Probabilistic Analysis of MFGs IV. Games of Timing and Finite State Space Mean Field Games

René Carmona

Department of Operations Research \& Financial Engineering
PACM
Princeton University

Minerva Lectures, Columbia U. October 28, 2016

Economic Models of Illiquidity \& Bank Runs

- Bryant \& Dyamond-Dybvig
- deterministic, static, undesirable equilibrium
- Morris-Shin \& Rochet-Vives
- still static, investors' private (noisy) signals
- He-Xiong
- dynamic continuous time model, perfect observation
- exogenous randomness for staggered debt maturities
- investors choose to roll or not to roll
O. Gossner's lecture: first game of timing
- diffusion model for the value of assets of the bank
- investors have private noisy signals
- investors choose a time to withdraw funds
M. Nutz Toy model for MFG game of timing with a continuum of players

Continuous Time Bank Run Model

Inspired by Gossner's lecture

- N depositors
- Amount of each individual (initial \& final) deposit $D_{0}^{i}=1 / N$
- Current interest rate r
- Depositors promised return $\bar{r}>r$
- $Y_{t}=$ value of the assets of the bank at time t,
- Y_{t} Itô process, $Y_{0} \geq 1$
- $L(y)$ liquidation value of bank assets if $Y=y$
- Bank has a credit line of size $L\left(Y_{t}\right)$ at time t at rate \bar{r}
- Bank uses credit line each time a depositor runs (withdraws his deposit)

Bank Run Model (CONT.)

- Assets mature at time T, no transaction after that
- If $Y_{T} \geq 1$ every one is paid in full
- If $Y_{T}<1$ exogenous default
- Endogenous default at time t if depositors try to withdraw more than $L\left(Y_{t}\right)$

Bank Run Model (cont.)

Each depositor $i \in\{1, \cdots, N\}$

- has access to a private signal X_{t}^{i} at time t

$$
d X_{t}^{i}=d Y_{t}+\sigma d W_{t}^{i}, \quad i=1, \cdots, N
$$

- chooses a time $\tau^{i} \in \mathcal{S}^{X^{i}}$ at which to TRY to withdraw his deposit
- collects return \bar{r} until time τ^{i}
- tries to maximize

$$
J^{i}\left(\tau^{1}, \cdots, \tau^{N}\right)=\mathbb{E}\left[g\left(\tau^{i}, Y_{\tau^{i}}\right)\right]
$$

where

- $g\left(t, Y_{t}\right)=e^{-r t \wedge \tau}\left(L\left(Y_{t}\right)-N_{t} / N\right)^{+} \wedge \frac{1}{N}$
- N_{t} number of withdrawals before t
- $\tau=\inf \left\{t ; L\left(Y_{t}\right)<N_{t} / N\right\}$

Bank Run Model: case of full information

Assume

- $\sigma=0$, i.e. Y_{t} is public knowledge !
- the function $y \hookrightarrow L(y)$ is also public knowledge
- $\tau^{i} \in \mathcal{S}^{Y}$

In ANY equilibrium

$$
\tau^{i}=\inf \left\{t ; L\left(Y_{t}\right) \leq 1\right\}
$$

- Depositors withdraw at the same time (run on the bank)
- Each depositor gets his deposit back (no one gets hurt!)

Highly Unrealistic
Depositors should wait longer because of noisy private signals

Games of Timing

N players, states (observations / private signals) X_{t}^{i} at time t

$$
d X_{t}^{i}=d Y_{t}+\sigma d W_{t}^{i}
$$

Y_{t} common unobserved signal (Itô process)

$$
d Y_{t}=\mu_{t} d t+\sigma_{t} d W_{t}^{0}
$$

Each player maximizes

$$
J^{i}\left(\tau^{1}, \cdots, \tau^{N}\right)=\mathbb{E}\left[g\left(\tau^{i}, X_{\tau^{i}}, Y_{\tau^{i}}, \bar{\mu}^{N}\left(\left[0, \tau^{i}\right]\right)\right]\right.
$$

where

- each τ^{i} is a $\mathcal{F}^{X^{i}}$ stopping time
- $\bar{\mu}=\frac{1}{N} \sum_{i=1}^{N} \delta_{\tau^{i}}$ empirical distribution of the τ^{i} 's
- $g(t, x, y, p)$ is the reward to a player for
- exercising his timing decision at time t when
- his private signal is $X_{t}^{\prime}=x$,
- the unobserved signal is $Y_{t}=y$,
- the proportion of players who already exercised their right is p.

Abstract MFG Formulation

Recall

$$
\left\{\begin{array}{l}
d Y_{t}=b_{t} d t+\sigma_{t} d W_{t}^{0} \\
d X_{t}=d Y_{t}+\sigma d W_{t}
\end{array}\right.
$$

More generally:

1. The states of the players are given by a single measurable function

$$
X: \mathcal{C}([0, T]) \times \mathcal{C}([0, T]) \mapsto \mathcal{C}([0, T])
$$

progressively measurable $X\left(w^{0}, w\right)_{t}$ depends only upon $w_{[0, t]}^{0}$ and $w_{[0, t]}$,
2. $X^{i}=X\left(W^{0}, W^{i}\right)$ state process for player i
3. Reward / cost function F on $\mathcal{C}([0, T]) \times \mathcal{C}([0, T]) \times \mathcal{P}([0, T]) \times[0, T]$ progressively measurable $F\left(w^{0}, w, \mu, t\right)$ depends only upon $w_{[0, t]}^{0}, w_{[0, t]}$, and $\mu([0, s])$ for $0 \leq s \leq t$.

Approximate Nash Equilibria

Definition

If $\epsilon>0$, a set $\left(\tau^{1, *}, \cdots, \tau^{N, *}\right)$ of stopping time $\tau^{i, *} \in \mathcal{S}_{X^{i}}$ is said to be an ϵ-Nash equilibrium if for every $i \in\{1, \cdots, N\}$ and $\tau \in \mathcal{S}_{X^{i}}$ we have:

$$
\mathbb{E}\left[F\left(W^{0}, W^{i}, \bar{\mu}^{N,-i}, \tau^{i, *}\right)\right] \geq \mathbb{E}\left[F\left(W^{0}, W^{i}, \bar{\mu}^{N,-i}, \tau\right)\right]-\epsilon,
$$

$\bar{\mu}^{N,-i}$ denoting the empirical distribution of $\left(\tau^{1, *}, \cdots, \tau^{i-1, *}, \tau^{i+1, *}, \cdots, \tau^{N, *}\right)$.

Weak Characterization

the set of weak limits as $N \rightarrow \infty$ of ϵ_{N} - Nash equilibria when $\epsilon_{N} \searrow 0$ coincide with the set of weak solutions of the MFG equilibrium problem

Formulation of the MFG of Timing Problem

$$
J(\mu, \tau)=\mathbb{E}\left[F\left(W^{0}, W, \mu, \tau\right)\right]
$$

Definition
A stopping time $\tau^{*} \in \mathcal{S}_{X}$ is said to be a strong MFG equilibrium if for every $\tau \in \mathcal{S}_{X}$ we have:

$$
J\left(\mu, \tau^{*}\right) \geq J(\mu, \tau)
$$

with $\mu=\mathcal{L}\left(\tau^{*} \mid W^{0}\right)$.

MFG of Timing Problem

1. Best Response Optimization: for each random environment $\boldsymbol{\mu}$ solve

$$
\hat{\theta} \in \arg \sup _{\theta \in \mathcal{S}_{X}, \theta \leq T} J(\mu, \theta) ;
$$

2. Fixed-Point Step: find μ so that

$$
\forall t \in[0, T], \mu\left(W^{0},[0, t]\right)=\mathbb{P}\left[\hat{\theta} \leq t \mid W^{0}\right] .
$$

Assumptions

(C) For each fixed $\left(w^{0}, w\right) \in \mathcal{C}([0, T]) \times \mathcal{C}([0, T]),(\mu, t) \mapsto F\left(w^{0}, w, \mu, t\right)$ is continuous.
(SC) For each fixed $\left(w^{0}, w, \mu\right) \in \mathcal{C}([0, T]) \times \mathcal{C}([0, T]) \times \mathcal{P}([0, T]), t \mapsto F\left(w^{0}, w, \mu, t\right)$ is upper semicontinuous.
(ID) For any progressively measurable random environments

$$
\begin{aligned}
\mu, \mu^{\prime}: \mathcal{C}([0, T]) & \mapsto \mathcal{P}([0, T]) \text { s.t. } \mu\left(w^{0}\right) \leq \mu^{\prime}\left(w^{0}\right) \text { a.s. } \\
& M_{t}=F\left(W^{0}, W, \mu^{\prime}\left(W^{0}\right), t\right)-F\left(W^{0}, W, \mu(W), t\right)
\end{aligned}
$$

is a sub-martingale.
(ID) holds when F has increasing differences $t \leq t^{\prime}$ and $\mu \leq \mu^{\prime}$ imply:

$$
F\left(w^{0}, w, \mu^{\prime}, t^{\prime}\right)-F\left(w^{0}, w, \mu^{\prime}, t\right) \geq F\left(w^{0}, w, \mu, t^{\prime}\right)-F\left(w^{0}, w, \mu, t\right)
$$

(ID) \Longrightarrow the expected reward J has also increasing differences

$$
J\left(\mu^{\prime}, \tau^{\prime}\right)-J\left(\mu^{\prime}, \tau\right) \geq J\left(\mu, \tau^{\prime}\right)-J(\mu, \tau)
$$

Major Disappointment: if $F\left(w^{0}, w, \mu, t\right)=G(\mu[0, t])$ for some real-valued continuous function G on $[0,1]$ which we assume to be differentiable on $(0,1)$. If F satisfies assumption (ID), then G is constant.

Fixed Point Results on Order Lattices

Recall: A partially ordered set (\mathcal{S}, \leq) is said to be a lattice if:

$$
\begin{equation*}
x \vee y=\inf \{z \in \mathcal{S} ; z \geq x, z \geq y\} \in \mathcal{S} \tag{1}
\end{equation*}
$$

and

$$
x \wedge y=\sup \{z \in \mathcal{S} ; z \leq x, z \leq y\} \in \mathcal{S}
$$

for all $x, y \in \mathcal{S}$. A lattice (\mathcal{S}, \leq) is said to be complete if every subset $S \subset \mathcal{S}$ has a greatest lower bound inf S and a least upper bound sup S, with the convention that $\inf \emptyset=\sup \mathcal{S}$ and $\sup \emptyset=\inf \mathcal{S}$.

Example The set \mathcal{S} of stopping times of a right continuous filtration $\mathbb{F}=\left(\mathcal{F}_{t}\right)_{t \geq 0}$

Fact 1: If \mathcal{S} is a complete lattice and $\Phi: \mathcal{S} \ni x \mapsto \Phi(x) \in \mathcal{S}$ is order preserving in the sense that $\Phi(x) \leq \Phi(y)$ whenever $x, y \in \mathcal{S}$ are such that $x \leq y$, the set of fixed points of Φ is a non-empty complete lattice.

Another definition A real valued function f on a lattice (\mathcal{S}, \leq) is said to be supermodular if for all $x, y \in \mathcal{S}$

$$
\begin{equation*}
f(x \vee y)+f(x \wedge y) \geq f(x)+f(y) \tag{2}
\end{equation*}
$$

Existence of Strong Equilibria

Under assumptions (SC) and (ID) there exists a strong equilibrium. Moreover, if continuity (C) is assumed instead of semicontinuity (SC), then there exist strong equilibria τ^{*} and θ^{*} such that for any strong equilibrium τ we have $\theta^{*} \leq \tau \leq \tau^{*}$ a.s.

MFGs in Finite State Spaces or Graphs

Equilibrium Pbs with Finitely Many States

Finite State Space $E=\{1, \cdots, M\}$ in lieu of \mathbb{R}^{d}

Motivation

- Vaccination Models: Laguzet - Turinici
- Computer network security (Botnet attacks) Kolokolstov-Bensoussan

Papers

- MFGs on Finite State Spaces Gomes-Mohr-Souza
- MFGs on Graphs Guéant
- MFGs with Major and Minor Players R.C.-P.Wang

In both cases

- Mean Field Interactions
(dynamics and costs depend upon proportion of individuals in a given state)

Continuous Time, Finite State Dynamics

SDEs replaced by Continuous Time Stochastic Processes in finite state space E

For convenience give up on open loop problems use controls in feedback form so markovian dynamics

Distribution given by a Q-matrix $q_{t}=\left[q_{t}\left(x, x^{\prime}\right)\right]_{x, x^{\prime} \in E}$:
$q_{t}\left(x, x^{\prime}\right)=$ rate of jumping from state x to x^{\prime} at time t.

$$
\mathbb{P}\left[X_{t+\Delta t}=x^{\prime} \mid X_{t}=x\right]=q_{t}\left(x, x^{\prime}\right) \Delta t+o(\Delta t)
$$

Properties of Q-matrices

$$
\left\{\begin{array}{l}
q_{t}\left(x, x^{\prime}\right) \geq 0 \quad \text { if } x^{\prime} \neq x \\
q_{t}(x, x)=-\sum_{x^{\prime} \neq x} q_{t}\left(x, x^{\prime}\right)
\end{array}\right.
$$

Finite State Mean Field Game: Data

Jump rates

$$
[0, T] \times E \times E \times \mathcal{P}(E) \times A \ni\left(t, x, x^{\prime}, \mu, \alpha\right) \hookrightarrow \lambda_{t}\left(x, x^{\prime}, \mu, \alpha\right)
$$

Q-matrix

$$
q_{t}\left(x, x^{\prime}\right)=\lambda_{t}\left(x, x^{\prime}, \mu, \alpha\right)
$$

Costs

- Running cost function

$$
[0, T] \times E \times \mathcal{P}(E) \times A \ni(t, x, \mu, \alpha) \hookrightarrow f(t, x, \mu, \alpha)
$$

- terminal cost function

$$
E \times \mathcal{P}(E) \ni(x, \mu) \mapsto g(x, \mu)
$$

Remark,
If $\mu \in \mathcal{P}(E), \mu=\left(\mu(\{x\})_{x \in E}\right.$ finite dimensional probability simplex!

Finite State Mean Field Games

Hamiltonian

$$
H(t, x, \mu, h, \alpha)=\sum_{x^{\prime} \in E} \lambda_{t}\left(x, x^{\prime}, \mu, \alpha\right) h\left(x^{\prime}\right)+f(t, x, \mu, \alpha) .
$$

Hamiltonian minimizer

$$
\hat{\alpha}(t, x, \mu, h)=\arg \inf _{\alpha \in A} H(t, x, \mu, h, \alpha),
$$

Minimized Hamiltonian

$$
H^{*}(t, x, \mu, h)=\inf _{\alpha \in A} H(t, x, \mu, h, \alpha)=H(t, x, \mu, h, \hat{\alpha}(t, x, \mu, h)) .
$$

HJB Equation

$$
\partial_{t} u^{\mu}(t, x)+H^{*}\left(t, x, \mu_{t}, u^{\mu}(t, \cdot)\right)=0, \quad 0 \leq t \leq T, x \in E
$$

with terminal condition $u^{\mu}(T, x)=g\left(x, \mu_{T}\right)$.

The Master Equation Equation

$\partial_{t} U+H^{*}(t, x, \mu, U(t, \cdot, \mu))+\sum_{x^{\prime} \in E} h^{*}(t, \mu, U(t, \cdot, \mu))\left(x^{\prime}\right) \frac{\partial U(t, x, \mu)}{\partial \mu\left(\left\{x^{\prime}\right\}\right)}=0$,
where the \mathbb{R}^{E}-valued function h^{*} is defined on $[0, T] \times \mathcal{P}(E) \times \mathbb{R}^{E}$ by:

$$
\begin{aligned}
h^{*}(t, \mu, u) & =\int_{E} \lambda_{t}(x, \cdot, \mu, \hat{\alpha}(t, x, \mu, u)) d \mu(x) \\
& =\sum_{x \in E} \lambda_{t}(x, \cdot, \mu, \hat{\alpha}(t, x, \mu, u)) \mu(\{x\}) .
\end{aligned}
$$

System of Ordinary Differential Equations (ODEs)

A Cyber Security Model

- N computers in a network (minor players)
- One hacker / attacker (major player)
- Action of major player affect minor player states (even when $N \gg 1$)
- Major player feels only μ_{t}^{N} the empirical distribution of the minor players' states

Finite State Space: each computer is in one of 4 states

- protected \& infected
- protected \& susceptible to be infected
- unprotected \& infected
- unprotected \& susceptible to be infected

Continuous time Markov chain in $E=\{D I, D S, U I, U S\}$
Each player's action is intended to affect the rates of change from one state to another to minimize expected costs

$$
\begin{gathered}
J\left(\boldsymbol{\alpha}^{0}, \boldsymbol{\alpha}\right)=\mathbb{E}\left[\int_{0}^{T}\left(k_{D} \mathbf{1}_{D}+k_{l} \mathbf{1}_{I}\right)\left(X_{t}\right) d t\right] \\
J^{0}\left(\boldsymbol{\alpha}^{0}, \boldsymbol{\alpha}\right)=\mathbb{E}\left[\int_{0}^{T}\left(-f_{0}\left(\mu_{t}\right)+k_{H} \phi^{0}\left(\mu_{t}\right)\right) d t\right]
\end{gathered}
$$

Minor Players Transition Rates

$\lambda_{t}\left(\cdot, \cdot, \mu, v_{\mathrm{H}}, 0\right)=$				
	DI	DS	UI	US
DI		$q_{\text {rec }}^{\text {D }}$	0	0
DS	$v_{\mathrm{H}} q_{\mathrm{inf}}^{\mathrm{D}}+\beta_{\mathrm{DD}} \mu(\{\mathrm{DI}\})+\beta_{\mathrm{UD}} \mu(\{\mathrm{UI}\})$	\ldots	0	0
UI	0	0	\cdots	$q_{\text {rec }}^{\mathrm{U}}$
US	0	0	$v_{\mathrm{H}} q_{\text {inf }}^{\mathrm{U}}+\beta_{\mathrm{UU}} \mu(\{\mathrm{UI}\})+\beta_{\mathrm{DU}} \mu(\{\mathrm{DI}\})$.
$\lambda_{t}\left(\cdot, \cdot, \mu, v_{\mathrm{H}}, 1\right)=$				
	DI	DS	UI	US
DI	\cdots	$q^{\text {D }}$ rec	λ	0
DS	$v_{\mathrm{H}} q_{\mathrm{inf}}^{\mathrm{D}}+\beta_{\mathrm{DD}} \mu(\{\mathrm{DI}\})+\beta_{\mathrm{UD}} \mu(\{\mathrm{UI}\})$	\ldots	0	λ
UI	λ, ${ }^{\text {a }}$	0	.	$q_{\text {rec }}^{\mathrm{U}}$
US	0	λ	$v_{\mathrm{H}} q_{\mathrm{inf}}^{\mathrm{U}}+\beta_{\mathrm{UU}} \mu(\{\mathrm{UI}\})+\beta_{\mathrm{DU}} \mu(\{\mathrm{DI}\})$	

Finite Players MFGs

One major player and N minor players

- X_{t}^{0} state of major player: $X_{t}^{0} \in E^{0}=\left\{1,2, \ldots, d^{0}\right\}$
- X_{t}^{j} state of major player:: $X_{t}^{j} \in E=\{1,2, \ldots, d\} \quad j=1, \cdots, N$

At time $t \leq T$, the major player...

- can observe its own states X_{t}^{0} and the empirical distribution μ_{t}^{N} of the minor player's states.
- chooses a control of the form $\alpha^{0}\left(t, X_{t}^{0}, \mu_{t}^{N}\right)$.

Each minor player...

- can observe its own states X_{t}^{j}, the state X_{t}^{0} of the major player, and the empirical distribution μ_{t}^{N}.
- chooses a control of the form $\alpha\left(t, X_{t}^{j}, X_{t}^{0}, \mu_{t}^{N}\right)$.

The system evolves as a Continuous-Time Markov Chain

- The transition rate matrix of each player depends on his own states, major player's state and μ_{t}^{N}.
- The change of states are conditionally independent among the players.

Jump Rates of the System

- Minor players' jump rates:

$$
\begin{aligned}
{[0, T] \times E \times E \times E^{0} \times A^{0} \times \mathcal{P}(E) \times A } & \rightarrow \mathbb{R} \\
\left(t, x, x^{\prime}, x^{0}, \alpha^{0}, \mu, \alpha\right) & \rightarrow q\left(t, x, x^{\prime}, x^{0}, \alpha^{0}, \mu, \alpha\right)
\end{aligned}
$$

- Major player's jump rate:

$$
\begin{aligned}
{[0, T] \times E^{0} \times E^{0} \times \mathcal{P}(E) \times A^{0} } & \rightarrow \mathbb{R} \\
\left(t, x^{0}, x^{\prime 0}, \mu, \alpha^{0}\right) & \rightarrow q^{0}\left(t, x^{0}, x^{\prime 0}, \mu, \alpha^{0}\right)
\end{aligned}
$$

- Major player's control and state impact EVERY player in the game.
- We assume that q and q^{0} satisfies:

$$
\begin{aligned}
& q\left(t, x, x^{\prime}, x^{0}, \alpha^{0}, \mu, \alpha\right) \geq 0, \quad q^{0}\left(t, x^{0}, x^{\prime 0}, \mu, \alpha^{0}\right) \geq 0 \\
& q\left(t, x, x, x^{0}, \alpha^{0}, \mu, \alpha\right)=-\sum_{x^{\prime} \neq x} q\left(t, x, x^{\prime}, x^{0}, \alpha^{0}, \mu, \alpha\right) \\
& q^{0}\left(t, x^{0}, x^{\prime 0}, \mu, \alpha^{0}\right)=-\sum_{x^{\prime 0} \neq x^{0}} q^{0}\left(t, x^{0}, x^{\prime 0}, \mu, \alpha^{0}\right) .
\end{aligned}
$$

Jump Rates of the System

- The changes of states are conditionally independent among the players:

$$
\begin{aligned}
& \mathbb{P}\left[X_{t+\Delta t}^{0}=j^{0}, X_{t+\Delta t}^{1}=j^{1}, \ldots, X_{t+\Delta t}^{N}=j^{N} \mid X_{t}^{0}=i^{0}, X_{t}^{1}=i^{1}, \ldots, X_{t}^{N}=i^{N}\right] \\
:= & {\left[\mathbb{1}_{i 0}=j^{0}+q^{0}\left(t, i^{0}, j^{0}, \alpha\left(t, i^{0}, \mu_{t}^{N}\right), \mu_{t}^{N}\right) \Delta t+o(\Delta t)\right] } \\
& \times \prod_{n=1}^{N}\left[\mathbb{1}_{i^{n}=j^{n}}+q\left(t, i^{n}, j^{n}, \beta^{n}\left(t, i^{n}, i^{0}, \mu_{t}^{N}\right), i^{0}, \alpha\left(t, i^{0}, \mu_{t}^{N}\right), \mu_{t}^{N}\right) \Delta t+o(\Delta t)\right]
\end{aligned}
$$

- This is equivalent to define the transition rate matrix Q^{N} for the Markov Chain $\left(X_{t}^{0}, X_{t}^{1}, \ldots, X_{t}^{N}\right)$ with $M^{0} \times M^{N}$ states.

Here is how: we just retain the first order terms by expending the RHS of the above equality.

- Q^{N} is a HUGE sparse matrix as N grows.

Payoff and Symmetric Nash Equilibrium

Fix a finite horizon T.

- Major player's payoff:

$$
J^{N, 0}\left(\alpha, \beta^{1}, \ldots, \beta^{N}\right):=\mathbb{E}\left[\int_{0}^{T} f^{0}\left(t, \alpha\left(t, X_{t}^{0}, \mu_{t}^{N}\right), X_{t}^{0}, \mu_{t}^{N}\right) d t+g^{0}\left(X_{T}^{0}, \mu_{T}^{N}\right)\right]
$$

- Minor player's payoff:

$$
\begin{aligned}
J^{N, n}\left(\alpha, \beta^{1}, \ldots, \beta^{N}\right):= & \mathbb{E}\left[\int_{0}^{T} f\left(t, \beta^{n}\left(t, X_{t}^{n}, X_{t}^{0}, \mu_{t}^{N}\right), X_{t}^{n}, \alpha\left(t, X_{t}^{0}, \mu_{t}^{N}\right), X_{t}^{0}, \mu_{t}^{N}\right) d t\right. \\
& \left.+g\left(X_{T}^{n}, X_{T}^{0}, \mu_{T}^{N}\right)\right]
\end{aligned}
$$

Our objective is to search for the Symmetric Nash Equilibrium.
i.e. to find $\alpha^{*} \in \mathbb{A}^{0}$ and $\beta^{*} \in \mathbb{A}$ such that for all $\alpha \in \mathbb{A}^{0}$ and $\beta \in \mathbb{A}$:

$$
\begin{aligned}
J^{N, 0}\left(\alpha^{*}, \beta^{*}, \ldots, \beta^{*}\right) & \geq J^{N, 0}\left(\alpha, \beta^{*}, \ldots, \beta^{*}\right) \\
J^{N}\left(\alpha^{*}, \beta^{*}, \ldots, \beta^{*}\right) & \geq J^{N}\left(\alpha^{*}, \beta^{*}, \ldots, \beta, \ldots \beta^{*}\right)
\end{aligned}
$$

Formulation of the Mean Field Game

Why do we use MFG?

- N-player Game is difficult: as number of players grows, the dimension of the transition rate matrix of the system increases exponentially.
- Use MFG paradigm: consider the limit case where the number of minor player N tends to infinity.
- Propagation of Chaos: hope that the solution of the limit case provides an approximative equilibrium for N-player game when N is large.

Perks of MFG:

- The empirical distribution of the minor players' states has a tractable form of infinitesimal generator.
- Deviation of a SINGLE minor player's strategy has NO impact on the distribution of minor player's states.

Strategy of Solution

We employ a fixed point argument based on the controls of the players:
Step 1 (Major Player's Problem)

- Fix an admissible strategy $\mathbb{A} \ni \bar{\beta}=\bar{\beta}\left(t, X_{t}^{n}, X_{t}^{0}, \mu_{t}\right)$ for the minor players.
- Given that all the minor players use the strategy $\bar{\beta}$, solve for the optimal control of the major player $\alpha^{*}(\bar{\beta})$.

Step 2 (Representative Minor Player's Problem)

- Fix an admissible strategy $\mathbb{A}^{0} \ni \bar{\alpha}=\bar{\alpha}\left(t, X_{t}^{0}, \mu_{t}\right)$ for the major player and a Markov strategy $\bar{\beta}=\bar{\beta}\left(t, X_{t}^{n}, X_{t}^{0}, \mu_{t}\right)$ for the minor players.
- Consider a population of minor players using strategy $\bar{\beta}$ and a major player using strategy $\bar{\alpha}$. Denote $\mu_{t}(\bar{\alpha}, \bar{\beta})$ the corresponding distribution of the population of minor players.
- Consider an additional minor player facing the major player $\bar{\alpha}$, and the distribution $\mu_{t}(\bar{\alpha}, \bar{\beta})$.
- Solve for his optimal control $\beta^{*}(\bar{\alpha}, \bar{\beta})$.

Step 3 (Fixed Point Argument)
Search for the fixed point $[\bar{\alpha}, \bar{\beta}]=\left[\alpha^{*}(\bar{\beta}), \beta^{*}(\bar{\alpha}, \bar{\beta})\right]$.

