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AGENT BASED MODELS AND MEAN FIELD GAMES

» Agent Based Models for large systems
» Behavior prescribed at the individual (microscopic) level
» Exogenously specified interactions
> Large scale simulations possible

» If symmetries in the system, interactions can be Mean Field
» Possible averaging effects for large populations
> Mean Field limits easier to simulate and study
> Net result: Macroscopic behavior of the system



MEAN FIELD GAMES VS AGENT BASED MODELS

» Mean Field Games
> At the (microscopic) level individuals control their states
» Exogenously specified interaction rules
> Individuals are rational: they OPTIMIZE !!!!

» Search for equilibria: very difficult, NP hard in general

» If symmetries in the system, interactions can be Mean Field

> Possible averaging effects for large populations
> Mean Field limits easier to study
» Macroscopic behavior of the system thru solutions of
Mean Field Games
Lasry - Lions (MFG) Caines - Huang - Malhamé (NCE)
» Examples: flocking, schooling, herding, crowd behavior, percolation of
information, price formation, hacker behavior and cyber security, ......



A Few Examples



EXAMPLE I: A MODEL OF ”FLOCKING”

Deterministic dynamical system model (Cucker-Smale)
dx; =vidt '
avi =55 wi(D]vi - vi]at

for the weights
K

wi(t) = w(lx — X)) = —————
(1 +1x = x{[2)?

for some x > 0 and 3 > 0.
If Nfixed,0 < B <1/2
> iMoo v = VY, fori=1,--- N

> SUP;so Max; j—1 ... N X — XI| < o0

Many extensions/refinements since original C-S contribution.



A MFG FORMULATION

(Nourian-Caines-Malhamé)

X| = [x{, v{] state of player i

dx] = vidt
dv{ = a;dt + athi
For strategy profile a = (a', - - - , aV), the cost to player i

2
et

N
J(e) = _lim l/T 1\0/|2+1 lZw(|x"-x/’|)[v"-vf]
Tooo T Jo \2' ¢ 2|N = RS

» Ergodic (infinite horizon) model;
» 3 =0, Linear Quadratic (LQ) model;
> if 8 > 0, asymptotic expansions for 5 << 1?



REFORMULATION

. 1 7T .
) = im 2 [ et

T—oo T
with )
. 1 . 1
P X, 0) = glal P+ 5| [ Wil = x Dy = V@', av')
where a = (a',---,aN), X =[x, v], and X’ = [x, v].
Unfortunately

f' is not convex !



EXAMPLE II: CONGESTION & FORCED EXIT

Lasry-Lions-Achdou- ....
» bounded domain D in R?
> exit only possible through ' C 9D
dX] = aldt+ dWj + dK{, te[0,T], Xj=x,eD

v

reflecting boundary conditions on 9D\ '

\{

Dirichlet boundary condition on I

) AT 1 i
S, al) = E[/O <§Z(Xt’,u?’)|at\2 + (1))t

v

f penalizes the time spent in D before the exit

£(x, 1) models congestion around x if p is the distribution of the individuals (e.g.
(X, p) = m(x)*)

v



CONGESTION & EXIT OF A RooM

Total mass

alpha=0
alpha=0.1

time

FIGURE: Left: Initial distribution mp. Right: Time evolution of the total mass of the
distribution m; of the individuals still in the room at time t without congestion
(continuous line) and with moderate congestion (dotted line).




RoOM EXIT DENSITIES




RoOM EXIT DENSITIES




EXAMPLE III: ToOY MODEL FOR SYSTEMIC RISK

R.C. + J.P. Fouque
» Xi,i=1,...,Nlog-monetary reserves of N banks
> W{, i=0,1,...,Nindependent Brownian motions, c > 0
» Borrowing, lending, and re-payments through the drifts:

x| = [af — ai_,] dt+a(«/1 —p2dw{+pdvu4°), i=1,-,N
o' is the control of bank i which tries to minimize
Jat o) = { [T [ ah? - qal(k— X)) + 50— X2 o+ 5067 — X7
Regulator chooses g > 0 to control the cost of borrowing and lending.
> If X[ is small (relative to the empirical mean X;) then bank i will want to borrow(a; > 0)

> If X/ is large then bank / will want to lend (o} < 0)

Example of Mean Field Game (MFG) with a common noise W° and delay in the
controls. No delay in these lectures !



MFG MODELS FOR SYSTEMIC RISK

» Interesting features

> Multi-period (continuous time) dynamic equilibrium model
> Explicitly solvable (without delay !)

> in open loop form
> in closed loop form
> solutions are different for N finite !
» Shortcomings
» Naive model of bank lending, borrowing, and re-payments
> Only a small jab at stability of the system
» Challenging Extensions:
> Introduction of major and minor players
> Better solutions & understanding of time delays
> Introduction of constraints



EXAMPLE IV: PRICE IMPACT OF TRADERS

X! number of shares owned at time t, o/ rate of trading
aX{ = ajdt + o'dW,
K amount of cash held by trader i at time ¢
dk{ = —[a{St + c(ap)] ot

where S; price of one share, & — ¢(«) > 0 cost for trading at rate
Price impact formula:

1L 0
ds; = N ; h(a) at + oodW,
Trader / tries to minimize

. T . . .
Ja', . a) = E[/ ox(X)at + g(Xb) — Vi
0
where V] is the wealth of trader i at time t:
Vi=K +Xs.

Example of an Extended Mean Field Game



density
3
|

FIGURE: Time evolution (from t ranging from 0.06 to T = 1) of the marginal density of
the optimal rate of trading &; for a representative trader.



TERMINAL INVENTORY OF A TYPICAL TRADER

Inventory Inventory
(EIX_T]-Xi)/Xi (E[X_T]-Xi)/Xi
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FIGURE: Expected terminal inventory as a function of m and cx (left) , and as a function
of mand h (right).



TERMINAL INVENTORY OF A TYPICAL TRADER

Inventory Inventory
(EIX_T]-Xi)/Xi (EIX_T]-Xi)/Xi
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FIGURE: Expected terminal inventory as a function of ¢, and h (left), and as a function
of cx and h (right).



EXAMPLE V: MACRO - ECONOMIC GROWTH MODEL

Krusell - Smith in Aiyagari’s diffusion form

» Z! labor productivity of worker i € {1,--- , N}

> Al wealth at time ¢

» oz(-) and pz(-) given functions
Azl = pz(Z)at + oz(Z))dW,
dAl = [w/Zl + nAl — clldt,

> r; interest rate, w{ wages of worker i at time t

> ¢! consumption (control) of worker i

In a competitive equilibrium

rr = [0k FI(Ki, L)|y=1 — 6
wr = [OLF](Kt, Lt)lL=1

where (K, L) — F(K, L) production function and

;N
K = /apxl(dz da) =N ZA;

Mean Field Interaction



EXAMPLE V (CONT.)L

Optimization Problem
max Ji(e',---,c") =]E/ e 'u(chat, i=1,---,N
0

with CRRA isoelastic utility function
1—
U = S,
Cobb - Douglas production function
F(K,L)y=ak*L'"2,
for some constants a > 0 and « € (0, 1) so in equilibrium:
n=cak? 'Lm* —5,  and  wr=(1 — )aKS L,
Normalize the aggregate supply of labor to L; = 1,
ada

n=-—
,(:701

-4, and w = (1 — a)akK”,

Singular coefficients !



EXAMPLE VI: FINITE STATE SPACES

Cyber Security (Bensoussan - Kolokolstov)
> Finite state space E = {1, , M},
» Markovian models.
» Dynamics given by Q-matrices (rates of jump)
» Controls given by feedback functions of the current state.



EXAMPLE VII: GAMES WITH MAJOR AND MINOR PLAYERS

Examples:
» Financial system

> Finite (small) number of SIFls
> Large number of small banks

» Population Biology (Bee swarming)

> Finite (small) number of streakers
> Large number of worker bees

» Economic Contract Theory

> Regulator proposing a contract
» Utilities operating under the regulation
> Open Question: Nash versus Stackelberg



EX. VIII: GAMES WITH MAJOR AND MINOR PLAYERS

dXt(,) = bo(t, X2, iy, a[)dt+ ao(t, X0, Fips a,)dWO
axi = b(t, Xh#“)(t , at,a[)dH- o(t, Xt,u,,Xt , oz,,oz[th7 i=1,.--

where 7} is the empirical distribution of X;', - - - , X}

Cost functionals:
{J"(a",at-»-,aN = E[fg ot XP iy, af)ot + ¢°(F. 7i7)]

,N

Jal ol oy =Bt X B XD af, ad)dt + 9(X7, )], i=1,



EXAMPLE IX: MEAN FIELD GAMES OF TIMING

Last Lecture.
» llliquidity Modeling and Bank Runs
> Modeling the large issuance of a convertible bond



The Mean Field Game Strategy & the Mean Field Game
Problem



CLASSICAL STOCHASTIC DIFFERENTIAL CONTROL

T
inf E I:/ f(t, X, ar)dt + g( X7, ur)
ach 0

subject to dX; = b(l’7 Xt, a,)dt + O'(I,Xt, Oq)dW;; Xo = Xp-

> Analytic Approach (by PDEs)
» HJB equation
> Probabilistic Approaches (by FBSDEs)

1. Represent value function as solution of a BSDE
2. Represent the gradient of the value function as solution of a FBSDE
(Stochastic Maximum Principle)



I. FIRST PROBABILISTIC APPROACH

Assumptions
> o is uncontrolled
> o is invertible
Reduced Hamitonian

H(t, x,y,a) = b(t, x,a) -y + f(t, x, )
For each control & solve BSDE
dY® = —H(t, X;, Zio(t, Xo) ™, ap)dt + Z; - AW, Y7 = g(Xr)
Then
Yo =J(a) =E |:/0Tf(tvxt704t)dl‘+g(XT7#T)
So by comparison theorems for BSDEs, optimal control & given by:
&t = a(t, X, Zio(t,X)7"), with a(t,x,y) € argmin, c 4H(t, x, y, )
and Y§* = J(&)



I1. PONTRYAGIN STOCHASTIC MAXIMUM APPROACH

Assumptions

> Coefficients b, o and f differentiable

> fconvex in (x,«) and g convex
Hamitonian

H(t, x,y,z,a) = b(t, x,a) -y + o(t,x,a) - z+ f(t, x, )
For each control  solve BSDE for the adjoint processes Y = (Y;); and Z = (Z;);
dY: = —OxH(t, Xt, Yt, Zt, o)t + Z; - dW, Y1 = 0x9(X7)

Then, optimal control & given by:

&t = a(t, Xe, Y1, 4t), with  &(t,x,y,2z) € argmin, c4H(t, x, y, 2, @)



SUMMARY

In both cases (o uncontrolled), need to solve a FBSDE
{ aX; = B(t, X;, Yt, Zt)dt + Z(t, X¢)dW,,
dYy = —F(t, X;, Y, Zy)dt + ZidW;
First Approach
B(t, x,y,2) = b(t, x,a(t, x, zo(t,x) ")),
F(t,x,y,2) = —f(t, x, &(t, x, zo(t, x) ")
— (zo(t,x,)™") - b(t, X, &(t, x, zo(t,x)")).
Second Approach
B(t,x,y,z) = b(t,x,&(t, x,y)),
F(t,x,y,z) = —0xf(t,x,a(t,x,y)) — y - Oxb(t, x, &(t, x, y)).



FBSDE DECOUPLING FIELD

To solve the standard FBSDE
dXi = B(t, X, Yi)dt + X(t, X;)dW;
dY; = —F(f7 Xi, Yt)df + ZidW;
with Xg = x and YT = g(X7),

a standard approach is to look for a solution of the form Y; = u(t, X;)

> (t,x) < u(t, x) is called the decoupling field of the FBSDE
> If uis smooth,

> apply Itd6’s formula to du(t, X;) using forward equation
> identify the result with dY; in backward equation

(t, x) < u(t, x) is the solution of a nonlinear PDE

Oh well, So much for the probabilistic approach !



PROPAGATION OF CHAOS & MCKEAN-VLASOV SDES

System of N particles XtN” at time t with symmetric (Mean Field) interactions
ax"" = b(t, X\ i)t + o (8, X EN AW, =1, N
t t

where 7z, is the empirical measure i = § S 6,
t

Large population asymptotics (N — oo)
I. The N processes XV/ = (X")o< ;< 1 become asymptotically i.i.d.

2. Each of them is (asymptotically) distributed as the solution of the McKean-Vlasov
SDE
aXi = b(t, X;, L(Xp))at + o (t, Xi, L(X;))dW;

Frequently used notation:
L(X) =Px distribution of the random variable X.



FORWARD SDES OF MCKEAN-VLASOV TYPE

aX; = B(t, X;, L(X:))dt + (8, X, L(X;)) dW;, Te[o,T]

Assumption. There exists a constant ¢ > 0 such that

(A1) For each (x, 1) € R? x P,(RY), the processes
B(-, -, x, 1) : 2% [0, T] > (w, t) = B(w, t, x, n) and
(X p) 2% [0,T] 3 (w, t) = X(w, t, x, u) are F-progressively
measurable and belong to H?? and H?9* 9 respectively.

(A2) Vt e [0, T],Vx,x" € RY, Vu, u’ € Pa(RY), with probability 1 under P,
‘B(t’ X, /’L)_B(t) X/) M/)|+|Z(t7 X, U’)_Z(t’ X/’ N/)l S C“X_X/H’W2(H'r /’L/)] )

where W, denotes the 2-Wasserstein distance on the space P»(RY).

Result. if Xo € L2(Q, Fo, P; RY), then there exists a unique solution X = (X;)o<:<7 in §%9 s.t. for
everyp € [1,2]
E[ sup |XiI?] < +oo.
0<t<T

Sznitmann



N-PLAYER STOCHASTIC DIFFERENTIAL GAMES

Assume Mean Field Interactions (symmetric game)
N,i _ Ny — j Nyi — i i
ax' = b(t, X| ',u)’\(’[,\,,a’,)dt—i-a(t,Xt ',u)'\ét,\,,a’,)th’ i=1,---,N
Assume player / tries to minimize
-
. NG ) B
Jia', -, o) :]E[/O f(t, X, ”7M)I\(I[,V,a’,)dt+g(xr7u%)

Search for Nash equilibria
> Very difficult in general, even if N is small
> e-Nash equilibria? Still hard.
» How about in the limit N — co?

Mean Field Games Lasry - Lions, Caines-Huang-Malhamé



MFG PARADIGM

A typical agent plays against a field of players whose states he/she feels through the statistical
distribution distribution . of their states at time ¢

1. For each Fixed measure flow n = (u¢) in P(R), solve the standard stochastic control
problem

;
o= ang ot & { [ 0000, crat + g )}
subject to 7e
X = b(t, X, e, ar)dt + o (t, Xz, e, o) dWh

2. Fixed Point Problem: determine po = (u¢) so that
Vte 0, Tl, LX) = e

p or & is called a solution of the MFG.

Once this is done one expects that, if &; = ¢(t, X;),
o=t X)), j=1,- N

form an approximate Nash equilibrium for the game with N players.



Solving MFGs by Solving FBSDEs of McKean-Viasov Type



MINIMIZATION OF THE (REDUCED) HAMILTONIAN

Recall
H(t, X, iy, ) = y - b(t, X, p, @) + f(t, X, 1, )
and we want to use
a(t, x, p,y) € arg €aca H(t, x, i1, ¥, ).

(A.1) bis affine in a: b(t, x, i, ) = by (t, x, ) + ba(t)x with by and b, bounded.
(A.2) Running cost f uniformly A-convex for some A > 0:

F(t X', ) = £(t,x, 1, @) = (X = X, — @), Br,af(t, X, 11, 0)) > Al — a2,

Then
a(t, x, p, y) is unique and
[0, T] x R x Po(R) x R 3 (t,X, 11, ¥) — &(t, X, 11, ¥)
is measurable, locally bounded and Lipschitz-continuous with respect to (x, y), uniformly in
(t,1) € [0, T] x P2(R)



I. VALUE FUNCTION REPRESENTATION

Recall

o(t, x, p, «) = o(t, x) uniformly Lip-1 and uniformly elliptic

> If A C R¥is bounded (not really needed),

> if XX = (Xs[’x)rsssr is the unique strong solution of dX; = o(t, X;)dW; over [t, T] s.t.
XM = x,

» if (¥1X, 25X is a solution of the BSDE
AV = —H(t XS s, 2870 (s, X0¥) 71 68, X0, s, 2070 (8, X4™) 1)) ds — 2 dWG,
fort < s < Twith Y7 = g(X}*, ur),

then t at t 1
Gt = 6‘(37 X51X7 Hs, stxo.(s7 XS'X)7 )

is an optimal control over the interval [t, T] and the value of the problem is given by:
v(t,x) = VP~

The value function appears as the decoupling field of an FBSDE.



FIXED POINT STEP —> MCKEAN-VLASOV FBSDE

Starting from t = 0 and dropping the superscript ©:X, for each fixed flow p = (ur)o<t<T1

dX; = b(t, X, pe, (8, Xe, pie, Zeo (8, X)) ™)) dt + o (t, Xe)dW;
dYt = _H(t’ Xt7 /J,[,Zt()'(t, Xf)_17&(t7 Xt,ﬂt,Z{O’(t, XT)_1))dt - thWt’
for0 < t < T, with ¥7 = g(X7, 7).

Implementing the fixed point step
meoo—= o L(X)

gives an FBSDE of McKean-Vlasov type !



I1. PONTRYAGIN STOCHASTIC MAXIMUM PRINCIPLE

Again, freeze p = (ut)o<t<r,
Recall (reduced) Hamiltonian

H(t, x, p,y, ) = b(t, x, u, ) - y + f(t, x, p, @)

Adjoint processes

Given an admissible control a = (at)o< <1 and the corresponding controlled state
process X* = (X )o<i< 7, any couple (Y;, Zt)o<i< 7 satisfying:

dY; = —8XH(t, )(to‘7 wiy Ye, Ozt)dt + Z:dW;
Y7 = Oxg(X3 ur)

is called a set of adjoint processes.



STOCHASTIC CONTROL STEP

Use
a(t, x,p, y) = arginf H(t, x, u, y, ),

inject it in FORWARD and BACKWARD dynamics and SOLVE

dXe = b(t, X, e, &(t, Xe, pe, Y2))dt + o (t, Xe)dW,
dYe = —0H(t, X, e, Yo, &(t, X, e, Vo)) 0t + ZedW,

with Xo = Xo and YT = axg(pr,T)
Standard FBSDE (for each fixed t — 1)



FIXED POINT STEP

Solve the fixed point problem
= (uostst  — X=(Xo<tst  —> (L(XD))o<t<T
Note: if we enforce pi; = L(X;) forall 0 <t < T in FBSDE we have

dXi = b(t, Xi, £(X0), (t, Xe, £(X), Y2))dt + o(t, X)dW,
aY = —cH(t, X2, L(X0), Yr, &(t, X, L(X), Vo)) dt + ZidW,;

with
Xo = X0 and YT = axg(XT,ﬁ(XT))
FBSDE of McKean-Vlasov type !!!

Very difficult



FBSDES OF MCKEAN - VLASOV TYPE

In both probabilistic approaches to the MFG problem the problem reduces to the
solution of an FBSDE

de = B(tz Xf: ‘C(Xf)v th Zf)dt + z(tr Xf: ‘C(X[))dev
dYy = —F(t, X, £(X:), Yo, Z2)dlt + ZedW,

with, in the first approach

B(t, X, 1, ¥, 2) = b(t, X, p, &(t, X, p, o (t, x) 7)),
F(t,x,m,y,2) = —f(t, x, p, &(t, x, 1, 2o (£, x) ™)
—2zo(t,x)7b(t, X, u, &(t, X, p, 2o (t, x) 7)),
and in the second:

B(t7x7l‘l'7y7z) :b(t7x7u7&(t7x7#?y))7
F(t,x,u,y,z) = _8Xf(tvxvlj/7&(tvxnu'7y))_anb(t7X7U7OA‘(t7X7M7y))’



A TYPICAL EXISTENCE RESULT

We try to solve:

aXe = B(t, Xt, Vi, Zt, Prxy, vy ) At + Z (8, Xe, Vi, Py, vp)) dWs
dYy = —F(t, Xe, Y, Zt; P(x, vy ) dt + ZedW,, 0<t<T,

with Xo = xp and Y7 = G(XT,]P’XT).

Assumptions

(A1). B, F, X and G are continuous in u and uniformly (in n) Lipschitz in (x, y, z)
(A2). X and G are bounded and

1/2
IB(t, x. y. 2, )| < L[1 T Ix] Iyl + 12+ (fwmp I(X',}")\Zdu(x'm’)) ]

1/2
F(t %, v, 2,1)] < L[1 Flyl+ (fmp IY/|2du(X’7y/)> ]

(A3). X is uniformly elliptic
(%, ¥, Wt X,y )T > Ly
and [0, T] > t < X(t,0,0, 60,0)) is also assumed to be continuous.

Under (A1-3), there exists a solution (X,Y,Z) € §%% x §2P x HZPX™



MORE GENERALLY

» Lipschitz coefficients: existence and uniqueness in small time
» Lipschitz + Bounded coefficients + Non-degenerate X:

> existence by Schauder type argument (previous slide)
> Nice but, as such, does not apply to Linear Quadratic Models !

» |f FBSDE comes from MFG model with

> linear dynamics
> convex costs

existence + uniqueness



SOLUTIONS OF SPECIFIC APPLICATIONS

The following applications need special attention:

» Price Impact Model:
> interaction through the controls (extended MFG)
» Congestion + Exit of a Room:
» McKean-Vlasov FBSDEs in a bounded domain with boundary conditions
» C-S Flocking:
» non-convex cost function
> degenerate volatility
» still, find "explicit’ decoupling field for p fixed
» Krusell-Smith Growth Model:

» degenerate diffusion
> singular coefficients (blow up at origin)



OPTIMIZATION PROBLEM

Simultaneous Minimization of

J(@', -, aV)Y=E {/ ftX,,u[,a,)dt—i-g(XT,ﬁ'}’)}, =1,
under constraints of the form
dX{ = b(t, X, i, a})dt + o (t, Xe)dW] +0°(t, X)) o dW?, i=1,---

where:

TN

—N __ .

M —N§'15x;
=

GOAL: search for equilibria

especially when N is large



EXAMPLE OF MODEL REQUIREMENTS

» Each player cannot on its own, influence significantly the global output
of the game

» Large number of statistically identical players (N — o)
» Closed loop controls in feedback form

ar =o't (X, X)), i=1,---,N.
» Restricted controls in feedback form
ar = ¢'(t, (X, 1)) i=1,--,N
» By symmetry, Distributed controls
ap = ¢'(t, X)), i=1,---,N.
» ldentical feedback functions

¢'(t, )= =0"(t, ) = alt, ), 0O<t<T



TOUTED SOLUTION (WISHFUL THINKING)

v

Identify a (distributed closed loop) strategy ¢ from effective equations
(from stochastic optimization for large populations)

v

Each player is assigned the same function ¢
So at each time t, player i take action of = ¢(t, X{)

\{

What is the resulting population behavior?

» Did we reach some form of equilibrium?
If yes, what kind of equilibrium?

v



MEAN FIELD GAME (MFG) STANDARD STRATEGY

for the search of Nash equilibria

» By symmetry, interactions depend upon
empirical distributions
» When constructing the best response map

ALL stochastic optimizations should be "the same”
» When N is large

> empirical distributions should converge
> capture interactions with limits of empirical distributions
» ONE standard stochastic control problem for each possible limit

» Still need a fixed point
2006 Lasry - Lions (MFG) Caines - Malhamé - Huang (NCE)



LARGE GAME ASYMPTOTICS WITH COMMON NOISE

Conditional Law of Large Numbers

» Search for effective equations in the asymptotic regime N — oo
» Then, solve (in this asymptotic regime) for

> a Nash equilibrium?
» a stochastic control problem?

» If we consider exchangeable equilibria,(o, - - - , o)), then
> By LLN
im G =Py o
> Dynamics of player 1 (or any other player) becomes
ax; = b(t, X}, ur, o )t + o (t, X dWi+0°(t, X;) o dWP
with p; = IP’X; |70
» Cost to player 1 (or any other player) becomes

T
E{/O f(t7Xt7#t,a;)df+Q(XTHUIT)}



MFG PROBLEM WITH COMMON NOISE

1. Fix a measure valued (F7)-adapted process (i) in P(R);
2. Solve the standard stochastic control problem

& =arg igf]E {/T f(t, X, pt, ar)dt + g(Xr, ,ur)}
subject to °
dX; = b(t, X, put, ) dt + o (t, Xe)dW; + o°(t, X¢) o dWP;
3. Fixed Point Problem: determine (u:) so that
vt e [0, T], IF’XMIO =y as.
Once this is done, if &; = ¢(t, X;), go back to N player game and show that:
oAt =¢*t, X)), j=1,--,N

form an approximate Nash equilibrium for the game with N players.



RECENT RESULTS BY PROBABILISTIC METHODS

R.C. - F. Delarue (two-volume book to appear)

MFG version of Cucker-Smale flocking model

Crowd motion with congestion, e.g. exit of a room

Price impact model

Diffusion form of Krusell - Smith growth model

Interacting OU model for systemic risk with delay (RC - Fouque)
MFGs of timing for bank runs (R. - Lacker )

vV vV vV VvV VvV VY

MFGs with Major and Minor players (RC - Zhu), in finite spaces (R.C. - Wang)

In each case, we prove existence, sometimes uniqueness, often give
numerical illustrations, unfortunately (so far) computations rarely stable
away from LQ models.



Solving MFGs by Solving FBSDEs of McKean-Viasov Type



PROBABILISTIC APPROACH: FIRST PRONG

BSDE Representation of the Value Function: Y; = V*(t, X;)
(Reduced) Hamiltonian

H™(t,x,y,a) = b(t, X, pt, ) - y + f(t, X, put, @)
Determine (assume existence of):

ak(t,x,y) =arginf H*(t,x,y, @)

Inject in FORWARD and BACKWARD dynamics and SOLVE

aX: = b(t, Xt, pit, d“(t, Xi, ZtO'_1 (t, Xt)))dt + U(t, X;)th
dYy = —f(t, X, Zio ' (t, Xp), &*(t, Xp, Zio ' (8, Xp)))dt + Z,dW,

with Xo = Xo and YT = Q(XT,,LLT)
Standard FBSDE (for each fixed t < ;)



PROBABILISTIC APPROACH: SECOND PRONG

Stochastic Maximum Principle: Y; = 0, V*(t, X;)

Inject in FORWARD and BACKWARD dynamics and SOLVE

aXi = b(t, Xi, ut,@“(t, X, Yt))dt + O'(t, Xt)dVVt
Y = —OH(t XE, Yo, & (8, Xi, Y2))dt + Z:dWs

with Xo = Xo and YT = 8xg(XT,/,LT)
Standard FBSDE (for each fixed t < 1)



FIXED POINT STEP

Solve the fixed point problem
p=(u)o<i<t — X =X)o<t<tr — v =(=Pxo<i<T
Note: if we enforce ji; = Px, for all 0 < t < T in FBSDE we have

dXi = b(t, Xe, Px,, 6™ (t, X;, Yr))dt + cdW;
Yy = —V(t, X, Yy, Py, )dt + ZdW,

with
Xo = Xo and Yr = G(XT,]P)XT)
FBSDE of (Conditional) McKean-Vlasov type !!!

Very difficult



FBSDES OF MCKEAN-VLASOV TYPE

RC - Delarue

aX: = B(f7 Xt, Yt,Zt,P(th[))dt-i- Z(L Xt, Y[,]P’(X“Yt))dW(
aYe = —V(t, X, Yo, Zi, Bx, vy 0t + ZidW,

> Lipschitz coefficients: existence and uniqueness in small time
> Lipschitz + Bounded coefficients + Non-degenerate X : existence
» FBSDE from linear MFG with convex costs: existence + uniqueness



SOLUTIONS OF SPECIFIC APPLICATIONS

v

Price Impact Model:
> interaction through the controls (extended MFG)
» Congestion + Exit of a Room:
» McKean-Vlasov FBSDEs in a bounded domain with boundary conditions
C-S Flocking:
> non-convex cost function
> degenerate volatility
» still, find "explicit’ decoupling field for p fixed
Krusell-Smith Growth Model:

» degenerate diffusion
> singular coefficients (blow up at origin)

v

v



BACK TO THE MFG PROBLEM

» For u = (ut); fixed, assume decoupling field u* : [0, T] x RY — R exists so that
Y = uH(t, Xp)
> Dynamics of X
X = b(t, Xz, e, &(t, Xi, e, Ut (t, Xi)))dt + odWs

> In equilibrium i = Py,
Y; = X (t X).

v

Could the function
(8, x, u) = U(t, x, 1) = uk(t, Xt)

be the solution of a PDE, with time evolving in one single direction?

MASTER EQUATION touted by P.L. Lions in his lectures. (Lecture Il).



