
PROBABILISTIC ANALYSIS OF MFGS
IV. GAMES OF TIMING AND FINITE STATE

SPACE MEAN FIELD GAMES

René Carmona

Department of Operations Research & Financial Engineering
PACM

Princeton University

Minerva Lectures, Columbia U. October 28, 2016



ECONOMIC MODELS OF ILLIQUIDITY & BANK RUNS

I Bryant & Dyamond-Dybvig
I deterministic, static, undesirable equilibrium

I Morris-Shin & Rochet-Vives
I still static, investors’ private (noisy) signals

I He-Xiong
I dynamic continuous time model, perfect observation
I exogenous randomness for staggered debt maturities
I investors choose to roll or not to roll

O. Gossner’s lecture: first game of timing
I diffusion model for the value of assets of the bank
I investors have private noisy signals
I investors choose a time to withdraw funds

M. Nutz Toy model for MFG game of timing with a continuum of players



CONTINUOUS TIME BANK RUN MODEL

Inspired by Gossner’s lecture

I N depositors
I Amount of each individual (initial & final) deposit Di

0 = 1/N
I Current interest rate r
I Depositors promised return r > r
I Yt = value of the assets of the bank at time t ,
I Yt Itô process, Y0 ≥ 1
I L(y) liquidation value of bank assets if Y = y
I Bank has a credit line of size L(Yt ) at time t at rate r
I Bank uses credit line each time a depositor runs (withdraws his deposit)



BANK RUN MODEL (CONT.)

I Assets mature at time T , no transaction after that
I If YT ≥ 1 every one is paid in full
I If YT < 1 exogenous default
I Endogenous default at time t if depositors try to withdraw more than

L(Yt )



BANK RUN MODEL (CONT.)
Each depositor i ∈ {1, · · · ,N}

I has access to a private signal X i
t at time t

dX i
t = dYt + σdW i

t , i = 1, · · · ,N

I chooses a time τ i ∈ SX i
at which to TRY to withdraw his deposit

I collects return r until time τ i

I tries to maximize

J i (τ 1, · · · , τN) = E
[
g(τ i ,Yτ i )

]
where

I g(t ,Yt ) = e−rt∧τ (L(Yt )− Nt/N)+ ∧ 1
N

I Nt number of withdrawals before t
I τ = inf{t ; L(Yt ) < Nt/N}



BANK RUN MODEL: CASE OF FULL INFORMATION

Assume
I σ = 0, i.e. Yt is public knowledge !
I the function y ↪→ L(y) is also public knowledge
I τ i ∈ SY

In ANY equilibrium
τ i = inf{t ; L(Yt ) ≤ 1}

I Depositors withdraw at the same time (run on the bank)
I Each depositor gets his deposit back (no one gets hurt!)

Highly Unrealistic

Depositors should wait longer because of noisy private signals



GAMES OF TIMING

N players, states (observations / private signals) X i
t at time t

dX i
t = dYt + σdW i

t

Yt common unobserved signal (Itô process)

dYt = µt dt + σt dW 0
t

Each player maximizes

J i (τ1, · · · , τN ) = E
[

g(τ i ,Xτ i ,Yτ i , µ
N ([0, τ i ])

]
where

I each τ i is a FX i
stopping time

I µ = 1
N
∑N

i=1 δτ i empirical distribution of the τ i ’s

I g(t , x , y , p) is the reward to a player for

I exercising his timing decision at time t when
I his private signal is X I

t = x ,
I the unobserved signal is Yt = y ,
I the proportion of players who already exercised their right is p.



ABSTRACT MFG FORMULATION

Recall {
dYt = bt dt + σt dW 0

t
dXt = dYt + σdWt ,

More generally:

1. The states of the players are given by a single measurable function

X : C([0,T ])× C([0,T ]) 7→ C([0,T ])

progressively measurable X(w0,w)t depends only upon w0
[0,t] and w[0,t],

2. X i = X(W 0,W i ) state process for player i

3. Reward / cost function F on C([0,T ])× C([0,T ])× P([0,T ])× [0,T ]
progressively measurable F (w0,w , µ, t) depends only upon w0

[0,t], w[0,t], and
µ([0, s]) for 0 ≤ s ≤ t .



APPROXIMATE NASH EQUILIBRIA

Definition
If ε > 0, a set (τ1,∗, · · · , τN,∗) of stopping time τ i,∗ ∈ SX i is said to be
an ε-Nash equilibrium if for every i ∈ {1, · · · ,N} and τ ∈ SX i we have:

E[F (W 0,W i , µN,−i , τ i,∗)] ≥ E[F (W 0,W i , µN,−i , τ)]− ε,

µN,−i denoting the empirical distribution of
(τ1,∗, · · · , τ i−1,∗, τ i+1,∗, · · · , τN,∗).

Weak Characterization

the set of weak limits as N →∞ of εN - Nash equilibria when εN ↘ 0
coincide with the set of weak solutions of the MFG equilibrium
problem



FORMULATION OF THE MFG OF TIMING PROBLEM

J(µ, τ) = E[F (W 0,W , µ, τ)]

Definition
A stopping time τ∗ ∈ SX is said to be a strong MFG equilibrium if for every
τ ∈ SX we have:

J(µ, τ∗) ≥ J(µ, τ)

with µ = L(τ∗|W 0).

MFG of Timing Problem

1. Best Response Optimization: for each random environment µ solve

θ̂ ∈ arg sup
θ∈SX ,θ≤T

J(µ, θ);

2. Fixed-Point Step: find µ so that

∀t ∈ [0,T ], µ(W 0, [0, t ]) = P[θ̂ ≤ t |W 0].



ASSUMPTIONS

(C) For each fixed (w0,w) ∈ C([0,T ])× C([0,T ]), (µ, t) 7→ F (w0,w , µ, t) is
continuous.

(SC) For each fixed (w0,w , µ) ∈ C([0,T ])× C([0,T ])× P([0,T ]), t 7→ F (w0,w , µ, t)
is upper semicontinuous.

(ID) For any progressively measurable random environments
µ, µ′ : C([0,T ]) 7→ P([0,T ]) s.t. µ(w0) ≤ µ′(w0) a.s.

Mt = F (W 0,W , µ′(W 0), t)− F (W 0,W , µ(W ), t)

is a sub-martingale.

(ID) holds when F has increasing differences t ≤ t ′ and µ ≤ µ′ imply:

F (w0,w , µ′, t ′)− F (w0,w , µ′, t) ≥ F (w0,w , µ, t ′)− F (w0,w , µ, t).

(ID) =⇒ the expected reward J has also increasing differences

J(µ′, τ ′)− J(µ′, τ) ≥ J(µ, τ ′)− J(µ, τ)

Major Disappointment: ifF (w0,w , µ, t) = G(µ[0, t]) for some real-valued continuous
function G on [0, 1] which we assume to be differentiable on (0, 1). If F satisfies
assumption (ID), then G is constant.



FIXED POINT RESULTS ON ORDER LATTICES
Recall: A partially ordered set (S,≤) is said to be a lattice if:

x ∨ y = inf{z ∈ S; z ≥ x , z ≥ y} ∈ S
and

x ∧ y = sup{z ∈ S; z ≤ x , z ≤ y} ∈ S,
(1)

for all x , y ∈ S. A lattice (S,≤) is said to be complete if every subset S ⊂ S
has a greatest lower bound inf S and a least upper bound sup S, with the
convention that inf ∅ = supS and sup ∅ = infS.

Example The set S of stopping times of a right continuous filtration
F = (Ft )t≥0

Fact 1: If S is a complete lattice and Φ : S 3 x 7→ Φ(x) ∈ S is order
preserving in the sense that Φ(x) ≤ Φ(y) whenever x , y ∈ S are such that
x ≤ y , the set of fixed points of Φ is a non-empty complete lattice.

Another definition A real valued function f on a lattice (S,≤) is said to be
supermodular if for all x , y ∈ S

f (x ∨ y) + f (x ∧ y) ≥ f (x) + f (y). (2)



EXISTENCE OF STRONG EQUILIBRIA

Under assumptions (SC) and (ID) there exists a strong equilibrium.
Moreover, if continuity (C) is assumed instead of semicontinuity (SC),
then there exist strong equilibria τ∗ and θ∗ such that for any strong
equilibrium τ we have θ∗ ≤ τ ≤ τ∗ a.s.



MFGs in Finite State
Spaces or Graphs



EQUILIBRIUM PBS WITH FINITELY MANY STATES

Finite State Space E = {1, · · · ,M} in lieu of Rd

Motivation
I Vaccination Models: Laguzet - Turinici
I Computer network security (Botnet attacks)

Kolokolstov-Bensoussan

Papers
I MFGs on Finite State Spaces Gomes-Mohr-Souza
I MFGs on Graphs Guéant
I MFGs with Major and Minor Players R.C.-P.Wang

In both cases
I Mean Field Interactions

(dynamics and costs depend upon proportion of individuals in a
given state)



CONTINUOUS TIME, FINITE STATE DYNAMICS

SDEs replaced by Continuous Time Stochastic Processes
in finite state space E

For convenience give up on open loop problems
use controls in feedback form so markovian dynamics

Distribution given by a Q-matrix qt = [qt (x , x ′)]x,x ′∈E :

qt (x , x ′) = rate of jumping from state xto x ′at time t .

P[Xt+∆t = x ′|Xt = x ] = qt (x , x ′)∆t + o(∆t).

Properties of Q-matrices{
qt (x , x ′) ≥ 0 if x ′ 6= x
qt (x , x) = −

∑
x ′ 6=x qt (x , x ′)



FINITE STATE MEAN FIELD GAME: DATA

Jump rates

[0,T ]× E × E × P(E)× A 3 (t , x , x ′, µ, α) ↪→ λt (x , x ′, µ, α)

Q-matrix
qt (x , x ′) = λt (x , x ′, µ, α)

Costs
I Running cost function

[0,T ]× E × P(E)× A 3 (t , x , µ, α) ↪→ f (t , x , µ, α)

I terminal cost function

E × P(E) 3 (x , µ) 7→ g(x , µ)

Remark,
If µ ∈ P(E), µ = (µ({x})x∈E finite dimensional probability simplex!



FINITE STATE MEAN FIELD GAMES

Hamiltonian

H(t , x , µ,h, α) =
∑
x′∈E

λt (x , x ′, µ, α)h(x ′) + f (t , x , µ, α).

Hamiltonian minimizer

α̂(t , x , µ,h) = arg inf
α∈A

H(t , x , µ,h, α),

Minimized Hamiltonian

H∗(t , x , µ,h) = inf
α∈A

H(t , x , µ,h, α) = H(t , x , µ,h, α̂(t , x , µ,h)).

HJB Equation

∂tuµ(t , x) + H∗(t , x , µt ,uµ(t , ·)) = 0, 0 ≤ t ≤ T , x ∈ E ,

with terminal condition uµ(T , x) = g(x , µT ).



THE MASTER EQUATION EQUATION

∂tU + H∗(t , x , µ,U(t , ·, µ)) +
∑
x ′∈E

h∗(t , µ,U(t , ·, µ))(x ′)
∂U(t , x , µ)

∂µ({x ′})
= 0,

where the RE -valued function h∗ is defined on [0,T ]× P(E)× RE by:

h∗(t , µ,u) =

∫
E
λt
(
x , · , µ, α̂(t , x , µ,u)

)
dµ(x)

=
∑
x∈E

λt
(
x , · , µ, α̂(t , x , µ,u)

)
µ({x}).

System of Ordinary Differential Equations (ODEs)



A CYBER SECURITY MODEL
I N computers in a network (minor players)
I One hacker / attacker (major player)
I Action of major player affect minor player states (even when N >> 1)
I Major player feels only µN

t the empirical distribution of the minor players’
states

Finite State Space: each computer is in one of 4 states
I protected & infected
I protected & susceptible to be infected
I unprotected & infected
I unprotected & susceptible to be infected

Continuous time Markov chain in E = {DI,DS,UI,US}

Each player’s action is intended to affect the rates of change from one
state to another to minimize expected costs

J(α0,α) = E
[ ∫ T

0
(kD1D + kI1I)(Xt )dt

]

J0(α0,α) = E
[ ∫ T

0

(
−f0(µt ) + kHφ

0(µt )
)
dt
]



MINOR PLAYERS TRANSITION RATES

λt (·, ·, µ, vH, 0) =

DI DS UI US
DI · · · qD

rec 0 0
DS vHqD

inf + βDDµ({DI}) + βUDµ({UI}) · · · 0 0
UI 0 0 · · · qU

rec
US 0 0 vHqU

inf + βUUµ({UI}) + βDUµ({DI}) · · ·

λt (·, ·, µ, vH, 1) =

DI DS UI US
DI · · · qDrec λ 0
DS vHqD

inf + βDDµ({DI}) + βUDµ({UI}) · · · 0 λ
UI λ 0 · · · qU

rec
US 0 λ vHqU

inf + βUUµ({UI}) + βDUµ({DI}) · · ·



FINITE PLAYERS MFGS
One major player and N minor players

I X 0
t state of major player: X 0

t ∈ E0 = {1, 2, . . . , d0}
I X j

t state of major player:: X j
t ∈ E = {1, 2, . . . , d} j = 1, · · · ,N

At time t ≤ T , the major player...
I can observe its own states X 0

t and the empirical distribution µN
t of the

minor player’s states.
I chooses a control of the form α0(t ,X 0

t , µ
N
t ).

Each minor player...
I can observe its own states X j

t , the state X 0
t of the major player, and the

empirical distribution µN
t .

I chooses a control of the form α(t ,X j
t ,X

0
t , µ

N
t ).

The system evolves as a Continuous-Time Markov Chain
I The transition rate matrix of each player depends on his own states,

major player’s state and µN
t .

I The change of states are conditionally independent among the players.



JUMP RATES OF THE SYSTEM

I Minor players’ jump rates:

[0,T ]× E × E × E0 × A0 × P(E)× A→ R

(t , x , x ′, x0, α0, µ, α)→ q(t , x , x ′, x0, α0, µ, α)

I Major player’s jump rate:

[0,T ]× E0 × E0 × P(E)× A0 → R

(t , x0, x ′0, µ, α0)→ q0(t , x0, x ′0, µ, α0)

I Major player’s control and state impact EVERY player in the game.
I We assume that q and q0 satisfies:

q(t , x , x ′, x0, α0, µ, α) ≥ 0, q0(t , x0, x ′0, µ, α0) ≥ 0

q(t , x , x , x0, α0, µ, α) = −
∑
x′ 6=x

q(t , x , x ′, x0, α0, µ, α)

q0(t , x0, x ′0, µ, α0) = −
∑

x′0 6=x0

q0(t , x0, x ′0, µ, α0).



JUMP RATES OF THE SYSTEM

I The changes of states are conditionally independent among the players:

P[X 0
t+∆t = j0,X 1

t+∆t = j1, . . . ,X N
t+∆t = jN |X 0

t = i0,X 1
t = i1, . . . ,X N

t = iN ]

:=[1i0=j0 + q0(t , i0, j0, α(t , i0, µN
t ), µN

t )∆t + o(∆t)]

×
N∏

n=1

[1in=jn + q(t , in, jn, βn(t , in, i0, µN
t ), i0, α(t , i0, µN

t ), µN
t )∆t + o(∆t)]

I This is equivalent to define the transition rate matrix QN for the Markov
Chain (X 0

t ,X
1
t , . . . ,X

N
t ) with M0 ×MN states.

Here is how: we just retain the first order terms by expending the RHS
of the above equality.

I QN is a HUGE sparse matrix as N grows.



PAYOFF AND SYMMETRIC NASH EQUILIBRIUM

Fix a finite horizon T .

I Major player’s payoff:

JN,0(α, β1, . . . , βN) := E
[∫ T

0
f 0(t , α(t ,X 0

t , µ
N
t ),X 0

t , µ
N
t )dt + g0(X 0

T , µ
N
T )

]
I Minor player’s payoff:

JN,n(α, β1, . . . , βN) := E[

∫ T

0
f (t , βn(t ,X n

t ,X
0
t , µ

N
t ),X n

t , α(t ,X 0
t , µ

N
t ),X 0

t , µ
N
t )dt

+ g(X n
T ,X

0
T , µ

N
T )]

Our objective is to search for the Symmetric Nash Equilibrium.

i.e. to find α∗ ∈ A0 and β∗ ∈ A such that for all α ∈ A0 and β ∈ A:

JN,0(α∗, β∗, . . . , β∗) ≥ JN,0(α, β∗, . . . , β∗)

JN(α∗, β∗, . . . , β∗) ≥ JN(α∗, β∗, . . . , β, . . . β∗)



FORMULATION OF THE MEAN FIELD GAME

Why do we use MFG?

I N−player Game is difficult: as number of players grows, the dimension
of the transition rate matrix of the system increases exponentially.

I Use MFG paradigm: consider the limit case where the number of minor
player N tends to infinity.

I Propagation of Chaos: hope that the solution of the limit case provides
an approximative equilibrium for N-player game when N is large.

Perks of MFG:

I The empirical distribution of the minor players’ states has a tractable
form of infinitesimal generator.

I Deviation of a SINGLE minor player’s strategy has NO impact on the
distribution of minor player’s states.



STRATEGY OF SOLUTION
We employ a fixed point argument based on the controls of the players:

Step 1 (Major Player’s Problem)
I Fix an admissible strategy A 3 β̄ = β̄(t ,X n

t ,X
0
t , µt ) for the minor players.

I Given that all the minor players use the strategy β̄, solve for the optimal
control of the major player α∗(β̄).

Step 2 (Representative Minor Player’s Problem)
I Fix an admissible strategy A0 3 ᾱ = ᾱ(t ,X 0

t , µt ) for the major player and
a Markov strategy β̄ = β̄(t ,X n

t ,X
0
t , µt ) for the minor players.

I Consider a population of minor players using strategy β̄ and a major
player using strategy ᾱ. Denote µt (ᾱ, β̄) the corresponding distribution
of the population of minor players.

I Consider an additional minor player facing the major player ᾱ, and the
distribution µt (ᾱ, β̄).

I Solve for his optimal control β∗(ᾱ, β̄).

Step 3 (Fixed Point Argument)

Search for the fixed point [ᾱ, β̄] = [α∗(β̄), β∗(ᾱ, β̄)].


