\mu_t \hookrightarrow \mathcal{L}(X_t)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

gives an FBSDE of McKean-Vlasov type !

II. PONTRYAGIN STOCHASTIC MAXIMUM PRINCIPLE

Again, freeze $\mu = (\mu_t)_{0 \le t \le T}$,

Recall (reduced) Hamiltonian

$$H(t, x, \mu, y, \alpha) = b(t, x, \mu, \alpha) \cdot y + f(t, x, \mu, \alpha)$$

Adjoint processes

Given an admissible control $\alpha = (\alpha_t)_{0 \le t \le T}$ and the corresponding controlled state process $\mathbf{X}^{\alpha} = (X_t^{\alpha})_{0 \le t \le T}$, any couple $(Y_t, Z_t)_{0 \le t \le T}$ satisfying:

$$\begin{cases} dY_t = -\partial_x H(t, X_t^{\alpha}, \mu_t, Y_t, \alpha_t) dt + Z_t dW_t \\ Y_T = \partial_x g(X_T^{\alpha}, \mu_T) \end{cases}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

is called a set of adjoint processes.

STOCHASTIC CONTROL STEP

Use

$$\hat{\alpha}(t, x, \mu, y) = \arg \inf_{\alpha} H(t, x, \mu, y, \alpha),$$

inject it in FORWARD and BACKWARD dynamics and SOLVE

$$\begin{cases} dX_t = b(t, X_t, \mu_t, \hat{\alpha}(t, X_t, \mu_t, Y_t))dt + \sigma(t, X_t)dW_t \\ dY_t = -\partial_x H(t, X, \mu_t, Y_t, \hat{\alpha}(t, X_t, \mu_t, Y_t))dt + Z_t dW_t \end{cases}$$

with $X_0 = x_0$ and $Y_T = \partial_x g(X_T, \mu_T)$

Standard **FBSDE** (for each **fixed** $t \hookrightarrow \mu_t$)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

FIXED POINT STEP

Solve the fixed point problem

$$\boldsymbol{\mu} = (\mu_t)_{0 \le t \le T} \quad \longrightarrow \quad \mathbf{X} = (X_t)_{0 \le t \le T} \quad \longrightarrow \quad (\mathcal{L}(X_t))_{0 \le t \le T}$$

Note: if we enforce $\mu_t = \mathcal{L}(X_t)$ for all $0 \le t \le T$ in FBSDE we have

$$\begin{cases} dX_t = b(t, X_t, \mathcal{L}(X_t), \hat{\alpha}(t, X_t, \mathcal{L}(X_t), Y_t))dt + \sigma(t, X_t)dW_t, \\ dY_t = -\partial_x H(t, X_t^{\alpha}, \mathcal{L}(X_t), Y_t, \hat{\alpha}(t, X_t, \mathcal{L}(X_t), Y_t))dt + Z_t dW_t \end{cases}$$

with

$$X_0 = x_0$$
 and $Y_T = \partial_x g(X_T, \mathcal{L}(X_T))$

FBSDE of McKean-Vlasov type !!!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Very difficult

FBSDES OF MCKEAN - VLASOV TYPE

In both probabilistic approaches to the MFG problem the problem reduces to the solution of an $\ensuremath{\mathsf{FBSDE}}$

$$\begin{cases} dX_t = B(t, X_t, \mathcal{L}(X_t), Y_t, Z_t)dt + \Sigma(t, X_t, \mathcal{L}(X_t))dW_t, \\ dY_t = -F(t, X_t, \mathcal{L}(X_t), Y_t, Z_t)dt + Z_t dW_t \end{cases}$$

with, in the first approach

$$B(t, x, \mu, y, z) = b(t, x, \mu, \hat{\alpha}(t, x, \mu, z\sigma(t, x)^{-1})),$$

$$F(t, x, \mu, y, z) = -f(t, x, \mu, \hat{\alpha}(t, x, \mu, z\sigma(t, x)^{-1})),$$

$$-z\sigma(t, x)^{-1}b(t, x, \mu, \hat{\alpha}(t, x, \mu, z\sigma(t, x)^{-1})),$$

and in the second:

$$\begin{cases} B(t, x, \mu, y, z) = b(t, x, \mu, \hat{\alpha}(t, x, \mu, y)), \\ F(t, x, \mu, y, z) = -\partial_x f(t, x, \mu, \hat{\alpha}(t, x, \mu, y)) - y \partial_x b(t, x, \mu, \hat{\alpha}(t, x, \mu, y)). \end{cases}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

A TYPICAL EXISTENCE RESULT

We try to solve:

$$\begin{aligned} dX_t &= B(t, X_t, Y_t, Z_t, \mathbb{P}_{(X_t, Y_t)}) dt + \Sigma(t, X_t, Y_t, \mathbb{P}_{(X_t, Y_t)}) dW_t \\ dY_t &= -F(t, X_t, Y_t, Z_t, \mathbb{P}_{(X_t, Y_t)}) dt + Z_t dW_t, \quad 0 \le t \le T, \end{aligned}$$

with $X_0 = x_0$ and $Y_T = G(X_T, \mathbb{P}_{X_T})$.

Assumptions

(A1). B, F, Σ and G are continuous in μ and uniformly (in μ) Lipschitz in (x, y, z)

(A2). Σ and G are bounded and

$$\begin{cases} |B(t, x, y, z, \mu)| \le L \Big[1 + |x| + |y| + |z| + \left(\int_{\mathbb{R}^d \times \mathbb{R}^p} |(x', y')|^2 d\mu(x', y') \right)^{1/2} \Big], \\ |F(t, x, y, z, \mu)| \le L \Big[1 + |y| + \left(\int_{\mathbb{R}^d \times \mathbb{R}^p} |y'|^2 d\mu(x', y') \right)^{1/2} \Big]. \end{cases}$$

(A3). Σ is uniformly elliptic

 $\Sigma(t, x, y, \mu)\Sigma(t, x, y, \mu)^{\dagger} \geq L^{-1}I_d$

(日) (日) (日) (日) (日) (日) (日)

and $[0, T] \ni t \hookrightarrow \Sigma(t, 0, 0, \delta_{(0,0)})$ is also assumed to be continuous.

Under (A1–3), there exists a solution $(X, Y, Z) \in \mathbb{S}^{2,d} \times \mathbb{S}^{2,p} \times \mathbb{H}^{2,p \times m}$

MORE GENERALLY

- Lipschitz coefficients: existence and uniqueness in small time
- Lipschitz + Bounded coefficients + Non-degenerate Σ:
 - existence by Schauder type argument (previous slide)
 - Nice but, as such, does not apply to Linear Quadratic Models !

- If FBSDE comes from MFG model with
 - linear dynamics
 - convex costs

existence + uniqueness

SOLUTIONS OF SPECIFIC APPLICATIONS

The following applications need special attention:

Price Impact Model:

interaction through the controls (extended MFG)

Congestion + Exit of a Room:

McKean-Vlasov FBSDEs in a bounded domain with boundary conditions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

C-S Flocking:

- non-convex cost function
- degenerate volatility
- still, find "explicit" decoupling field for µ fixed

Krusell-Smith Growth Model:

- degenerate diffusion
- singular coefficients (blow up at origin)

OPTIMIZATION PROBLEM

Simultaneous Minimization of

$$J^{i}(\boldsymbol{\alpha}^{1},\cdots,\boldsymbol{\alpha}^{N})=\mathbb{E}\left\{\int_{0}^{T}f(t,X_{t}^{i},\overline{\mu}_{t}^{N},\alpha_{t}^{i})dt+g(X_{T},\overline{\mu}_{T}^{N})\right\}, \quad i=1,\cdots,N$$

under constraints of the form

$$dX_t^i = b(t, X_t^i, \overline{\mu}_t^N, \alpha_t^i) dt + \sigma(t, X_t) dW_t^i + \sigma^0(t, X_t^i) \circ dW_t^0, \quad i = 1, \cdots, N.$$

where:

$$\overline{\mu}_t^N = \frac{1}{N} \sum_{i=1}^N \delta_{X_t^i}$$

(ロ)、(型)、(E)、(E)、 E) のQの

GOAL: search for equilibria

especially when N is large

EXAMPLE OF MODEL REQUIREMENTS

- Each player cannot on its own, influence significantly the global output of the game
- Large number of statistically identical players (N → ∞)
- Closed loop controls in feedback form

$$\alpha_t^i = \phi^i(t, (X_t^1, \cdots, X_t^N)), \qquad i = 1, \cdots, N.$$

Restricted controls in feedback form

$$\alpha_t^i = \phi^i(t, (X_t^i, \overline{\mu}_t^N)), \qquad i = 1, \cdots, N.$$

By symmetry, **Distributed** controls

$$\alpha_t^i = \phi^i(t, X_t^i), \qquad i = 1, \cdots, N.$$

Identical feedback functions

$$\phi^1(t, \cdot) = \cdots = \phi^N(t, \cdot) = \phi(t, \cdot), \qquad 0 \le t \le T.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

TOUTED SOLUTION (WISHFUL THINKING)

- Identify a (distributed closed loop) strategy φ from effective equations (from stochastic optimization for large populations)
- Each player is assigned the same function ϕ
- So at each time *t*, player *i* take action $\alpha_t^i = \phi(t, X_t^i)$

What is the resulting population behavior?

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Did we reach some form of equilibrium?
- If yes, what kind of equilibrium?

MEAN FIELD GAME (MFG) STANDARD STRATEGY

for the search of Nash equilibria

By symmetry, interactions depend upon

empirical distributions

When constructing the best response map

ALL stochastic optimizations should be "the same"

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

When N is large

- empirical distributions should converge
- capture interactions with limits of empirical distributions
- ONE standard stochastic control problem for each possible limit
- Still need a fixed point

2006 Lasry - Lions (MFG) Caines - Malhamé - Huang (NCE)

LARGE GAME ASYMPTOTICS WITH COMMON NOISE

Conditional Law of Large Numbers

- Search for effective equations in the asymptotic regime $N \to \infty$
- Then, solve (in this asymptotic regime) for
 - a Nash equilibrium?
 - a stochastic control problem?
- ▶ If we consider **exchangeable equilibria**, $(\alpha_t^1, \cdots, \alpha_t^N)$, then

By LLN

$$\lim_{N\to\infty}\overline{\mu}_t^N = \mathbb{P}_{X_t^1|\mathcal{F}_t^0}$$

Dynamics of player 1 (or any other player) becomes

$$dX_t^1 = b(t, X_t^1, \mu_t, \alpha_t^1) dt + \sigma(t, X_t^1) dW_t + \sigma^0(t, X_t) \circ dW_t^0$$

with $\mu_t = \mathbb{P}_{X_t^1 \mid \mathcal{F}_t^0}$.

Cost to player 1 (or any other player) becomes

$$\mathbb{E}\left\{\int_0^T f(t, X_t, \mu_t, \alpha_t^1) dt + g(X_T, \mu_T)\right\}$$

(日) (日) (日) (日) (日) (日) (日)

MFG PROBLEM WITH COMMON NOISE

- 1. Fix a measure valued (\mathcal{F}_t^0) -adapted process (μ_t) in $\mathcal{P}(\mathbb{R})$;
- 2. Solve the standard stochastic control problem

$$\hat{\alpha} = \arg \inf_{\alpha} \mathbb{E} \left\{ \int_{0}^{T} f(t, X_{t}, \mu_{t}, \alpha_{t}) dt + g(X_{T}, \mu_{T}) \right\}$$

subject to

$$dX_t = b(t, X_t, \mu_t, \alpha_t)dt + \sigma(t, X_t)dW_t + \sigma^0(t, X_t) \circ dW_t^0;$$

3. Fixed Point Problem: determine (μ_t) so that

$$\forall t \in [0, T], \quad \mathbb{P}_{X_t \mid \mathcal{F}_t^0} = \mu_t \quad a.s.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Once this is done, if $\hat{\alpha}_t = \phi(t, X_t)$, go back to N player game and show that:

$$\alpha_t^{j*} = \phi^*(t, X_t^j), \qquad j = 1, \cdots, N$$

form an **approximate Nash equilibrium** for the game with *N* players.

RECENT RESULTS BY PROBABILISTIC METHODS

R.C. - F. Delarue (two-volume book to appear)

- MFG version of Cucker-Smale flocking model
- Crowd motion with congestion, e.g. exit of a room
- Price impact model
- Diffusion form of Krusell Smith growth model
- Interacting OU model for systemic risk with delay (RC Fouque)
- MFGs of timing for bank runs (R. Lacker)
- MFGs with Major and Minor players (RC Zhu), in finite spaces (R.C. Wang)

In each case, we **prove existence**, sometimes **uniqueness**, often give **numerical illustrations**, unfortunately (so far) computations rarely **stable** away from LQ models.

(ロ) (同) (三) (三) (三) (○) (○)

Solving MFGs by Solving FBSDEs of McKean-Vlasov Type

PROBABILISTIC APPROACH: FIRST PRONG

BSDE Representation of the Value Function: $Y_t = V^{\mu}(t, X_t)$ (Reduced) Hamiltonian

$$H^{\mu}(t, x, y, \alpha) = b(t, x, \mu_t, \alpha) \cdot y + f(t, x, \mu_t, \alpha)$$

Determine (assume existence of):

$$\hat{\alpha}^{\mu}(t, x, y) = \arg \inf_{\alpha} H^{\mu}(t, x, y, \alpha)$$

Inject in FORWARD and BACKWARD dynamics and SOLVE

$$\begin{cases} dX_t = b(t, X_t, \mu_t, \hat{\alpha}^{\mu}(t, X_t, Z_t \sigma^{-1}(t, X_t)))dt + \sigma(t, X_t)dW_t \\ dY_t = -f(t, X, Z_t \sigma^{-1}(t, X_t), \hat{\alpha}^{\mu}(t, X_t, Z_t \sigma^{-1}(t, X_t)))dt + Z_t dW_t \end{cases}$$

with $X_0 = x_0$ and $Y_T = g(X_T, \mu_T)$

Standard **FBSDE** (for each fixed $t \hookrightarrow \mu_t$)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Stochastic Maximum Principle: $Y_t = \partial_x V^{\mu}(t, X_t)$

Inject in FORWARD and BACKWARD dynamics and SOLVE

$$\begin{cases} dX_t = b(t, X_t, \mu_t, \hat{\alpha}^{\mu}(t, X_t, Y_t))dt + \sigma(t, X_t)dW_t \\ dY_t = -\partial_x H^{\mu}(t, X_t^{\alpha}, Y_t, \hat{\alpha}^{\mu}(t, X_t, Y_t))dt + Z_t dW_t \end{cases}$$

with $X_0 = x_0$ and $Y_T = \partial_x g(X_T, \mu_T)$

Standard **FBSDE** (for each **fixed** $t \hookrightarrow \mu_t$)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

FIXED POINT STEP

Solve the fixed point problem

$$\boldsymbol{\mu} = (\mu_t)_{0 \le t \le T} \quad \longrightarrow \quad \mathbf{X}^{\boldsymbol{\mu}} = (X_t)_{0 \le t \le T} \quad \longrightarrow \quad \boldsymbol{\nu} = (\nu_t = \mathbb{P}_{X_t})_{0 \le t \le T}$$

Note: if we enforce $\mu_t = \mathbb{P}_{X_t}$ for all $0 \le t \le T$ in FBSDE we have

$$\begin{cases} dX_t = b(t, X_t, \mathbb{P}_{X_t}, \hat{\alpha}^{\mathbb{P}_{X_t}}(t, X_t, Y_t))dt + \sigma dW_t \\ dY_t = -\Psi(t, X, Y_t, \mathbb{P}_{X_t})dt + Z_t dW_t \end{cases}$$

with

$$X_0 = x_0$$
 and $Y_T = G(X_T, \mathbb{P}_{X_T})$

FBSDE of (Conditional) McKean-Vlasov type !!!

Very difficult

FBSDES OF MCKEAN-VLASOV TYPE

RC - Delarue

$$\begin{cases} dX_t = B(t, X_t, Y_t, Z_t, \mathbb{P}_{(X_t, Y_t)})dt + \Sigma(t, X_t, Y_t, \mathbb{P}_{(X_t, Y_t)})dW_t \\ dY_t = -\Psi(t, X, Y_t, Z_t, \mathbb{P}_{(X_t, Y_t)})dt + Z_t dW_t \end{cases}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Lipschitz coefficients: existence and uniqueness in small time
- Lipschitz + Bounded coefficients + Non-degenerate Σ: existence
- FBSDE from linear MFG with convex costs: existence + uniqueness

SOLUTIONS OF SPECIFIC APPLICATIONS

Price Impact Model:

interaction through the controls (extended MFG)

Congestion + Exit of a Room:

McKean-Vlasov FBSDEs in a bounded domain with boundary conditions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

C-S Flocking:

- non-convex cost function
- degenerate volatility
- still, find "explicit" decoupling field for µ fixed

Krusell-Smith Growth Model:

- degenerate diffusion
- singular coefficients (blow up at origin)

BACK TO THE MFG PROBLEM

For $\mu = (\mu_t)_t$ fixed, assume decoupling field $u^{\mu} : [0, T] \times \mathbb{R}^d \hookrightarrow \mathbb{R}$ exists so that $Y_t = u^{\mu}(t, X_t)$

Dynamics of X

$$dX_t = b(t, X_t, \mu_t, \hat{\alpha}(t, X_t, \mu_t, u^{\mu}(t, X_t)))dt + \sigma dW_t$$

• In equilibrium $\mu_t = \mathbb{P}_{X_t}$

$$Y_t = u^{\mathbb{P}X_t}(t, X_t)$$

Could the function

$$(t, x, \mu) \hookrightarrow U(t, x, \mu) = u^{\mu}(t, X_t)$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

be the solution of a PDE, with time evolving in one single direction?

MASTER EQUATION touted by P.L. Lions in his lectures. (Lecture II).