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THE ANALYTIC (PDE) APPROACH TO MFGS

For fixed po = (ut)t, the value function
T
Vet = it B[ (5 Xeo s, as)ds + 90X, ur) | X = ]
as)t<s<T t
solves a HJB (backward) equation
O VE(t, x) +inf[b(t, x, pur, &) - Ox VH (1, x) + f(t, X, put, )]
[e3

%trace[a(t,x)fa(t,x)afx VE(t,x)] =0

with terminal condition V#(T, x) = g(x, 1)

The fixed point step is implemented by requiring that t — u; solves the (forward)
Kolmogorov equation

Ot = #tﬁ;r
This is also a nonlinear PDE because p; appearsin b ......

System of strongly coupled nonlinear PDEs! Time goes in both directions



HJB EQUATION FROM ITO’S FORMULA

Classical Optimal Control set-up (g fixed)

Dynamic Programming Principle

t — V¥(t, X;) is a martingale when (X;)o<:<7 is optimal
Classical It6 formula to compute:
a:V¥(t, Xt)
when (t, x) — V*(t, x) is smooth and
aX; = b(t, X, 6ut)dt + o(t, Xt, &) dW;

is optimal to
> set the driftto 0
> get HIB



MFG COUNTERPART

» MFG is not an optimization problem per-se
» Optimal control arguments (for u fixed) affected by fixed point step
» What is the effect of last step substitution p¢ = Px,?

» In equilibrium, do we still have:
> Dynamic Programming Principle?
> Martingale property of
t— VHE(t, X:)

» What would be the right It6 formula to compute:

i VH (8, X))

when
aXi = b(t, Xt, dt)dt + 0'(f7 Xt, dt)dM/t

is optimal and p; = Px,?



MORE REASONS TO DIFFERENTIATE FUNCTIONS OF MEASURES

Back to the N-player games (with reduced or distributed controls):
aX{ = b(t, X;, 7 s o6, X, By )) ot + o (6 X0 T s o8, XL 7)) dWy L t e [0, T],

Propagation of Chaos

> X!,---, Xk, become independent in the limit N — oo

> X' = (X)o<t<T = X = (Xt)o<t< 7 solution of the McKean-Vlasov equation:

aXi = b(t, Xt, Px,, ¢(t, Xe, Px,)) dt + o (8, X, Px,, 6(t, Xt, Px,))dWs,  t € [0, T,
where W = (W;)o<:<7 is a standard Wiener process.
Expected Costs:
i T i N i N i N
J@) = [T x ot X ma+ o) .

converge to:

;
J(¢) = E[/o f(t, Xt, Px,, o(t, Xt, Px,)) dt + g(XT7PXT)] .

Optimization after the limit: Control of McKean-Vlasov equations !



TAKING STOCK

SDE State Dynamics  Optimization Nash Equilibrium
_—
for N players for N players
l Fixed Point l Fixed Point
limNHoc IImN*):)O
McKean Vlasov Optimization Mean Field Game?
Dynamics Controlled McKean-Viasov SDE?

Is the above diagram commutative?



CONTROLLED MCKEAN-VLASOV SDES

-
inf ]E|:/ f(t, Xt,IPXt,ar)dt-ﬂ—g(XT,IP’XT)}
a=(atlo<t<T 0

under dynamical constraint dX; = b(t, X, Py, ap)dt+ o (t, X, Px,, ay) dW,.

State (X, IP’X,) infinite dimensional

>
> State trajectory t — (X;, pt) is a very thin submanifold due to constraint u; = Px,
> Open loop form: a = (at)o<¢< T adapted
> Closed loop form: oy = #(t, Xt, Px,)
Whether we use
» Infinite dimensional HJB equation
» Pontryagin stochastic maximum principle with Hamiltonian
H(t, x, p,y,z, @) = b(t, x, p, ) - y + o(t, x, u, ) - z + f(t, x, p, @)
and introduce the adjoint equations,

WE NEED TO DIFFERENTIATE FUNCTIONS OF MEASURES !



DIFFERENTIABILITY OF FUNCTIONS OF MEASURES

M(RY) space of signed (finite) measures on R?

v

Banach space (dual of a space of continuous functions)
Classical differential calculus available
> If

v

M(RY) > m— ¢(m) eR
"¢ is differentiable" has a meaning
For my € M(R?) one can define

d¢(mo)

om

v

)
as a function on R? in Fréchet or Gateaux sense

Bensoussan-Frehe-Yam alternative is to work only with measures with densities and
view ¢ as a function on L'(R, dx) !



TOPOLOGY ON WASSERSTEIN SPACE

Measures appearing in MFG theory are probability distributions of
random variables !!!

Wasserstein space
Pa(®?) = {ie PEY; [ IxPauta) < oo |
Metric space for the 2-Wasserstein distance
1/2
W)= ot [k yPa(nay)|

where M(u, v) is the set of probability measures coupling p and v.
Topological properties of Wasserstein space well understood as following statements are
equivalents

» N — 1 in Wasserstein space

> uN — pweakly and [ [x[2uN(dx) — [ |x[2u(dx)



GLIVENKO-CANTELLI IN WASSERSTEIN SPACE

X', X?,- .-, iid. random variables in R? with common distribution 1 s.t.

Myu) = [ | 1x7u(d0) < oe.

rd

Ifqg=2,

u»[ lim Wa(m", p) = o] =1.

N— oo
where 7V = £ S°N, 8, is a (random) empirical measure. Standard LLN !
Crucial Estimate: Glivenko-Cantelli If g > 4 for each dimension d > 1, 3C = C(d, q, Mg()) s.t.
forall N > 1:
N1/2, ifd < 4,

E[Wo(i", u)?] < CAN2l0gN, ifd =4, (1)
N=2/9, ifd> 4.



DIFFERENTIAL CALCULUS ON WASSERSTEIN SPACE

What does it mean "¢ is differentiable" or "¢ is convex" for

Po(RY) > p— o(u) €R

Wasserstein space P»(R?) is a metric space for W,
» Optimal transportation (Monge-Ampere-Kantorovich)
» Curve length and shortest paths (geodesics)
» Notion of convex function on P,(R?)
Tangent spaces and differential geometry on P,(R).
Differential calculus on Wasserstein space

v

v

Brenier, Benamou, Ambrosio, Gigli, Otto, Caffarelli, Villani, Carlier, ....



DIFFERENTIABILITY IN THE SENSE OF P.L.LIONS

If Po(RY) 3 1 < ¢(u) € Ris "differentiable’ on Wasserstein space what about
o N N 1Y
1 1
BN 5 (¢ M) s X ):ab(NZ%-) ?
j=1
How does 8¢ (u) relate to @ ju(x', - - -, x")?

Lions’ Solution
» Lift ¢ up to L2(Q, 7, P) into ¢ defined by ¢(X) = #(Px)
» Use Fréchet differentials on flat space L?

Definition of L-differentiability

¢ is differentiable at uo if ¢ is Fréchet differentiable at Xp s.t. Px, = po

» Check definition is intrinsic



PROPERTIES OF L-DIFFERENTIALS

> 9é(po) = D&(XO) € Lz(ﬁv]:—v I‘@)

» The distribution of the random variable 9¢(1.0) depends only on p,
NOT ON THE RANDOM VARIABLE X used to represent it

> 3¢ : RY — R? uniquely defined 1o a.e. such that de(uo) = Dd(Xo) = £(Xo)
> we use dp(uo)(") = &

Examples
o) = [ OOm(e) = Do) = Oh()
o) = [ [ pc=pu(@uidy) = 00()(0) = [20h() * 11()

o) = [ elemula) = 00(n0) = dxel) + [ 0ol i) In(e)



Two MORE EXAMPLES

Assume ¢ : P2(R?) — R is L-differentiable and define

da(ﬂf~wx%L»¢Wﬂf~,ﬁ5:¢(%§:®Q

Assume ¢ : M»(RY) — R has a linear functional derivative (at least in a neighborhood of P, (R%)
and that R? 5 x +— [§¢/8m](m)(x) is differentiable and the derivative

M2(R%) x R? 5 (m, x) — & [g%] (m)(x) € R?

is jointly continuous in (m, x) and is of linear growth in x, then ¢ is L-differentiable and

oo

Dud(i)(+) = x5 (1)(+), 1 € Pa(R).




CONVEX FUNCTIONS OF MEASURES

¢ : P2(R?) — Ris said to be L-convex if

Vo n' d(n') = ¢(n) — E[0ud(n)(X) - (X" = X)] > 0,
whenever Px = pand Py, = p'.

po (p (/ ¢(x dM(X)>

» for g : R — Ris non-decreasing convex differentiable

Example1

> and ¢ : RY — R convex differentiable with derivative of at most of linear growth
Example2
psd = [ gt x)dudux)
rd Jrd
> lfg:R? x RY — R is convex differentiable (8g linear growth)

A sobering counter-example. If ;1o € P2(E) is fixed, the square distance function
Pa(E) 5 1t — Wa(po, p)* € R

may not be convex or even L-differentiable!



BACK TO THE CONTROL OF MCKEAN-VLASOV EQUATIONS

;
inf E{/ f(t, Xt, Px,, ar)dt + g(Xr,Px;)
0

a=(at)o<t<T

under the dynamical constraint

aX; = b(t7 Xt,Px[, Ott)dt + O'(t7 Xz, PXN a;)dVVr.



EXAMPLE: POTENTIAL MEAN FIELD GAMES

Start with Mean Field Game a la Lasry-Lions

inf

T 4
n E —lagl® + f(t, X, pe)] ot + g( X7,
a(atdocte . B —adtiodiy {/0 [2|at| (t, X, 11t)] 9(Xt,11)

s.t. f and g are differentiable w.r.t. x and there exist differentiable functions F and G
Oxf(t, x, 1) = DuF(t, 1) (x) and  Bxg(x, ) = 9, G(1)(x)
Solving this MFG is equivalent to solving the central planner optimization problem

T 1
inf E —|ag|? + F(t,Px, )] dt + G(P
(@< i< B=aqdtod {/o [Gledl” + Ut Bx)] ot + GlPxr)

Special case of McKean-Vlasov optimal control



THE ADJOINT EQUATIONS

Lifted Hamiltonian . .
H(t,x, X, y,0) = H(t, X, 1, ¥, @)

for any random variable X with distribution .
Given an admissible control o = (at)o<t< 7 and the corresponding controlled state
process X* = (X)o<t<T, any couple (Yt, Zt)o<i< 7 satisfying:
dYy = —oxH(t, X7, tha , Yo, ap)dt + ZidWs
—E[o.H(t, X, X, V1, )] x=xpdt
Y7 = 0xg(XF, Pxe ) + E[0,9(x, X)][x=xg

where (&, X, ¥, Z) is an independent copy of (a, X, Y, Z), is called a set of adjoint
processes

BSDE of Mean Field type according to Buckhdan-Li-Peng !!!

Extra terms in red are the ONLY difference between MFG and Control of
McKean-Vlasov dynamics !!!



PONTRYAGIN MAXIMUM PRINCIPLE (SUFFICIENCY)

Assume
1. Coefficients continuously differentiable with bounded derivatives;
2. Terminal cost function g is convex;

3. a = (at)o<i< T admissible control, X = (Xi)o<:< 7 corresponding
dynamics, (Y, Z) = (Y:, Zt)o<:<7 adjoint processes and

(X, 1y @) = H(t, x, 1, Yt, 21, @)

is dt ® dP a.e. convex,
then, if moreover

H(t7 Xfa]PX” Y[,Zt,Oé[) = Irenjq H(ta Xty]P)Xﬁ %,Oé), a.s.

Then « is an optimal control, i.e.

J(@) = inf J(B).



PARTICULAR CASE: SCALAR INTERACTIONS

b(t, X, p, @) = b(t, X, (¥, 1), @) o(t, X, p, @) = 5(t, X, (¢, 1), )
f(t,X,p,a)zf(t,X,(*y,,u),oz) g(X,M):g(X7<C7M)

> 1, ¢, v and ¢ differentiable with at most quadratic growth at oo,
> b, 5 and f differentiable in (x, r) € R? x R for t, ) fixed
» g differentiable in (x,r) € RY x R.
Recall that the adjoint process satisfies
Y1 = 0x9(X1, Px;) + E[0,9(X7, P, ) (XT)].

but since
Dug(x, n)(X") = 8:g(x, (¢, 1)) A¢(X),

the terminal condition reads
Yr = 0.9 (Xr, B[C(X7)]) + E[0:8 (X7, E[¢(X7)])]0¢(X7)

Convexity in 4 follows convexity of g



SCALAR INTERACTIONS (CONT.)

H(t7 X>N7,V7 Z, a) = B(t7 X, <1/’7N>70¢) y+&(t7 X, <¢7 /1/)705) 'Z+?(t7xz <’Y,/L>,Oé).
O H(t, x, p, ¥, z,) can be identified wih

O H(t X, p,y, 2, @)(X') = [Orb(t, x, (¥, 1), @) - y]Ou(X')
+ [0r6 (1, X, (¢, 1), @) - 2] Op(X)
+ 01 (t, X, (7, 1), @) Dv(x')
and the adjoint equation rewrites:

d; — _{axb(z, X, E[6(X0)], o) - Vi + 0 (8, Xi, B[p(X)], o) - Z
+ OxF(t, Xe, E[y(Xe)], a,)}dt + ZdW,
f{fE[a,E(t, X, E[p(Xp)], @) - Vi) 0w(Xe) + E[8r6 (8, Xe, E[p(Xp)], &) - Zi] 09(Xp)
+E[a:7((t, Xt E[v(Xp)], &r)] BA/(Xf)}df

Anderson - Djehiche



SOLUTION OF THE MCKYV CONTROL PROBLEM

Assume
> b(t, X, p, ) = bo(t) [za Xdu(x) + by (t)x + ba(t)ex
with by, by and b, is R9*9-valued and are bounded.

» fand g as in MFG problem.
Thn there exists a solution (X, Y,Z) = (X;, Y%, Zt)o<t< T Of the McKean-Vlasov FBSDE
Xt = bo(1)E(X;)dt 4 by (1) Xrdt + ba(t)a(t, X, Px,, Yr)dt + odWi,
dYy = —0xH(t, X;, Px,, Y;, &) dt
—E[8.H(t, X, Xp, V1, &) ] dt + ZiaW,.
with Y = u(t, X, P, ) for a function
u: [0, T] x RY x Py(RY) 5 (t, x, ) — u(t, X, )

uniformly of Lip-1 and with linear growth in x.



A FINITE PLAYER APPROXIMATE EQUILIBRIUM

For N independent Brownian motions (W1 RN WN) and for a square integrable exchangeable
process 8 = (8, ..., 8N), consider the system
o N ) ; ) ) )
X = (D) D0 X+ b (DX + ba()5; + o dW, X = &,

=

and define the common cost
N T i N i 1N N1
J (B):E[/O f(s,Xs,ﬂs7B5)ds+g(Xr7ﬁT)]7 with fitt = 5 > Oy
i=1

Then, there exists a sequence (en)n>1, en \ 0, s.t. forall 3 = (8',...,8Y),
JB) > () = en,
where, a = (a', - -+, &) with
ap = als, X[, u(t, X)), Px,)
where X and u are from the solution to the controlled McKean Vlasov problem, and
(X',..., XN)is the state of the system controlled by «, i.e.

1N » » " " S )
dXi = 5 D2 bo(OXF + b (DX + ba(Da(s, X5, u(s, X)), Px) + odW], Xg = &
j=1



APPLICATION #2: CHAIN RULE

Assume
dX; = bidt + o1 dW;,  Xp € L2(Q, F, P),

where
> W = (W);>0 is a F-Brownian motion with values in RY

> (bt)t>0 and (o1)s>0 are F-progressive processes in RY and RIx9
> Assume -
vT >0, IE|:/ (|bt‘2+|0't‘4)dt:| < +o0.
0

Then forany t > 0, if uy = Px,, and a; = ota; then:

t 1 t
u(pt) = U(Ho)+/0 E[auu(ﬂs)(xs)'bs]dSJrE/(; E [0y (8,.u(ps))(Xs) - as] ds.



CONTROL OF MCKEAN-VLASOV SDES: VERIFICATION THEOREM

Problem: if f : P,(RY) — R, minimize

T T
J(a):/ f(IPXa)dt+]E[/ —|a,|2dt]
0 t 0o 2
under the constraint:

aX* = oydt +dW;, 0<t<T,

Verification Argument: Assume u : [0, T] x P(R?) — Ris C'*2, and satisfies

owiton) 5 [ 10,ult ) )Pdu(v) + e [ 0,u(t, )v)du(v)] + 1) =0,
2 Jrd 2 Rd
then, the McKean-Vlasov SDE
dXi = —0,u(t, Py ) (X)dt +dW;, 0<t<T,
has a unique solution ()A(t)ogtgr satisfying E[supg << 7 | Xt|?] < oo which is the unique optimal
path since &; = —9,, u(t, ]P’;(t)()A(,) minimizes the cost:

J(&) =

D[réfA J(o).



PROOF (SKETCH OF)

For a generic admissible control o« = (at)o<t<7, S€t X = Xo + fOT asds + W; and apply the
chain rule:

du(t, Pxer)
1

- [a,u(t, Paee) + E[0,u(t Bxpe) () - ] + 2 5 [race (0,0, u(t, Bxp) (x,a)}]] dt

1 o o
_ [7 F(Pxpe) + SE[|0uu(t Pxp) (X [2] +E[0u0(t,Bxpe) (67) - a[]] ot

1 1 o
= [~ 1) = Gl + ZE[or+ .u(t Bxp) (6 ]|t

where we used the PDE satisfied by u, and identified a perfect square. Integrate both sides and get:
1 T
J(a) = u(0,Px,) + 7JE[/0 [}at + 0uu(t, ]P’Xta)(Xta) ﬂdt],

2
which shows that oy = — 9, u(t, IP’Xra)(X,“) is optimal.



JOINT CHAIN RUILE

> If uis smooth
> |f d§[ = mdt + 'Y{dWI
» If dX; = bydt + o:dW; and ne = PXI

t
Ut €6, ) = 00, o, i0) + [ (s, s i) - (5Ws)
JO
t 1
+ /0 (8;U(S, Es, ts) + Oxu(s, s, pus) - s + Etrace [3§XU(57 &s, #s)’)’s’Yﬂ ) ds

+/OtIEI[8Hu(s, £s7us)(5(s).f)s]ds+%/O[E[lrace(av [0,U(s, €8, ps)] (o)1) ] ds

where the process (X;, by, &t)o<t<T1 is an independent copy of the process (X:, bt, ot)o<t<7, 0N
a different probability space (2, F, P)



DERIVING THE MASTER EQUATION

If (¢, x, u) — U(L, x, p) is the master field
t
(U(t7 X, pt) — / f(37 Xs, s, &(S, Xs, s, Ys))ds)
0 0<t<T
is a martingale whenever (X, Y, Zt)o<i< 7 is the solution of the forward-backward
system characterizing the optimal path under the flow of measures (yt)o<i<7. SO if
we compute its It6 differential, the drift must be 0



AN EXAMPLE OF DERIVATION

dXt = b(t, X[, Mty Oé[)dt + dW[
H(t, x, p, y, @) = b(t, X, pp, ) - y + f(t, X, p, @)
a(t, x, pu,y) = arginf H(t, x, p, y, @)
It6’s Formula with iy = Py,
(set &t = &(t, Xt, pt, OU(L, X, ut)) and by = b(t, Xt, pt, &)
du(tthHt) =

1
(Ot X )+ b 020, Yo ) + GreacelOBUCE X)) + (2, %) )

1
+ E |:bt . GHL{(I‘, XT: ,u,t)(X{) + EGVBHU(I, X[, ,u()] (XI)]:| at + BXZ/I(I‘, Xt, /L[)th



THE ACTUAL MASTER EQUATION

atu(tu qu') + b(t’ X, [,y &(tv X, [, au(tzx’ /»L))) ! 8)(1/{(1‘, X, )u‘)

+ %trace[@fxb{(l‘,x,u)] + (1, %, 1, &(t, X, p, OU(L, X, 1))
+/ [ (t, X', p, &(t, x, p, OU(L, X, 1)) - OuU(t, X, p)(X")

+ %trace(@v[ﬂ#b{(t, X,/L)(Xl)>:| du(x') =0,

for (t,x, 1) € [0, T] x RY x P,(RY), with the terminal condition V(T, x, 1) =

g(x, ).



