PROBABILISTIC ANALYSIS OF MFGS IV. GAMES OF TIMING AND FINITE STATE SPACE MEAN FIELD GAMES

René Carmona

Department of Operations Research & Financial Engineering PACM Princeton University

Minerva Lectures, Columbia U. October 28, 2016

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

ECONOMIC MODELS OF ILLIQUIDITY & BANK RUNS

Bryant & Dyamond-Dybvig

- deterministic, static, undesirable equilibrium
- Morris-Shin & Rochet-Vives
 - still static, investors' private (noisy) signals
- He-Xiong
 - dynamic continuous time model, perfect observation
 - exogenous randomness for staggered debt maturities
 - investors choose to roll or not to roll

O. Gossner's lecture: first game of timing

- diffusion model for the value of assets of the bank
- investors have private noisy signals
- investors choose a time to withdraw funds
- M. Nutz Toy model for MFG game of timing with a continuum of players

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

CONTINUOUS TIME BANK RUN MODEL

Inspired by Gossner's lecture

- N depositors
- Amount of each individual (initial & final) deposit $D_0^i = 1/N$
- Current interest rate r
- Depositors promised return $\overline{r} > r$
- Y_t = value of the assets of the bank at time t,
- Y_t Itô process, $Y_0 \ge 1$
- L(y) liquidation value of bank assets if Y = y
- ▶ Bank has a credit line of size $L(Y_t)$ at time t at rate \bar{r}
- Bank uses credit line each time a depositor runs (withdraws his deposit)

(日) (日) (日) (日) (日) (日) (日)

BANK RUN MODEL (CONT.)

- Assets mature at time T, no transaction after that
- If $Y_T \ge 1$ every one is paid in full
- If $Y_T < 1$ exogenous default
- Endogenous default at time t if depositors try to withdraw more than $L(Y_t)$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

BANK RUN MODEL (CONT.)

Each depositor $i \in \{1, \cdots, N\}$

has access to a private signal Xⁱ_t at time t

$$dX_t^i = dY_t + \sigma dW_t^i, \qquad i = 1, \cdots, N$$

- chooses a time $\tau^i \in S^{\chi^i}$ at which to **TRY** to withdraw his deposit
- collects return \overline{r} until time τ^i
- tries to maximize

$$J^i(au^1,\cdots, au^{\sf N})=\mathbb{E}\Big[g(au^i, extsf{Y}_{ au^i})\Big]$$

where

- $g(t, Y_t) = e^{-rt \wedge \tau} (L(Y_t) N_t/N)^+ \wedge \frac{1}{N}$
- Nt number of withdrawals before t
- $\tau = \inf\{t; L(Y_t) < N_t/N\}$

BANK RUN MODEL: CASE OF FULL INFORMATION

Assume

- $\sigma = 0$, i.e. Y_t is public knowledge !
- the function $y \hookrightarrow L(y)$ is also public knowledge

•
$$\tau^i \in \mathcal{S}^{\gamma}$$

In ANY equilibrium

$$\tau^i = \inf\{t; \ L(Y_t) \le 1\}$$

- Depositors withdraw at the same time (run on the bank)
- Each depositor gets his deposit back (no one gets hurt!)

Highly Unrealistic

Depositors should wait longer because of noisy private signals

(日) (日) (日) (日) (日) (日) (日)

GAMES OF TIMING

N players, states (observations / private signals) X_t^i at time t

$$dX_t^i = dY_t + \sigma dW_t^i$$

Yt common unobserved signal (Itô process)

$$dY_t = \mu_t dt + \sigma_t dW_t^0$$

Each player maximizes

$$J^{i}(\tau^{1},\cdots,\tau^{N})=\mathbb{E}\Big[g(\tau^{i},X_{\tau^{i}},Y_{\tau^{i}},\overline{\mu}^{N}([0,\tau^{i}])\Big]$$

where

- each τ^i is a \mathcal{F}^{χ^i} stopping time
- $\overline{\mu} = \frac{1}{N} \sum_{i=1}^{N} \delta_{\tau^{i}}$ empirical distribution of the τ^{i} 's
- g(t, x, y, p) is the reward to a player for
 - exercising his timing decision at time t when
 - his private signal is $X'_t = x$,
 - the unobserved signal is $Y_t = y$,
 - the proportion of players who already exercised their right is p.

ABSTRACT MFG FORMULATION

Recall

$$dY_t = b_t dt + \sigma_t dW_t^0$$

 $dX_t = dY_t + \sigma dW_t,$

More generally:

1. The states of the players are given by a single measurable function

 $X: \mathcal{C}([0,T]) \times \mathcal{C}([0,T]) \mapsto \mathcal{C}([0,T])$

progressively measurable $X(w^0, w)_t$ depends only upon $w_{[0,t]}^0$ and $w_{[0,t]}$,

- 2. $X^i = X(W^0, W^i)$ state process for player *i*
- 3. Reward / cost function F on $C([0, T]) \times C([0, T]) \times \mathcal{P}([0, T]) \times [0, T]$ progressively measurable $F(w^0, w, \mu, t)$ depends only upon $w^0_{[0,t]}$, $w_{[0,t]}$, and $\mu([0,s])$ for $0 \le s \le t$.

(日) (日) (日) (日) (日) (日) (日)

APPROXIMATE NASH EQUILIBRIA

Definition

If $\epsilon > 0$, a set $(\tau^{1,*}, \cdots, \tau^{N,*})$ of stopping time $\tau^{i,*} \in S_{X^i}$ is said to be an ϵ -Nash equilibrium if for every $i \in \{1, \cdots, N\}$ and $\tau \in S_{X^i}$ we have:

$$\mathbb{E}[F(W^{0}, W^{i}, \overline{\mu}^{N, -i}, \tau^{i,*})] \geq \mathbb{E}[F(W^{0}, W^{i}, \overline{\mu}^{N, -i}, \tau)] - \epsilon,$$

 $\overline{\mu}^{N,-i}$ denoting the empirical distribution of $(\tau^{1,*},\cdots,\tau^{i-1,*},\tau^{i+1,*},\cdots,\tau^{N,*}).$

Weak Characterization

the set of weak limits as $N \to \infty$ of ϵ_N - Nash equilibria when $\epsilon_N \searrow 0$ coincide with the set of weak solutions of the MFG equilibrium problem

FORMULATION OF THE MFG OF TIMING PROBLEM

$$J(\mu,\tau) = \mathbb{E}[F(W^0, W, \mu, \tau)]$$

Definition

A stopping time $\tau^* \in S_X$ is said to be a strong MFG equilibrium if for every $\tau \in S_X$ we have:

$$J(\mu, au^*) \geq J(\mu, au)$$

with $\mu = \mathcal{L}(\tau^* | W^0)$.

MFG of Timing Problem

1. Best Response Optimization: for each random environment μ solve

$$\hat{\theta} \in \arg \sup_{\theta \in \mathcal{S}_X, \theta \leq T} J(\mu, \theta);$$

2. *Fixed-Point Step*: find μ so that

$$\forall t \in [0, T], \ \mu(\boldsymbol{W}^{0}, [0, t]) = \mathbb{P}[\hat{\theta} \leq t | \boldsymbol{W}^{0}].$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

ASSUMPTIONS

- (C) For each fixed $(w^0, w) \in C([0, T]) \times C([0, T]), (\mu, t) \mapsto F(w^0, w, \mu, t)$ is continuous.
- (SC) For each fixed $(w^0, w, \mu) \in C([0, T]) \times C([0, T]) \times P([0, T]), t \mapsto F(w^0, w, \mu, t)$ is upper semicontinuous.
- (ID) For any progressively measurable random environments $\mu, \mu' : C([0, T]) \mapsto \mathcal{P}([0, T])$ s.t. $\mu(w^0) \le \mu'(w^0)$ a.s.

$$M_t = F(W^0, W, \mu'(W^0), t) - F(W^0, W, \mu(W), t)$$

is a sub-martingale.

(ID) holds when *F* has increasing differences $t \le t'$ and $\mu \le \mu'$ imply:

$$F(w^0, w, \mu', t') - F(w^0, w, \mu', t) \ge F(w^0, w, \mu, t') - F(w^0, w, \mu, t).$$

(ID) \implies the expected reward J has also increasing differences

$$J(\mu',\tau') - J(\mu',\tau) \geq J(\mu,\tau') - J(\mu,\tau)$$

Major Disappointment: if $F(w^0, w, \mu, t) = G(\mu[0, t])$ for some real-valued continuous function *G* on [0, 1] which we assume to be differentiable on (0, 1). If *F* satisfies assumption **(ID)**, then *G* is constant.

FIXED POINT RESULTS ON ORDER LATTICES

Recall: A partially ordered set (S, \leq) is said to be a lattice if:

$$x \lor y = \inf\{z \in \mathcal{S}; \ z \ge x, z \ge y\} \in \mathcal{S}$$
(1)

and

$$x \wedge y = \sup\{z \in S; z \leq x, z \leq y\} \in S,$$

for all $x, y \in S$. A lattice (S, \leq) is said to be complete if every subset $S \subset S$ has a greatest lower bound inf *S* and a least upper bound sup *S*, with the convention that $\inf \emptyset = \sup S$ and $\sup \emptyset = \inf S$.

Example The set S of stopping times of a right continuous filtration $\mathbb{F} = (\mathcal{F}_t)_{t \geq 0}$

Fact 1: If S is a complete lattice and $\Phi : S \ni x \mapsto \Phi(x) \in S$ is order preserving in the sense that $\Phi(x) \le \Phi(y)$ whenever $x, y \in S$ are such that $x \le y$, the set of fixed points of Φ is a non-empty complete lattice.

Another definition A real valued function *f* on a lattice (S, \leq) is said to be supermodular if for all $x, y \in S$

$$f(x \vee y) + f(x \wedge y) \ge f(x) + f(y).$$
⁽²⁾

EXISTENCE OF STRONG EQUILIBRIA

Under assumptions (SC) and (ID) there exists a strong equilibrium. Moreover, if continuity (C) is assumed instead of semicontinuity (SC), then there exist strong equilibria τ^* and θ^* such that for any strong equilibrium τ we have $\theta^* \leq \tau \leq \tau^*$ a.s.

(日) (日) (日) (日) (日) (日) (日)

MFGs in Finite State Spaces or Graphs

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

EQUILIBRIUM PBS WITH FINITELY MANY STATES

Finite State Space $E = \{1, \dots, M\}$ in lieu of \mathbb{R}^d

Motivation

- Vaccination Models: Laguzet Turinici
- Computer network security (Botnet attacks) Kolokolstov-Bensoussan

Papers

- MFGs on Finite State Spaces Gomes-Mohr-Souza
- MFGs on Graphs Guéant
- MFGs with Major and Minor Players R.C.-P.Wang

In both cases

Mean Field Interactions

(dynamics and costs depend upon proportion of individuals in a given state)

CONTINUOUS TIME, FINITE STATE DYNAMICS

SDEs replaced by **Continuous Time Stochastic Processes** in **finite state space** *E*

For **convenience** give up on **open loop problems** use controls in **feedback form** so **markovian dynamics**

Distribution given by a **Q-matrix** $q_t = [q_t(x, x')]_{x,x' \in E}$:

 $q_t(x, x') = rate of jumping from state x to x' at time t.$

$$\mathbb{P}[X_{t+\Delta t} = x' | X_t = x] = q_t(x, x') \Delta t + o(\Delta t).$$

Properties of Q-matrices

$$egin{array}{ll} q_t(x,x')\geq 0 & ext{if } x'
ot=x \ q_t(x,x)=-\sum_{x'
eq x} q_t(x,x') \end{array}$$

・ロト・ 日本・ 日本・ 日本・ 日本・ つくぐ

FINITE STATE MEAN FIELD GAME: DATA

Jump rates

$$[0, T] \times E \times E \times \mathcal{P}(E) \times A \ni (t, x, x', \mu, \alpha) \hookrightarrow \lambda_t(x, x', \mu, \alpha)$$

Q-matrix

$$q_t(\mathbf{x}, \mathbf{x}') = \lambda_t(\mathbf{x}, \mathbf{x}', \mu, \alpha)$$

Costs

Running cost function

$$[\mathbf{0}, T] \times \boldsymbol{E} \times \mathcal{P}(\boldsymbol{E}) \times \boldsymbol{A} \ni (t, \boldsymbol{x}, \mu, \alpha) \hookrightarrow f(t, \boldsymbol{x}, \mu, \alpha)$$

terminal cost function

$$E imes \mathcal{P}(E)
i (x, \mu) \mapsto g(x, \mu)$$

Remark,

If $\mu \in \mathcal{P}(E)$, $\mu = (\mu(\{x\})_{x \in E}$ finite dimensional **probability simplex!**

FINITE STATE MEAN FIELD GAMES

Hamiltonian

$$H(t, x, \mu, h, \alpha) = \sum_{x' \in E} \lambda_t(x, x', \mu, \alpha) h(x') + f(t, x, \mu, \alpha).$$

Hamiltonian minimizer

$$\hat{\alpha}(t, x, \mu, h) = \arg \inf_{\alpha \in \mathcal{A}} H(t, x, \mu, h, \alpha),$$

Minimized Hamiltonian

$$H^*(t, x, \mu, h) = \inf_{\alpha \in \mathcal{A}} H(t, x, \mu, h, \alpha) = H(t, x, \mu, h, \hat{\alpha}(t, x, \mu, h)).$$

HJB Equation

$$\partial_t u^{\boldsymbol{\mu}}(t, \boldsymbol{x}) + H^*(t, \boldsymbol{x}, \mu_t, u^{\boldsymbol{\mu}}(t, \cdot)) = 0, \qquad 0 \leq t \leq T, \ \boldsymbol{x} \in \boldsymbol{E},$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

with terminal condition $u^{\mu}(T, x) = g(x, \mu_T)$.

THE MASTER EQUATION EQUATION

$$\partial_t U + H^*(t, x, \mu, U(t, \cdot, \mu)) + \sum_{x' \in E} h^*(t, \mu, U(t, \cdot, \mu))(x') \frac{\partial U(t, x, \mu)}{\partial \mu(\{x'\})} = 0,$$

where the $\mathbb{R}^{\mathcal{E}}$ -valued function h^* is defined on $[0, T] \times \mathcal{P}(\mathcal{E}) \times \mathbb{R}^{\mathcal{E}}$ by:

$$h^*(t,\mu,u) = \int_E \lambda_t(\mathbf{x},\cdot,\mu,\hat{\alpha}(t,\mathbf{x},\mu,u)) d\mu(\mathbf{x})$$

=
$$\sum_{\mathbf{x}\in E} \lambda_t(\mathbf{x},\cdot,\mu,\hat{\alpha}(t,\mathbf{x},\mu,u)) \mu(\{\mathbf{x}\}).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

System of Ordinary Differential Equations (ODEs)

A CYBER SECURITY MODEL

- N computers in a network (minor players)
- One hacker / attacker (major player)
- ► Action of major player affect minor player states (even when *N* >> 1)
- Major player feels only μ^N_t the empirical distribution of the minor players' states

Finite State Space: each computer is in one of 4 states

- protected & infected
- protected & susceptible to be infected
- unprotected & infected
- unprotected & susceptible to be infected

Continuous time Markov chain in $E = \{DI, DS, UI, US\}$

Each **player's action** is intended to affect the **rates of change** from one state to another to minimize **expected costs**

$$J(\alpha^{0}, \alpha) = \mathbb{E}\left[\int_{0}^{T} (k_{D}\mathbf{1}_{D} + k_{I}\mathbf{1}_{I})(X_{t})dt\right]$$
$$J^{0}(\alpha^{0}, \alpha) = \mathbb{E}\left[\int_{0}^{T} (-f_{0}(\mu_{t}) + k_{H}\phi^{0}(\mu_{t}))dt\right]$$

MINOR PLAYERS TRANSITION RATES

<ロ> <個> < 国> < 国> < 国> < 国> < 国</p>

FINITE PLAYERS MFGS

One major player and N minor players

- ▶ X_t^0 state of major player: $X_t^0 \in E^0 = \{1, 2, ..., d^0\}$
- ► X_t^j state of major player:: $X_t^j \in E = \{1, 2, ..., d\}$ j = 1, ..., N

At time $t \leq T$, the major player...

- can observe its own states X⁰_t and the empirical distribution μ^N_t of the minor player's states.
- chooses a control of the form $\alpha^{0}(t, X_{t}^{0}, \mu_{t}^{N})$.

Each minor player...

- can observe its own states X^j_t, the state X⁰_t of the major player, and the empirical distribution μ^N_t.
- chooses a control of the form $\alpha(t, X_t^j, X_t^0, \mu_t^N)$.

The system evolves as a Continuous-Time Markov Chain

- The transition rate matrix of each player depends on his own states, major player's state and μ^N_t.
- The change of states are conditionally independent among the players.

JUMP RATES OF THE SYSTEM

Minor players' jump rates:

$$\begin{bmatrix} 0, T \end{bmatrix} \times E \times E \times E^{0} \times A^{0} \times \mathcal{P}(E) \times A \to \mathbb{R} \\ (t, x, x', x^{0}, \alpha^{0}, \mu, \alpha) \to q(t, x, x', x^{0}, \alpha^{0}, \mu, \alpha)$$

Major player's jump rate:

$$\begin{bmatrix} 0, T \end{bmatrix} \times E^0 \times E^0 \times \mathcal{P}(E) \times A^0 \to \mathbb{R} \\ (t, x^0, x'^0, \mu, \alpha^0) \to q^0(t, x^0, x'^0, \mu, \alpha^0)$$

- Major player's control and state impact EVERY player in the game.
- We assume that q and q^0 satisfies:

$$\begin{aligned} &q(t, x, x', x^{0}, \alpha^{0}, \mu, \alpha) \geq 0, \quad q^{0}(t, x^{0}, x'^{0}, \mu, \alpha^{0}) \geq 0\\ &q(t, x, x, x^{0}, \alpha^{0}, \mu, \alpha) = -\sum_{x' \neq x} q(t, x, x', x^{0}, \alpha^{0}, \mu, \alpha)\\ &q^{0}(t, x^{0}, x'^{0}, \mu, \alpha^{0}) = -\sum_{x'^{0} \neq x^{0}} q^{0}(t, x^{0}, x'^{0}, \mu, \alpha^{0}). \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

JUMP RATES OF THE SYSTEM

> The changes of states are conditionally independent among the players:

$$\mathbb{P}[X_{t+\Delta t}^{0} = j^{0}, X_{t+\Delta t}^{1} = j^{1}, \dots, X_{t+\Delta t}^{N} = j^{N} | X_{t}^{0} = i^{0}, X_{t}^{1} = i^{1}, \dots, X_{t}^{N} = i^{N}]$$

$$\coloneqq [\mathbb{1}_{i^{0} = j^{0}} + q^{0}(t, i^{0}, j^{0}, \alpha(t, i^{0}, \mu_{t}^{N}), \mu_{t}^{N}) \Delta t + o(\Delta t)]$$

$$\times \prod_{n=1}^{N} [\mathbb{1}_{i^{n} = j^{n}} + q(t, i^{n}, j^{n}, \beta^{n}(t, i^{n}, i^{0}, \mu_{t}^{N}), i^{0}, \alpha(t, i^{0}, \mu_{t}^{N}), \mu_{t}^{N}) \Delta t + o(\Delta t)]$$

► This is equivalent to define the transition rate matrix Q^N for the Markov Chain (X⁰_t, X¹_t,...,X^N_t) with M⁰ × M^N states.

Here is how: we just retain the first order terms by expending the RHS of the above equality.

• Q^N is a HUGE sparse matrix as N grows.

PAYOFF AND SYMMETRIC NASH EQUILIBRIUM

Fix a finite horizon T.

Major player's payoff:

$$J^{N,0}(\alpha,\beta^1,\ldots,\beta^N) := \mathbb{E}\left[\int_0^T f^0(t,\alpha(t,X^0_t,\mu^N_t),X^0_t,\mu^N_t)dt + g^0(X^0_T,\mu^N_T)\right]$$

Minor player's payoff:

$$J^{N,n}(\alpha,\beta^{1},\ldots,\beta^{N}) := \mathbb{E}[\int_{0}^{T} f(t,\beta^{n}(t,X_{t}^{n},X_{t}^{0},\mu_{t}^{N}),X_{t}^{n},\alpha(t,X_{t}^{0},\mu_{t}^{N}),X_{t}^{0},\mu_{t}^{N})dt + g(X_{T}^{n},X_{T}^{0},\mu_{T}^{N})]$$

(日) (日) (日) (日) (日) (日) (日)

Our objective is to search for the Symmetric Nash Equilibrium.

i.e. to find $\alpha^* \in \mathbb{A}^0$ and $\beta^* \in \mathbb{A}$ such that for all $\alpha \in \mathbb{A}^0$ and $\beta \in \mathbb{A}$:

$$J^{N,0}(\alpha^*,\beta^*,\ldots,\beta^*) \ge J^{N,0}(\alpha,\beta^*,\ldots,\beta^*)$$

$$J^{N}(\alpha^*,\beta^*,\ldots,\beta^*) \ge J^{N}(\alpha^*,\beta^*,\ldots,\beta,\ldots,\beta^*)$$

FORMULATION OF THE MEAN FIELD GAME

Why do we use MFG?

- N-player Game is difficult: as number of players grows, the dimension of the transition rate matrix of the system increases exponentially.
- Use MFG paradigm: consider the limit case where the number of minor player N tends to infinity.
- Propagation of Chaos: hope that the solution of the limit case provides an approximative equilibrium for N-player game when N is large.

Perks of MFG:

- The empirical distribution of the minor players' states has a tractable form of infinitesimal generator.
- Deviation of a SINGLE minor player's strategy has NO impact on the distribution of minor player's states.

STRATEGY OF SOLUTION

We employ a fixed point argument based on the controls of the players:

Step 1 (Major Player's Problem)

- Fix an admissible strategy $\mathbb{A} \ni \overline{\beta} = \overline{\beta}(t, X_t^n, X_t^0, \mu_t)$ for the minor players.
- Given that all the minor players use the strategy β
 , solve for the optimal control of the major player α^{*}(β).

Step 2 (Representative Minor Player's Problem)

- Fix an admissible strategy A⁰ ∋ ā = ā(t, X_t⁰, μ_t) for the major player and a Markov strategy β = β(t, X_tⁿ, X_t⁰, μ_t) for the minor players.
- Consider a population of minor players using strategy $\overline{\beta}$ and a major player using strategy $\overline{\alpha}$. Denote $\mu_t(\overline{\alpha}, \overline{\beta})$ the corresponding distribution of the population of minor players.
- Consider an additional minor player facing the major player ᾱ, and the distribution μ_t(ᾱ, β̄).

Solve for his optimal control $\beta^*(\bar{\alpha}, \bar{\beta})$.

Step 3 (Fixed Point Argument)

Search for the fixed point $[\bar{\alpha}, \bar{\beta}] = [\alpha^*(\bar{\beta}), \beta^*(\bar{\alpha}, \bar{\beta})].$