Lectures on Mean Field Games:
 II. Calculus over Wasserstein Space, Control of McKean-Vlasov Dynamics, and the Master EQUATION

René Carmona
Department of Operations Research \& Financial Engineering PACM
Princeton University

Minerva Lectures, Columbia U. October 2016

The Analytic (PDE) Approach to MFGs

For fixed $\boldsymbol{\mu}=\left(\mu_{t}\right)_{t}$, the value function

$$
V^{\mu}(t, x)=\inf _{\left(\alpha_{s}\right)_{t \leq s \leq T}} \mathbb{E}\left[\int_{t}^{T} f\left(s, X_{s}, \mu_{s}, \alpha_{s}\right) d s+g\left(X_{T}, \mu_{T}\right) \mid X_{t}=x\right]
$$

solves a HJB (backward) equation

$$
\begin{aligned}
& \partial_{t} V^{\mu}(t, x)+\inf _{\alpha}\left[b\left(t, x, \mu_{t}, \alpha\right) \cdot \partial_{x} V^{\mu}(t, x)+f\left(t, x, \mu_{t}, \alpha\right)\right] \\
& \frac{1}{2} \operatorname{trace}\left[\sigma(t, x)^{\dagger} \sigma(t, x) \partial_{x x}^{2} V^{\mu}(t, x)\right]=0
\end{aligned}
$$

with terminal condition $V^{\mu}(T, x)=g\left(x, \mu_{T}\right)$
The fixed point step is implemented by requiring that $t \rightarrow \mu_{t}$ solves the (forward) Kolmogorov equation

$$
\partial_{t} \mu_{t}=\mu_{t} \mathcal{L}_{t}^{\dagger}
$$

This is also a nonlinear PDE because μ_{t} appears in b......
System of strongly coupled nonlinear PDEs! Time goes in both directions

HJB Equation from Itô's Formula

Classical Optimal Control set-up (μ fixed)

Dynamic Programming Principle

$t \hookrightarrow V^{\mu}\left(t, X_{t}\right)$ is a martingale when $\left(X_{t}\right)_{0 \leq t \leq T}$ is optimal
Classical Itô formula to compute:

$$
d_{t} V^{\mu}\left(t, X_{t}\right)
$$

when $(t, x) \hookrightarrow V^{\mu}(t, x)$ is smooth and

$$
d X_{t}=b\left(t, X_{t}, \hat{\alpha}_{t}\right) d t+\sigma\left(t, X_{t}, \hat{\alpha}_{t}\right) d W_{t}
$$

is optimal to

- set the drift to 0
- get HJB

MFG COUNTERPART

- MFG is not an optimization problem per-se
- Optimal control arguments (for $\boldsymbol{\mu}$ fixed) affected by fixed point step
- What is the effect of last step substitution $\mu_{t}=\mathbb{P}_{x_{t}}$?
- In equilibrium, do we still have:
- Dynamic Programming Principle?
- Martingale property of

$$
t \hookrightarrow V^{\mu}\left(t, X_{t}\right)
$$

- What would be the right Itô formula to compute:

$$
d_{t} V^{\mu}\left(t, X_{t}\right)
$$

when

$$
d X_{t}=b\left(t, X_{t}, \hat{\alpha}_{t}\right) d t+\sigma\left(t, X_{t}, \hat{\alpha}_{t}\right) d W_{t}
$$

is optimal and $\mu_{t}=\mathbb{P}_{X_{t}}$?

More Reasons to Differentiate Functions of Measures

Back to the N-player games (with reduced or distributed controls):

$$
d X_{t}^{i}=b\left(t, X_{t}^{i}, \bar{\mu}_{t}^{N}, \phi\left(t, X_{t}^{i}, \bar{\mu}_{t}^{N}\right)\right) d t+\sigma\left(t, X_{t}^{i}, \bar{\mu}_{t}^{N}, \phi\left(t, X_{t}^{i}, \bar{\mu}_{t}^{N}\right)\right) d W_{t}^{i}, \quad t \in[0, T]
$$

Propagation of Chaos

- $X_{t}^{1}, \cdots, X_{t}^{k}, \cdots$ become independent in the limit $N \rightarrow \infty$
- $\mathbf{X}^{i}=\left(X_{t}^{i}\right)_{0 \leq t \leq T} \Longrightarrow \mathbf{X}=\left(X_{t}\right)_{0 \leq t \leq T}$ solution of the McKean-Vlasov equation:

$$
d X_{t}=b\left(t, X_{t}, \mathbb{P}_{X_{t}}, \phi\left(t, X_{t}, \mathbb{P}_{X_{t}}\right)\right) d t+\sigma\left(t, X_{t}, \mathbb{P}_{X_{t}}, \phi\left(t, X_{t}, \mathbb{P}_{X_{t}}\right)\right) d W_{t}, \quad t \in[0, T]
$$

where $\mathbf{W}=\left(W_{t}\right)_{0 \leq t \leq T}$ is a standard Wiener process.
Expected Costs:

$$
J^{i}(\phi)=\mathbb{E}\left[\int_{0}^{T} f\left(t, X_{t}^{i}, \bar{\mu}_{t}^{N}, \phi\left(t, X_{t}^{i}, \bar{\mu}_{t}^{N}\right)\right) d t+g\left(X_{T}^{i}, \bar{\mu}_{T}^{N}\right)\right]
$$

converge to:

$$
J(\phi)=\mathbb{E}\left[\int_{0}^{T} f\left(t, X_{t}, \mathbb{P}_{X_{t}}, \phi\left(t, X_{t}, \mathbb{P}_{X_{t}}\right)\right) d t+g\left(X_{T}, \mathbb{P}_{X_{T}}\right)\right]
$$

Optimization after the limit: Control of McKean-Vlasov equations !

Taking Stock

Is the above diagram commutative?

Controlled McKean-Vlasov SDEs

$$
\inf _{\alpha=\left(\alpha_{t}\right)_{0 \leq t \leq T}} \mathbb{E}\left[\int_{0}^{T} f\left(t, X_{t}, \mathbb{P}_{X_{t}}, \alpha_{t}\right) d t+g\left(X_{T}, \mathbb{P}_{X_{T}}\right)\right]
$$

under dynamical constraint $d X_{t}=b\left(t, X_{t}, \mathbb{P}_{X_{t}}, \alpha_{t}\right) d t+\sigma\left(t, X_{t}, \mathbb{P}_{X_{t}}, \alpha_{t}\right) d W_{t}$.

- State $\left(X_{t}, \mathbb{P}_{X_{t}}\right)$ infinite dimensional
- State trajectory $t \mapsto\left(X_{t}, \mu_{t}\right)$ is a very thin submanifold due to constraint $\mu_{t}=\mathbb{P}_{X_{t}}$
- Open loop form: $\boldsymbol{\alpha}=\left(\alpha_{t}\right)_{0 \leq t \leq T}$ adapted
- Closed loop form: $\alpha_{t}=\phi\left(t, X_{t}, \mathbb{P}_{X_{t}}\right)$

Whether we use

- Infinite dimensional HJB equation
- Pontryagin stochastic maximum principle with Hamiltonian

$$
H(t, x, \mu, y, z, \alpha)=b(t, x, \mu, \alpha) \cdot y+\sigma(t, x, \mu, \alpha) \cdot z+f(t, x, \mu, \alpha)
$$

and introduce the adjoint equations,

WE NEED TO DIFFERENTIATE FUNCTIONS OF MEASURES !

Differentiability of Functions of Measures

$\mathcal{M}\left(\mathbb{R}^{d}\right)$ space of signed (finite) measures on \mathbb{R}^{d}

- Banach space (dual of a space of continuous functions)
- Classical differential calculus available
- If

$$
\mathcal{M}\left(\mathbb{R}^{d}\right) \ni m \hookrightarrow \phi(m) \in \mathbb{R}
$$

" ϕ is differentiable" has a meaning

- For $m_{0} \in \mathcal{M}\left(\mathbb{R}^{d}\right)$ one can define

$$
\frac{\delta \phi\left(m_{0}\right)}{\delta m}(\cdot)
$$

as a function on \mathbb{R}^{d} in Fréchet or Gâteaux sense

Bensoussan-Frehe-Yam alternative is to work only with measures with densities and view ϕ as a function on $L^{1}\left(\mathbb{R}^{d}, d x\right)$!

Topology on Wasserstein Space

Measures appearing in MFG theory are probability distributions of random variables !!!

Wasserstein space

$$
\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)=\left\{\mu \in \mathcal{P}\left(\mathbb{R}^{d}\right) ; \int_{\mathbb{R}^{d}}|x|^{2} d \mu(x)<\infty\right\}
$$

Metric space for the 2-Wasserstein distance

$$
W_{2}(\mu, \nu)=\inf _{\pi \in \Pi(\mu, \nu)}\left[\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}|x-y|^{2} \pi(d x, d y)\right]^{1 / 2}
$$

where $\Pi(\mu, \nu)$ is the set of probability measures coupling μ and ν.
Topological properties of Wasserstein space well understood as following statements are equivalents

- $\mu^{N} \longrightarrow \mu$ in Wasserstein space
$>\mu^{N} \longrightarrow \mu$ weakly and $\int|x|^{2} \mu^{N}(d x) \longrightarrow \int|x|^{2} \mu(d x)$

Glivenko-Cantelli in Wasserstein Space

X^{1}, X^{2}, \cdots, i.i.d. random variables in \mathbb{R}^{d} with common distribution μ s.t.

$$
M_{q}(\mu)=\int_{\mathbb{R}^{d}}|x|^{q} \mu(d x)<\infty .
$$

If $q=2$,

$$
\mathbb{P}\left[\lim _{N \rightarrow \infty} W_{2}\left(\bar{\mu}^{N}, \mu\right)=0\right]=1 .
$$

where $\bar{\mu}^{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{x i}$ is a (random) empirical measure. Standard LLN !
Crucial Estimate: Glivenko-Cantelli If $q>4$ for each dimension $d \geq 1, \exists C=C\left(d, q, M_{q}(\mu)\right)$ s.t. for all $N \geq 1$:

$$
\mathbb{E}\left[W_{2}\left(\bar{\mu}^{N}, \mu\right)^{2}\right] \leq C \begin{cases}N^{-1 / 2}, & \text { if } d<4 \tag{1}\\ N^{-1 / 2} \log N, & \text { if } d=4 \\ N^{-2 / d}, & \text { if } d>4\end{cases}
$$

Differential Calculus on Wasserstein Space

What does it mean " ϕ is differentiable" or " ϕ is convex" for

$$
\mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \ni \mu \hookrightarrow \phi(\mu) \in \mathbb{R}
$$

Wasserstein space $\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$ is a metric space for W_{2}

- Optimal transportation (Monge-Ampere-Kantorovich)
- Curve length and shortest paths (geodesics)
- Notion of convex function on $\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$
- Tangent spaces and differential geometry on $\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$.
- Differential calculus on Wasserstein space

Brenier, Benamou, Ambrosio, Gigli, Otto, Caffarelli, Villani, Carlier,

Differentiability in the sense of P.L.Lions

If $\mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \ni \mu \hookrightarrow \phi(\mu) \in \mathbb{R}$ is "differentiable" on Wasserstein space what about

$$
\mathbb{R}^{d N} \ni\left(x^{1}, \cdots, x^{N}\right) \mapsto u\left(x^{1}, \cdots, x^{N}\right)=\phi\left(\frac{1}{N} \sum_{j=1}^{N} \delta_{x j}\right) ?
$$

How does $\partial \phi(\mu)$ relate to $\partial_{x^{i}} u\left(x^{1}, \cdots, x^{N}\right)$?

Lions' Solution

- Lift ϕ up to $L^{2}(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}})$ into $\tilde{\phi}$ defined by $\tilde{\phi}(X)=\phi\left(\tilde{\mathbb{P}}_{X}\right)$
- Use Fréchet differentials on flat space L^{2}

Definition of L-differentiability

ϕ is differentiable at μ_{0} if $\tilde{\phi}$ is Fréchet differentiable at X_{0} s.t. $\tilde{\mathbb{P}} x_{0}=\mu_{0}$

- Check definition is intrinsic

Properties of L-differentials

- $\partial \phi\left(\mu_{0}\right)=D \tilde{\phi}\left(X_{0}\right) \in L^{2}(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}})$
- The distribution of the random variable $\partial \phi\left(\mu_{0}\right)$ depends only on μ_{0}, NOT ON THE RANDOM VARIABLE X_{0} used to represent it
- $\exists \xi: \mathbb{R}^{d} \mapsto \mathbb{R}^{d}$ uniquely defined μ_{0} a.e. such that $\partial \phi\left(\mu_{0}\right)=D \tilde{\phi}\left(X_{0}\right)=\xi\left(X_{0}\right)$
- we use $\partial \phi\left(\mu_{0}\right)(\cdot)=\xi$

Examples

$$
\begin{aligned}
& \phi(\mu)=\int_{\mathbb{R}^{d}} h(x) \mu(d x) \Longrightarrow \partial \phi(\mu)(\cdot)=\partial h(\cdot) \\
& \phi(\mu)=\int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} h(x-y) \mu(d x) \mu(d y) \Longrightarrow \partial \phi(\mu)(\cdot)=[2 \partial h(\cdot) * \mu](\cdot) \\
& \phi(\mu)=\int_{\mathbb{R}^{d}} \varphi(x, \mu) \mu(d x) \Longrightarrow \partial \phi(\mu)(\cdot)=\partial_{x} \varphi(\cdot, \mu)+\int_{\mathbb{R}^{d}} \partial_{\mu} \varphi\left(x^{\prime}, \mu\right)(\cdot) \mu\left(d x^{\prime}\right)
\end{aligned}
$$

Two More Examples

Assume $\phi: \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \mapsto \mathbb{R}$ is L-differentiable and define

$$
\phi^{N}: \mathbb{R}^{d} \times \cdots \times \mathbb{R}^{d} \ni\left(x^{1}, \cdots, x^{N}\right) \hookrightarrow \phi^{N}\left(x^{1}, \cdots, x^{N}\right)=\phi\left(\frac{1}{N} \sum_{i=1}^{N} \delta_{x^{i}}\right)
$$

$$
\partial_{x^{i}} \phi^{N}\left(x^{1}, \cdots, x^{N}\right)=\frac{1}{N} \partial_{\mu} \phi\left(\frac{1}{N} \sum_{i=1}^{N} \delta_{x^{i}}\right)\left(x_{i}\right)
$$

Assume $\phi: \mathcal{M}_{2}\left(\mathbb{R}^{d}\right) \mapsto \mathbb{R}$ has a linear functional derivative (at least in a neighborhood of $\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$ and that $\mathbb{R}^{d} \ni x \mapsto[\delta \phi / \delta m](m)(x)$ is differentiable and the derivative

$$
\mathcal{M}_{2}\left(\mathbb{R}^{d}\right) \times \mathbb{R}^{d} \ni(m, x) \mapsto \partial_{x}\left[\frac{\delta \phi}{\delta m}\right](m)(x) \in \mathbb{R}^{d}
$$

is jointly continuous in (m, x) and is of linear growth in x, then ϕ is L-differentiable and

$$
\partial_{\mu} \phi(\mu)(\cdot)=\partial_{x} \frac{\delta \phi}{\delta m}(\mu)(\cdot), \quad \mu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)
$$

Convex Functions of Measures

$\phi: \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \mapsto \mathbb{R}$ is said to be L-convex if

$$
\forall \mu, \mu^{\prime} \quad \phi\left(\mu^{\prime}\right)-\phi(\mu)-\mathbb{E}\left[\partial_{\mu} \phi(\mu)(X) \cdot\left(X^{\prime}-X\right)\right] \geq 0
$$

whenever $\mathbb{P}_{X}=\mu$ and $\mathbb{P}_{X^{\prime}}=\mu^{\prime}$.

Example1

$$
\mu \mapsto \phi(\mu)=g\left(\int_{\mathbb{R}^{d}} \zeta(x) d \mu(x)\right)
$$

- for $g: \mathbb{R} \rightarrow \mathbb{R}$ is non-decreasing convex differentiable
- and $\zeta: \mathbb{R}^{d} \rightarrow \mathbb{R}$ convex differentiable with derivative of at most of linear growth

Example2

$$
\mu \mapsto \phi(\mu)=\int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} g\left(x, x^{\prime}\right) d \mu(x) d \mu\left(x^{\prime}\right)
$$

- If $g: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ is convex differentiable (∂g linear growth)

A sobering counter-example. If $\mu_{0} \in \mathcal{P}_{2}(E)$ is fixed, the square distance function

$$
\mathcal{P}_{2}(E) \ni \mu \rightarrow W_{2}\left(\mu_{0}, \mu\right)^{2} \in \mathbb{R}
$$

may not be convex or even L-differentiable!

Back to the Control of McKean-Vlasov Equations

$$
\inf _{\alpha=\left(\alpha_{t}\right)_{0 \leq t \leq T}} \mathbb{E}\left[\int_{0}^{T} f\left(t, X_{t}, \mathbb{P}_{X_{t}}, \alpha_{t}\right) d t+g\left(X_{T}, \mathbb{P}_{X_{T}}\right)\right]
$$

under the dynamical constraint

$$
d X_{t}=b\left(t, X_{t}, \mathbb{P}_{X_{t}}, \alpha_{t}\right) d t+\sigma\left(t, X_{t}, \mathbb{P}_{X_{t}}, \alpha_{t}\right) d W_{t}
$$

Example: Potential Mean Field Games

Start with Mean Field Game à la Lasry-Lions

$$
\inf _{\alpha=\left(\alpha_{t}\right)_{0 \leq t \leq T}, d X_{t}=\alpha_{t} d t+\sigma d W_{t}} \mathbb{E}\left[\int_{0}^{T}\left[\frac{1}{2}\left|\alpha_{t}\right|^{2}+f\left(t, X_{t}, \mu_{t}\right)\right] d t+g\left(X_{T}, \mu_{T}\right)\right]
$$

s.t. f and g are differentiable w.r.t. x and there exist differentiable functions F and G

$$
\partial_{x} f(t, x, \mu)=\partial_{\mu} F(t, \mu)(x) \quad \text { and } \quad \partial_{x} g(x, \mu)=\partial_{\mu} G(\mu)(x)
$$

Solving this MFG is equivalent to solving the central planner optimization problem

$$
\inf _{\alpha=\left(\alpha_{t}\right)_{0 \leq t \leq T}, d X_{t}=\alpha_{t} d t+\sigma d W_{t}} \mathbb{E}\left[\int_{0}^{T}\left[\frac{1}{2}\left|\alpha_{t}\right|^{2}+F\left(t, \mathbb{P}_{X_{t}}\right)\right] d t+G\left(\mathbb{P}_{X_{T}}\right)\right]
$$

Special case of McKean-Vlasov optimal control

The Adjoint Equations

Lifted Hamiltonian

$$
\tilde{H}(t, x, \tilde{x}, y, \alpha)=H(t, x, \mu, y, \alpha)
$$

for any random variable \tilde{X} with distribution μ.
Given an admissible control $\boldsymbol{\alpha}=\left(\alpha_{t}\right)_{0<t<T}$ and the corresponding controlled state process $\mathbf{X}^{\alpha}=\left(X_{t}^{\alpha}\right)_{0 \leq t \leq T}$, any couple $\left(Y_{t}, Z_{t}\right)_{0 \leq t \leq T}$ satisfying:

$$
\left\{\begin{aligned}
& d Y_{t}=-\partial_{x} H\left(t, X_{t}^{\alpha}, \mathbb{P}_{X_{t}^{\alpha}},\right. \\
&\left.Y_{t}, \alpha_{t}\right) d t+Z_{t} d W_{t} \\
&-\left.\tilde{\mathbb{E}}\left[\partial_{\mu} H\left(t, \tilde{X}_{t}, X, \tilde{Y}_{t}, \tilde{\alpha}_{t}\right)\right]\right|_{X=X_{t}^{\alpha}} d t \\
& Y_{T}=\partial_{x} g\left(X_{T}^{\alpha}, \mathbb{P}_{X_{T}^{\alpha}}\right)+\left.\tilde{\mathbb{E}}\left[\partial_{\mu} g\left(x, \tilde{X}_{t}\right)\right]\right|_{x=X_{T}^{\alpha}}
\end{aligned}\right.
$$

where $(\tilde{\alpha}, \tilde{X}, \tilde{Y}, \tilde{Z})$ is an independent copy of (α, X^{α}, Y, Z), is called a set of adjoint processes

BSDE of Mean Field type according to Buckhdan-Li-Peng !!!
Extra terms in red are the ONLY difference between MFG and Control of McKean-Vlasov dynamics !!!

Pontryagin Maximum Principle (Sufficiency)

Assume

1. Coefficients continuously differentiable with bounded derivatives;
2. Terminal cost function g is convex;
3. $\boldsymbol{\alpha}=\left(\alpha_{t}\right)_{0 \leq t \leq T}$ admissible control, $\mathbf{X}=\left(X_{t}\right)_{0 \leq t \leq T}$ corresponding dynamics, $(\overline{\mathbf{Y}}, \mathbf{Z})=\left(Y_{t}, Z_{t}\right)_{0 \leq t \leq T}$ adjoint processes and

$$
(x, \mu, \alpha) \hookrightarrow H\left(t, x, \mu, Y_{t}, Z_{t}, \alpha\right)
$$

is $d t \otimes d \mathbb{P}$ a.e. convex,
then, if moreover

$$
H\left(t, X_{t}, \mathbb{P}_{X_{t}}, Y_{t}, Z_{t}, \alpha_{t}\right)=\inf _{\alpha \in A} H\left(t, X_{t}, \mathbb{P}_{X_{t}}, Y_{t}, \alpha\right) \text {, a.s. }
$$

Then α is an optimal control, i.e.

$$
J(\boldsymbol{\alpha})=\inf _{\boldsymbol{\beta} \in \mathbb{A}} J(\boldsymbol{\beta}) .
$$

Particular Case: Scalar Interactions

$$
\begin{array}{ll}
b(t, x, \mu, \alpha)=\tilde{b}(t, x,\langle\psi, \mu\rangle, \alpha) & \sigma(t, x, \mu, \alpha)=\tilde{\sigma}(t, x,\langle\phi, \mu\rangle, \alpha) \\
f(t, x, \mu, \alpha)=\tilde{f}(t, x,\langle\gamma, \mu\rangle, \alpha) & g(x, \mu)=\tilde{g}(x,\langle\zeta, \mu\rangle)
\end{array}
$$

- ψ, ϕ, γ and ζ differentiable with at most quadratic growth at ∞,
- $\tilde{b}, \tilde{\sigma}$ and \tilde{f} differentiable in $(x, r) \in \mathbb{R}^{d} \times \mathbb{R}$ for t, α) fixed
- \tilde{g} differentiable in $(x, r) \in \mathbb{R}^{d} \times \mathbb{R}$.

Recall that the adjoint process satisfies

$$
Y_{T}=\partial_{x} g\left(X_{T}, \mathbb{P}_{X_{T}}\right)+\tilde{\mathbb{E}}\left[\partial_{\mu} g\left(\tilde{X}_{T}, \mathbb{P}_{\tilde{X}_{T}}\right)\left(X_{T}\right)\right]
$$

but since

$$
\partial_{\mu} g(x, \mu)\left(x^{\prime}\right)=\partial_{r} \tilde{g}(x,\langle\zeta, \mu\rangle) \partial \zeta\left(x^{\prime}\right)
$$

the terminal condition reads

$$
Y_{T}=\partial_{x} \tilde{g}\left(X_{T}, \mathbb{E}\left[\zeta\left(X_{T}\right)\right]\right)+\tilde{\mathbb{E}}\left[\partial_{r} \tilde{g}\left(\tilde{X}_{T}, \mathbb{E}\left[\zeta\left(X_{T}\right)\right]\right)\right] \partial \zeta\left(X_{T}\right)
$$

Convexity in μ follows convexity of \tilde{g}

Scalar Interactions (CONT.)

$H(t, x, \mu, y, z, \alpha)=\tilde{b}(t, x,\langle\psi, \mu\rangle, \alpha) \cdot y+\tilde{\sigma}(t, x,\langle\phi, \mu\rangle, \alpha) \cdot z+\tilde{f}(t, x,\langle\gamma, \mu\rangle, \alpha)$.
$\partial_{\mu} H(t, x, \mu, y, z, \alpha)$ can be identified wih

$$
\begin{aligned}
\partial_{\mu} H(t, x, \mu, y, z, \alpha)\left(x^{\prime}\right)= & {\left[\partial_{r} \tilde{b}(t, x,\langle\psi, \mu\rangle, \alpha) \cdot y\right] \partial \psi\left(x^{\prime}\right) } \\
& +\left[\partial_{r} \tilde{\sigma}(t, x,\langle\phi, \mu\rangle, \alpha) \cdot z\right] \partial \phi\left(x^{\prime}\right) \\
& +\partial_{r} \tilde{f}(t, x,\langle\gamma, \mu\rangle, \alpha) \partial \gamma\left(x^{\prime}\right)
\end{aligned}
$$

and the adjoint equation rewrites:

$$
\begin{array}{r}
d Y_{t}=-\left\{\partial_{x} \tilde{b}\left(t, X_{t}, \mathbb{E}\left[\psi\left(X_{t}\right)\right], \alpha_{t}\right) \cdot Y_{t}+\partial_{x} \tilde{\sigma}\left(t, X_{t}, \mathbb{E}\left[\phi\left(X_{t}\right)\right], \alpha_{t}\right) \cdot Z_{t}\right. \\
\left.+\partial_{x} \tilde{f}\left(t, X_{t}, \mathbb{E}\left[\gamma\left(X_{t}\right)\right], \alpha_{t}\right)\right\} d t+Z_{t} d W_{t} \\
-\left\{\tilde{\mathbb{E}}\left[\partial_{r} \tilde{b}\left(t, \tilde{X}_{t}, \mathbb{E}\left[\psi\left(\tilde{X}_{t}\right)\right], \tilde{\alpha}_{t}\right) \cdot \tilde{Y}_{t}\right] \partial \psi\left(X_{t}\right)+\tilde{\mathbb{E}}\left[\partial_{r} \tilde{\sigma}\left(t, \tilde{X}_{t}, \mathbb{E}\left[\phi\left(\tilde{X}_{t}\right)\right], \tilde{\alpha}_{t}\right) \cdot \tilde{Z}_{t}\right] \partial \phi\left(X_{t}\right)\right. \\
+\tilde{\mathbb{E}}\left[\partial_{r} \tilde{f}\left(\left(t, \tilde{X}_{t}, \mathbb{E}\left[\gamma\left(\tilde{X}_{t}\right)\right], \tilde{\alpha}_{t}\right)\right] \partial \gamma\left(X_{t}\right)\right\} d t
\end{array}
$$

Anderson - Djehiche

Solution of the McKV Control Problem

Assume

- $b(t, x, \mu, \alpha)=b_{0}(t) \int_{\mathbb{R}^{d}} x d \mu(x)+b_{1}(t) x+b_{2}(t) \alpha$ with b_{0}, b_{1} and b_{2} is $\mathbb{R}^{d \times d}$-valued and are bounded.
- f and g as in MFG problem.

Thn there exists a solution $(\mathbf{X}, \mathbf{Y}, \mathbf{Z})=\left(X_{t}, Y_{t}, Z_{t}\right)_{0 \leq t \leq T}$ of the McKean-Vlasov FBSDE

$$
\left\{\begin{array}{l}
d X_{t}=b_{0}(t) \mathbb{E}\left(X_{t}\right) d t+b_{1}(t) X_{t} d t+b_{2}(t) \hat{\alpha}\left(t, X_{t}, \mathbb{P}_{X_{t}}, Y_{t}\right) d t+\sigma d W_{t}, \\
d Y_{t}=-\partial_{x} H\left(t, X_{t}, \mathbb{P}_{X_{t}}, Y_{t}, \hat{\alpha}_{t}\right) d t \\
\quad-\mathbb{E}\left[\partial_{\mu} \tilde{H}\left(t, \tilde{X}_{t}, X_{t}, \tilde{Y}_{t}, \tilde{\hat{\alpha}}_{t}\right)\right] d t+Z_{t} d W_{t}
\end{array}\right.
$$

with $Y_{t}=u\left(t, X_{t}, \mathbb{P}_{X_{t}}\right)$ for a function

$$
u:[0, T] \times \mathbb{R}^{d} \times \mathcal{P}_{1}\left(\mathbb{R}^{d}\right) \ni(t, x, \mu) \mapsto u(t, x, \mu)
$$

uniformly of Lip-1 and with linear growth in x.

A Finite Player Approximate Equilibrium

For N independent Brownian motions (W^{1}, \ldots, W^{N}) and for a square integrable exchangeable process $\beta=\left(\beta^{1}, \ldots, \beta^{N}\right)$, consider the system

$$
d X_{t}^{i}=\frac{1}{N} b_{0}(t) \sum_{j=1}^{N} X_{t}^{j}+b_{1}(t) X_{t}^{i}+b_{2}(t) \beta_{t}^{i}+\sigma d W_{t}^{i}, \quad X_{0}^{i}=\xi_{0}^{i},
$$

and define the common cost

$$
J^{N}(\beta)=\mathbb{E}\left[\int_{0}^{T} f\left(s, X_{s}^{i}, \bar{\mu}_{s}^{N}, \beta_{s}^{i}\right) d s+g\left(X_{T}^{1}, \bar{\mu}_{T}^{N}\right)\right], \quad \text { with } \bar{\mu}_{t}^{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{x_{t}^{i}} .
$$

Then, there exists a sequence $\left(\epsilon_{N}\right)_{N \geq 1}, \epsilon_{N} \searrow 0$, s.t. for all $\boldsymbol{\beta}=\left(\boldsymbol{\beta}^{1}, \ldots, \boldsymbol{\beta}^{N}\right)$,

$$
J^{N}(\boldsymbol{\beta}) \geq J^{N}(\boldsymbol{\alpha})-\epsilon_{N}
$$

where, $\boldsymbol{\alpha}=\left(\boldsymbol{\alpha}^{1}, \cdots, \boldsymbol{\alpha}^{N}\right)$ with

$$
\alpha_{t}^{i}=\hat{\alpha}\left(s, \tilde{X}_{t}^{i}, u\left(t, \tilde{X}_{t}^{i}\right), \mathbb{P}_{X_{t}}\right)
$$

where X and u are from the solution to the controlled McKean Vlasov problem, and ($\tilde{X}^{1}, \ldots, \tilde{X}^{N}$) is the state of the system controlled by α, i.e.

$$
d \tilde{X}_{t}^{i}=\frac{1}{N} \sum_{j=1}^{N} b_{0}(t) \tilde{X}_{t}^{j}+b_{1}(t) \tilde{X}_{t}^{i}+b_{2}(t) \hat{\alpha}\left(s, \tilde{X}_{s}^{i}, u\left(s, \tilde{X}_{s}^{i}\right), \mathbb{P}_{X_{s}}\right)+\sigma d W_{t}^{i}, \quad \tilde{X}_{0}^{i}=\xi_{0}^{i} .
$$

Application \#2: Chain Rule

Assume

$$
d X_{t}=b_{t} d t+\sigma_{t} d W_{t}, \quad X_{0} \in L^{2}(\Omega, \mathcal{F}, \mathbb{P})
$$

where

- $\mathbf{W}=\left(W_{t}\right)_{t \geq 0}$ is a \mathbb{F}-Brownian motion with values in \mathbb{R}^{d}
- $\left(b_{t}\right)_{t \geq 0}$ and $\left(\sigma_{t}\right)_{t \geq 0}$ are \mathbb{F}-progressive processes in \mathbb{R}^{d} and $\mathbb{R}^{d \times d}$
- Assume

$$
\forall T>0, \quad \mathbb{E}\left[\int_{0}^{T}\left(\left|b_{t}\right|^{2}+\left|\sigma_{t}\right|^{4}\right) d t\right]<+\infty .
$$

Then for any $t \geq 0$, if $\mu_{t}=\mathbb{P}_{X_{t}}$, and $a_{t}=\sigma_{t} \sigma_{t}^{\dagger}$ then:

$$
u\left(\mu_{t}\right)=u\left(\mu_{0}\right)+\int_{0}^{t} \mathbb{E}\left[\partial_{\mu} u\left(\mu_{s}\right)\left(X_{s}\right) \cdot b_{s}\right] d s+\frac{1}{2} \int_{0}^{t} \mathbb{E}\left[\partial_{v}\left(\partial_{\mu} u\left(\mu_{s}\right)\right)\left(X_{s}\right) \cdot a_{s}\right] d s
$$

Control of McKean-Vlasov SDEs: Verification Theorem

Problem: if $f: \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \mapsto \mathbb{R}$, minimize

$$
J(\boldsymbol{\alpha})=\int_{0}^{T} f\left(\mathbb{P}_{X_{t}}\right) d t+\mathbb{E}\left[\int_{0}^{T} \frac{1}{2}\left|\alpha_{t}\right|^{2} d t\right]
$$

under the constraint:

$$
d X_{t}^{\alpha}=\alpha_{t} d t+d W_{t}, \quad 0 \leq t \leq T
$$

Verification Argument: Assume $u:[0, T] \times \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$ is $\mathcal{C}^{1,2}$, and satisfies

$$
\partial_{t} u(t, \mu)-\frac{1}{2} \int_{\mathbb{R}^{d}}\left|\partial_{\mu} u(t, \mu)(v)\right|^{2} d \mu(v)+\frac{1}{2} \operatorname{trace}\left[\int_{\mathbb{R}^{d}} \partial_{v} \partial_{\mu} u(t, \mu)(v) d \mu(v)\right]+f(\mu)=0
$$

then, the McKean-Vlasov SDE

$$
d \hat{X}_{t}=-\partial_{\mu} u\left(t, \mathbb{P}_{\hat{X}_{t}}\right)\left(\hat{X}_{t}\right) d t+d W_{t}, \quad 0 \leq t \leq T
$$

has a unique solution $\left(\hat{X}_{t}\right)_{0 \leq t \leq T}$ satisfying $\mathbb{E}\left[\sup _{0 \leq t \leq T}\left|\hat{X}_{t}\right|^{2}\right]<\infty$ which is the unique optimal path since $\hat{\alpha}_{t}=-\partial_{\mu} u\left(t, \mathbb{P}_{\hat{X}_{t}}\right)\left(\hat{X}_{t}\right)$ minimizes the cost:

$$
J(\hat{\boldsymbol{\alpha}})=\inf _{\boldsymbol{\alpha} \in \mathbb{A}} J(\boldsymbol{\alpha})
$$

Proof (SKETCH OF)

For a generic admissible control $\boldsymbol{\alpha}=\left(\alpha_{t}\right)_{0 \leq t \leq T}$, set $X_{t}^{\alpha}=X_{0}+\int_{0}^{T} \alpha_{s} d s+W_{t}$ and apply the chain rule:

$$
\begin{aligned}
& d u\left(t, \mathbb{P}_{X_{t}^{\alpha}}\right) \\
& =\left[\partial_{t} u\left(t, \mathbb{P}_{X_{t}^{\alpha}}\right)+\mathbb{E}\left[\partial_{\mu} u\left(t, \mathbb{P}_{X_{t}^{\alpha}}\right)\left(X_{t}^{\alpha}\right) \cdot \alpha_{t}\right]+\frac{1}{2} \mathbb{E}\left[\operatorname{trace}\left[\partial_{v} \partial_{\mu} u\left(t, \mathbb{P}_{X_{t}^{\alpha}}\right)\left(X_{t}^{\alpha}\right)\right]\right]\right] d t \\
& =\left[-f\left(\mathbb{P}_{X_{t}^{\alpha}}\right)+\frac{1}{2} \mathbb{E}\left[\left|\partial_{\mu} u\left(t, \mathbb{P}_{X_{t}^{\alpha}}\right)\left(X_{t}^{\alpha}\right)\right|^{2}\right]+\mathbb{E}\left[\partial_{\mu} u\left(t, \mathbb{P}_{X_{t}^{\alpha}}\right)\left(X_{t}^{\alpha}\right) \cdot \alpha_{t}\right]\right] d t \\
& =\left[-f\left(\mathbb{P}_{X_{t}^{\alpha}}\right)-\frac{1}{2} \mathbb{E}\left[\left|\alpha_{t}\right|^{2}\right]+\frac{1}{2} \mathbb{E}\left[\left|\alpha_{t}+\partial_{\mu} u\left(t, \mathbb{P}_{X_{t}^{\alpha}}\right)\left(X_{t}^{\alpha}\right)\right|^{2}\right]\right] d t
\end{aligned}
$$

where we used the PDE satisfied by u, and identified a perfect square. Integrate both sides and get:

$$
J(\boldsymbol{\alpha})=u\left(0, \mathbb{P}_{x_{0}}\right)+\frac{1}{2} \mathbb{E}\left[\int_{0}^{T}\left[\left|\alpha_{t}+\partial_{\mu} u\left(t, \mathbb{P}_{x_{t}}\right)\left(X_{t}^{\boldsymbol{\alpha}}\right)\right|^{2}\right] d t\right],
$$

which shows that $\alpha_{t}=-\partial_{\mu} u\left(t, \mathbb{P}_{x_{t}^{\alpha}}\right)\left(X_{t}^{\alpha}\right)$ is optimal.

Joint Chain Ruile

- If u is smooth
- If $d \xi_{t}=\eta_{t} d t+\gamma_{t} d W_{t}$
- If $d X_{t}=b_{t} d t+\sigma_{t} d W_{t}$ and $\mu_{t}=\mathbb{P}_{x_{t}}$

$$
\begin{aligned}
& u\left(t, \xi_{t}, \mu_{t}\right)=u\left(0, \xi_{0}, \mu_{0}\right)+\int_{0}^{t} \partial_{x} u\left(s, \xi_{s}, \mu_{s}\right) \cdot\left(\gamma_{s} d W_{s}\right) \\
& \quad+\int_{0}^{t}\left(\partial_{t} u\left(s, \xi_{s}, \mu_{s}\right)+\partial_{x} u\left(s, \xi_{s}, \mu_{s}\right) \cdot \eta_{s}+\frac{1}{2} \operatorname{trace}\left[\partial_{x x}^{2} u\left(s, \xi_{s}, \mu_{s}\right) \gamma_{s} \gamma_{s}^{\dagger}\right]\right) d s \\
& \quad+\int_{0}^{t} \tilde{\mathbb{E}}\left[\partial_{\mu} u\left(s, \xi_{s}, \mu_{s}\right)\left(\tilde{X}_{s}\right) \cdot \tilde{b}_{s}\right] d s+\frac{1}{2} \int_{0}^{t} \tilde{\mathbb{E}}\left[\operatorname{trace}\left(\partial_{v}\left[\partial_{\mu} u\left(s, \xi_{s}, \mu_{s}\right)\right]\left(\tilde{X}_{s}\right) \tilde{\sigma}_{s} \tilde{\sigma}_{s}^{\dagger}\right)\right] d s
\end{aligned}
$$

where the process $\left(\tilde{X}_{t}, \tilde{b}_{t}, \tilde{\sigma}_{t}\right)_{0 \leq t \leq T}$ is an independent copy of the process $\left(X_{t}, b_{t}, \sigma_{t}\right)_{0 \leq t \leq T}$, on a different probability space $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}})$

Deriving the Master Equation

If $(t, x, \mu) \hookrightarrow \mathcal{U}(t, x, \mu)$ is the master field

$$
\left(\mathcal{U}\left(t, X_{t}, \mu_{t}\right)-\int_{0}^{t} f\left(s, X_{s}, \mu_{s}, \hat{\alpha}\left(s, X_{s}, \mu_{s}, Y_{s}\right)\right) d s\right)_{0 \leq t \leq T}
$$

is a martingale whenever $\left(X_{t}, Y_{t}, Z_{t}\right)_{0 \leq t \leq T}$ is the solution of the forward-backward system characterizing the optimal path under the flow of measures $\left(\mu_{t}\right)_{0 \leq t \leq T}$. So if we compute its Itô differential, the drift must be 0

An Example of Derivation

$$
\begin{gathered}
d X_{t}=b\left(t, X_{t}, \mu_{t}, \alpha_{t}\right) d t+d W_{t} \\
H(t, x, \mu, y, \alpha)=b(t, x, \mu, \alpha) \cdot y+f(t, x, \mu, \alpha) \\
\hat{\alpha}(t, x, \mu, y)=\arg \inf _{\alpha} H(t, x, \mu, y, \alpha)
\end{gathered}
$$

Itô's Formula with $\mu_{t}=\mathbb{P}_{X_{t}}$
$\left(\right.$ set $\hat{\alpha}_{t}=\hat{\alpha}\left(t, X_{t}, \mu_{t}, \partial U\left(t, X_{t}, \mu_{t}\right)\right)$ and $\left.b_{t}=b\left(t, X_{t}, \mu_{t}, \hat{\alpha}_{t}\right)\right)$

$$
\begin{aligned}
& d \mathcal{U}\left(t, X_{t}, \mu_{t}\right)= \\
& \left(\partial_{t} \mathcal{U}\left(t, X_{t}, \mu_{t}\right)+b_{t} \cdot \partial_{x} \mathcal{U}\left(t, X_{t}, \mu_{t}\right)+\frac{1}{2} \operatorname{trace}\left[\partial_{x x}^{2} \mathcal{U}\left(t, X_{t}, \mu_{t}\right)\right]+f\left(t, x, \mu, \hat{\alpha}_{t}\right)\right) d t \\
& \left.\left.\quad+\mathbb{E}\left[b_{t} \cdot \partial_{\mu} \mathcal{U}\left(t, X_{t}, \mu_{t}\right)\left(X_{t}\right)+\frac{1}{2} \partial_{v} \partial_{\mu} \mathcal{U}\left(t, X_{t}, \mu_{t}\right)\right]\left(X_{t}\right)\right]\right] d t+\partial_{x} \mathcal{U}\left(t, X_{t}, \mu_{t}\right) d W_{t}
\end{aligned}
$$

The Actual Master Equation

$$
\begin{aligned}
& \partial_{t} \mathcal{U}(t, x, \mu)+b(t, x, \mu, \hat{\alpha}(t, x, \mu, \partial \mathcal{U}(t, x, \mu))) \cdot \partial_{x} \mathcal{U}(t, x, \mu) \\
& +\frac{1}{2} \operatorname{trace}\left[\partial_{x x}^{2} \mathcal{U}(t, x, \mu)\right]+f(t, x, \mu, \hat{\alpha}(t, x, \mu, \partial \mathcal{U}(t, x, \mu))) \\
& +\int_{\mathbb{R}^{d}}\left[b\left(t, x^{\prime}, \mu, \hat{\alpha}(t, x, \mu, \partial \mathcal{U}(t, x, \mu))\right) \cdot \partial_{\mu} \mathcal{U}(t, x, \mu)\left(x^{\prime}\right)\right. \\
& \left.\quad+\frac{1}{2} \operatorname{trace}\left(\partial_{v} \partial_{\mu} \mathcal{U}(t, x, \mu)\left(x^{\prime}\right)\right)\right] d \mu\left(x^{\prime}\right)=0,
\end{aligned}
$$

for $(t, x, \mu) \in[0, T] \times \mathbb{R}^{d} \times \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$, with the terminal condition $V(T, x, \mu)=g(x, \mu)$.

