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ECONOMIC MODELS OF ILLIQUIDITY & BANK RUNS

» Bryant & Dyamond-Dybvig

» deterministic, static, undesirable equilibrium
» Morris-Shin & Rochet-Vives

» still static, investors’ private (noisy) signals
» He-Xiong

» dynamic continuous time model, perfect observation
» exogenous randomness for staggered debt maturities
» investors choose to roll or not to roll

O. Gossner’s lecture: first game of timing
» diffusion model for the value of assets of the bank
» investors have private noisy signals
» investors choose a time to withdraw funds

M. Nutz Toy model for MFG game of timing with a continuum of players



CONTINUOUS TIME BANK RUN MODEL

Inspired by Gossner’s lecture

» N depositors

» Amount of each individual (initial & final) deposit D{) =1/N
Current interest rate r

Depositors promised return 7 > r

Y; = value of the assets of the bank at time t,

Y; It process, Yy > 1

L(y) liquidation value of bank assets if Y = y

Bank has a credit line of size L(Y;) attime t at rate r
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Bank uses credit line each time a depositor runs (withdraws his deposit)



BANK RUN MODEL (CONT.)

Assets mature at time T, no transaction after that
If Y7 > 1 every one is paid in full
If Yr < 1 exogenous default

vV v v v

Endogenous default at time t if depositors try to withdraw more than
L(Y1)



BANK RUN MODEL (CONT.)

Each depositor i € {1,--- | N}

> has access to a private signal X/ at time ¢

aX! = dY; + cdW,, i=1,---,N

» chooses a time 7' € S’ at which to TRY to withdraw his deposit
» collects return 7 until time '
» tries to maximize

St Ny = E{g(Ti, YT,')]

where

> g(t, V) = e (LY - N/N)T A
» N; number of withdrawals before t
» 7 =inf{t; L(Y:) < N;/N}



BANK RUN MODEL: CASE OF FULL INFORMATION

Assume
» 0 =0,i.e. Y;is public knowledge !
» the function y — L(y) is also public knowledge
» eSSy

In ANY equilibrium .
' =inf{t, L(Y;) <1}

» Depositors withdraw at the same time (run on the bank)
» Each depositor gets his deposit back (no one gets hurt!)

Highly Unrealistic

Depositors should wait longer because of noisy private signals



GAMES OF TIMING

N players, states (observations / private signals) X’ at time t
dX = dY; + cdW/
Y; common unobserved signal (It6 process)
dY; = pedt + ordWy
Each player maximizes
S ) =B X Yo (0.
where
» each 7' is a FX' stopping time
> = 1N >N, &_: empirical distribution of the '’s
> g(t, x,y,p) is the reward to a player for

exercising his timing decision at time t when

his private signal is X/ = x,

the unobserved signal is Y; =y,

the proportion of players who already exercised their right is p.

vvy vy



ABSTRACT MFG FORMULATION

Recall

dY; = brat + ordW?
aX; = dY; + ocdW;,

More generally:
1. The states of the players are given by a single measurable function
X :C([0, T]) x ([0, T]) — C([0, T])
progressively measurable X(w°, w); depends only upon W[%J] and w4,
2. X' = X(WPO, W') state process for player i

3. Reward / cost function F on C([0, T]) x C([0, T]) x P([0, T]) x [0, T]
progressively measurable F(w°, w, 1, t) depends only upon W[% 1> o, and

u([0,8])for0 <s<t.



APPROXIMATE NASH EQUILIBRIA

Definition '
If e >0, aset (r"*,---,7N*) of stopping time 7/* € Sy is said to be
an e-Nash equilibrium if for every i € {1,--- , N} and 7 € Sx; we have:

E[F(WO, W/ zN=" 77)] > E[F(WP, W/, N~ r)] — e

)

7N~ denoting the empirical distribution of
(7_1,*7 . ’7,171,*77_14»1,*’ . 77_N,*)_

Weak Characterization

the set of weak limits as N — oo of ey - Nash equilibria when ey ™\, 0
coincide with the set of weak solutions of the MFG equilibrium
problem



FORMULATION OF THE MFG OF TIMING PROBLEM

J(Mv T) = E[F( Wov W, p, T)]

Definition
A stopping time 7* € Sy is said to be a strong MFG equilibrium if for every

T € Sx we have:
I, 77) = I, 7)

with o = £(7*|WP°).
MFG of Timing Problem
1. Best Response Optimization: for each random environment u solve

Oecarg sup J(u0);

6eSx,0<T

2. Fixed-Point Step: find p so that
vt € [0, T], u(WP,[0,1]) = B[A < t|W°].



ASSUMPTIONS

(C) For each fixed (w°, w) € C([0, T]) x C([0, T]), (i, t) — F(W®, w, i, 1) is
continuous.

(SC) For each fixed (w9, w, 1) € C([0, T]) x C([0, T]) x P([0, T]), t — F(W°, w, u, 1)
is upper semicontinuous.

(ID) For any progressively measurable random environments
po = ([0, T1) = P([0, T]) sit. u(W0) < ' (WP) as.

M= F(W°, W, 1/ (W°), 1) — F(W°, W, (W), 1)
is a sub-martingale.
(ID) holds when F has increasing differences t < t’ and p < p/ imply:
F(wWo, w, p/ t') — F(wW, w, i/, t) > F(wWO, w,pu, t') — F(W®, w, i, t).
(ID) = the expected reward J has also increasing differences
J' ") = JW 1) = I ') = I, T)
Major Disappointment: ifF(w%, w, 1, t) = G(u[0, 1]) for some real-valued continuous

function G on [0, 1] which we assume to be differentiable on (0, 1). If F satisfies
assumption (ID), then G is constant.



FIXED POINT RESULTS ON ORDER LATTICES

Recall: A partially ordered set (S, <) is said to be a lattice if:

xVy=inf{zeS; z>x,z>y} €S
and (1)
xXANy=sup{zeS; z<x,z<y} €S,
forall x,y € S. A lattice (S, <) is said to be complete if every subset S C S

has a greatest lower bound inf S and a least upper bound sup S, with the
convention that inf() = sup S and sup @ = inf S.

Example The set S of stopping times of a right continuous filtration
F = (Ft)t>o0

Fact 1: If S is a complete lattice and ¢ : S 5 x — ®(x) € S is order
preserving in the sense that ®(x) < ®(y) whenever x, y € S are such that
x <y, the set of fixed points of ® is a non-empty complete lattice.

Another definition A real valued function f on a lattice (S, <) is said to be
supermodular if forall x,y € S

FXV y) + (X A y) = F(x) + (). @)



EXISTENCE OF STRONG EQUILIBRIA

Under assumptions (SC) and (ID) there exists a strong equilibrium.
Moreover, if continuity (C) is assumed instead of semicontinuity (SC),
then there exist strong equilibria 7* and 6* such that for any strong
equilibrium 7 we have 6* <7 < 71* a.s.



MFGs in Finite State
Spaces or Graphs



EQUILIBRIUM PBS WITH FINITELY MANY STATES
Finite State Space £ = {1,--- , M} in lieu of R?

Motivation
» Vaccination Models: Laguzet - Turinici

» Computer network security (Botnet attacks)
Kolokolstov-Bensoussan

Papers
» MFGs on Finite State Spaces Gomes-Mohr-Souza
» MFGs on Graphs Guéant
» MFGs with Major and Minor Players R.C.-P.Wang

In both cases

» Mean Field Interactions
(dynamics and costs depend upon proportion of individuals in a
given state)



CONTINUOUS TIME, FINITE STATE DYNAMICS

SDEs replaced by Continuous Time Stochastic Processes
in finite state space £

For convenience give up on open loop problems
use controls in feedback form so markovian dynamics

Distribution given by a Q-matrix g; = [g:(X, X')]x x'cE:
qi(x, x") = rate of jumping from state xto x’at time t.

P[Xerat = X'[X; = x] = qu(x, X' ) At + o(At).

Properties of Q-matrices

gi(x,x') >0 if x' #£x
ai(x, x) = _Zx/qéx qi(x, X')



FINITE STATE MEAN FIELD GAME: DATA

Jump rates
0, T] x Ex ExP(E)x A3 (t,x, X, u, ) = M\(x, X', p1, @)

Q-matrix
qt(X, Xl) = At(xv X/7 Hy Oé)
Costs
» Running cost function

[0, T] x ExP(E)x A> (t, X, p, ) = f(t, X, p, @)
» terminal cost function
E xP(E) > (x,1) = g(x, 1)

Remark,
If € P(E), n = (u({x})xek finite dimensional probability simplex!



FINITE STATE MEAN FIELD GAMES

Hamiltonian

H(t, x, pu, h,a) = Z)\ (x, X', w, a)h(x’) + f(t, x, p, @).
x'eE

Hamiltonian minimizer
a(t, x,p, h) =arg ;21;‘ H(t, x, u, h, o),
Minimized Hamiltonian
H*(t,x, p, h) = (lrenl‘ H(t, x, u, hy ) = H(t, x, u, h, &(t, x, p, h)).

HJB Equation
ot (t, x) + H*(t, x, ut, uP(t,-)) = 0, 0<t<T, xeE,

with terminal condition u*(T, x) = g(x, p1).



THE MASTER EQUATION EQUATION

oU(t, x, )

O U + H(t,x, 1, U(t, - ) + Y (t U (&) ~

x'€E

where the RE-valued function h* is defined on [0, T] x P(E) x RE by:

W (tpu) = /E A (X, - 6t X, 1, 1)) dpu(x)
= Z)‘I(X7'au?&(tax7uvu))u({x})'

xeE

System of Ordinary Differential Equations (ODES)



A CYBER SECURITY MODEL

N computers in a network (minor players)
One hacker / attacker (major player)
Action of major player affect minor player states (even when N >> 1)

Major player feels only ul the empirical distribution of the minor players
states

v

v vy

Finite State Space: each computer is in one of 4 states
» protected & infected
» protected & susceptible to be infected
» unprotected & infected
» unprotected & susceptible to be infected
Continuous time Markov chain in E = {DI, DS, Ul, US}

Each player’s action is intended to affect the rates of change from one
state to another to minimize expected costs

J(a’, a) = ]E[/OT(k[ﬂD + ki ,)(X,)dz‘]

;
S’ a)=E {/0 (—foe) + Kug® (1)) dt}



MINOR PLAYERS TRANSITION RATES
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FINITE PLAYERS MFGS
One major player and N minor players
> X? state of major player: XY € E° = {1,2,...,d°}
» X! state of major player:: X/ € E={1,2,...,d} j=1,--- N

At time t < T, the major player...

» can observe its own states X? and the empirical distribution ) of the
minor player’s states.

» chooses a control of the form a°(t, X, uYY).

Each minor player...

> can observe its own states X{, the state X? of the major player, and the
empirical distribution /.

» chooses a control of the form «a(t, X[, X?, u?’).

The system evolves as a Continuous-Time Markov Chain

» The transition rate matrix of each player depends on his own states,
major player’s state and u.

» The change of states are conditionally independent among the players.



JUMP RATES OF THE SYSTEM

» Minor players’ jump rates:
0, T]xExExE*xA xP(E)xA— R
(t7 X? Xl7 XO? a07 :u’7 a) *> q(t7 X? Xl? XO? a07 ‘LL, a)
» Major player’s jump rate:
[0, T x E®x E> x P(E) x A° = R
(X% X% %) = (X%, X", . %)
» Major player’s control and state impact EVERY player in the game.
» We assume that g and q° satisfies:

a(t, x, %', x°,a% p,a) >0, q°(t,x°, X, 11,a°) > 0
tx,x, X%, 0% poa) == q(t,x, x', x°,a°
q 7
x'#£x

Q°(t, X X% a%) = = D @t X%, X, 0.

X/O#XO



JUMP RATES OF THE SYSTEM

» The changes of states are conditionally independent among the players:

0 0y 1 N NiyO 0 y1 A N _ N
PXesat = Xesat =J 5 Xepar =1 1Xe =5, X =i,...,X =1"]

::[]lio—jo + qo(t io ° O[(t, i07 ,U‘II‘V)7 ,U'II‘V)At + O(At)]

X H[]l/"—]" + q t I a./ 75 ( i 7“4\/)’ I'O,OC(L Ioa:u/{v)nu’l{v)AtJ’_ O(At)]

» This is equivalent to define the transition rate matrix Q" for the Markov
Chain (X2, X/, ..., X}¥) with M® x MV states.

Here is how: we just retain the first order terms by expending the RHS
of the above equality.

» QVis a HUGE sparse matrix as N grows.



PAYOFF AND SYMMETRIC NASH EQUILIBRIUM

Fix a finite horizon T.

» Major player’s payoff:
-
0
» Minor player’s payoff:

.
a8 8Y) = E /0 f(t, 87 X0, X0, 1t ), X ot X0 '), Xt )t

+ g(X7, X2, 1))

Our objective is to search for the Symmetric Nash Equilibrium.
i.e. to find o* € A and 8* € A such thatforall « € A® and 8 € A:

SN, 8.8 > M, B, B)
SNt . B > SNt B, By BY)



FORMULATION OF THE MEAN FIELD GAME

Why do we use MFG?

» N—player Game is difficult: as number of players grows, the dimension
of the transition rate matrix of the system increases exponentially.

» Use MFG paradigm: consider the limit case where the number of minor
player N tends to infinity.

» Propagation of Chaos: hope that the solution of the limit case provides
an approximative equilibrium for N-player game when N is large.

Perks of MFG:

» The empirical distribution of the minor players’ states has a tractable
form of infinitesimal generator.

» Deviation of a SINGLE minor player’s strategy has NO impact on the
distribution of minor player’s states.



STRATEGY OF SOLUTION
We employ a fixed point argument based on the controls of the players:

Step 1 (Major Player’s Problem)
» Fix an admissible strategy A 5 3 = 5(t, X, X?, uut) for the minor players.

» Given that all the minor players use the strategy 8, solve for the optimal
control of the major player a*(3).

Step 2 (Representative Minor Player’'s Problem)

» Fix an admissible strategy A% > a = a(t,X?, ) for the major player and
a Markov strategy § = B(t, X{", X?, i) for the minor players.

» Consider a population of minor players using strategy £ and a major
player using strategy a. Denote p:(&, 3) the corresponding distribution
of the population of minor players.

» Consider an additional minor player facing the major player &, and the
distribution pt(&, ).
» Solve for his optimal control 5*(&, 3).

Step 3 (Fixed Point Argument)
Search for the fixed point [a, 3] = [a"(B), 57 (&, B)]-



