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Setup
@ We consider equations of the type
oiu = Au+ F(u,§),

where F is non-linear in v, affin in £ and £ is an irregular input.
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Setup

@ We consider equations of the type

oiu=Au+ F(u,§),

where F is non-linear in u, affinin £ and ¢ is an irregular input.

@ Equation often ill-posed.

@ Naive approach: Look at

o = Au. + F(u., &), &. smoothened version of &,

— often does not converge as ¢ | 0.
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Setup

@ We consider equations of the type
oiu=Au+ F(u,§),

where F is non-linear in v, affin in £ and £ is an irregular input.
@ Equation often ill-posed.

@ Naive approach: Look at

o = Au. + F(u., &), &. smoothened version of &,

— often does not converge as ¢ | 0.

@ Solution: Use regularity structures to renormalise the equation.
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Directions within regularity structures: White noise

@ Look at convergence of the sequence of equations

otu: = Au: + F(ue, &), & mollified white noise.

@ Recall: ¢ € S'(RY) is called white noise if ¢ is Gaussian and

E[E()EW)] = 0x(y)-
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Directions within regularity structures: White noise

@ Look at convergence of the sequence of equations
iU = Au: + F(u., &), & mollified white noise.

@ Recall: ¢ € S'(RY) is called white noise if ¢ is Gaussian and

E[E()EW)] = 0x(y)-

@ Goal: Find an algorithmic way to deal with a large class of
equations of the above type.
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Directions within regularity structures: White noise

@ Look at convergence of the sequence of equations
iU = Au: + F(u., &), & mollified white noise.

@ Recall: ¢ € S'(RY) is called white noise if ¢ is Gaussian and

E[E()EW)] = 0x(y)-

@ Goal: Find an algorithmic way to deal with a large class of
equations of the above type.

@ Example: Generalized KPZ (Bruned, Hairer, Zambotti)
dru = Au + F(u)(dxu)? + k(u)dxu + h(u) + g(u)é

— 120 terms need to be controlled = not doable by hands.
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Directions within regularity structures: non gaussian
approximation
@ Look at the convergence of the sequence of equations

atus = AUE + F(U57€E)7

where £, is a non gaussian, smooth, strongly mixing field that
approximates white noise.
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Directions within regularity structures: non gaussian
approximation
@ Look at the convergence of the sequence of equations

8tUE — AUE + F(UE7€E)7

where £, is a non gaussian, smooth, strongly mixing field that
approximates white noise.

— Gaussian tools break down, renormalisation more complicated.
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Directions within regularity structures: non gaussian
approximation
@ Look at the convergence of the sequence of equations
Ot = Aue + F(Ue, &),

where £, is a non gaussian, smooth, strongly mixing field that
approximates white noise.

— Gaussian tools break down, renormalisation more complicated.

Examples:
@ KPZ (Shen/Hairer)

OtlUe = AU + (OxU:)? + &
@ "generalised" ®3 equation (Shen/Xu)
Oru: = Au; + V(us) + &,

for some suitable polynomial V.
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Directions within regularity structures: the discrete
case

@ Look at the convergence of the sequence of equations

O = Au. + F(u:, &),

where time and space may be discrete.
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Directions within regularity structures: the discrete
case

@ Look at the convergence of the sequence of equations
ot = Au: + F(ue, &),

where time and space may be discrete.

— The theory of regularity structures needs to be adapted to the
discrete setting.
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Directions within regularity structures: the discrete
case

@ Look at the convergence of the sequence of equations
ot = Au: + F(ue, &),

where time and space may be discrete.

— The theory of regularity structures needs to be adapted to the
discrete setting.

@ Successfully dealt with by Hairer/Matetski who studied
Aru-(x, t) = Aus(x, t) — u-(x, )% + &(x, 1),

where x € (Z/<Z)3, t > 0, and &, is a gaussian approximation of
white noise.
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The PAM equation

ot

@(x, t) = Adu(x, t) + E(x, Hu(x, 1), xeZ%t>0
u(x,0) = up(x).

o Alu(x,t) =3, , y=1lu(y,t) — u(x, )] is the discrete Laplacian.
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The PAM equation

(ZL;(X t) = Adu(x, t) + £(x, Hu(x, 1), xeZ9t>0
u(x,0) = up(x).

o Alu(x,t) =3, , y=1lu(y,t) — u(x, )] is the discrete Laplacian.

@ The solution is given via the Feynman Kac formula

u(x, 1) = Ex[exp{/g t—s)ds} (X(t))],

where X is a simple random walk that starts in x under E;.
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The PAM equation

ZL;(X t) = Adu(x, t) + £(x, Hu(x, 1), xeZ9t>0
u(x,0) = up(x).

o Alu(x,t) =3, , y=1lu(y,t) — u(x, )] is the discrete Laplacian.

@ The solution is given via the Feynman Kac formula

u(x, 1) = Ex[exp{/g t—s)ds} (X(t))],

where X is a simple random walk that starts in x under E;.

Goal: Investigate the above equation under an appropriate space-time
scaling.
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The simple symmetric exclusion process

@ The simple symmetric exclusion process is a Markov process on
{0, 1}Zd whose generator acts on local function f: {0,1}%" — R

via
(LHm) = > nW —aWIfH*") — (),

[lu—v]|=1

where

n(z) fz#uv,
nV(z) =< n(u) ifz=v,
n(v) ifz=u.
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The simple symmetric exclusion process

@ The simple symmetric exclusion process is a Markov process on

{0, 1}Zd whose generator acts on local function f : {0, 1}Zd —R

via
(LHm = > o)l = n(W]Ifn"") - fn),
llu=v||=1
where
n(z) fz#uv,
n"'(2) = {nu) ifz=v,
n(v) ifz=u.

Fact: Let p € (0,1), then v, = @, 50 Ber(p) is an invariant and
reversible measure for . We always start n from v,,.
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The simple symmetric exclusion process

@ The simple symmetric exclusion process is a Markov process on

{0, 1}Zd whose generator acts on local function f : {0, 1}Zd —R

via
(LHm) = > nW —aWIfH*") — (),

llu=v||=1
where
n(z) fz#uv,
“Y(z) = {n(u) ifz=v,
n(v) ifz=u.

Fact: Let p € (0,1), then v, = @, 50 Ber(p) is an invariant and
reversible measure for . We always start n from v,,.

@ {=n—p
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Graphical representation of the exclusion process
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Graphical representation of the exclusion process
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@ Let XY be a particle starting at time t at position y following the
arrows downwards. Then,

n(y) = no(XY).

Dirk Erhard (University of Warwick) On a scaling limit of the parabolic Anderson December 8, 2015 8/21



Graphical representation of the exclusion process

t y
+
-
T
—|T
0 u zd

@ Let XY be a particle starting at time t at position y following the
arrows downwards. Then,

m(y) = no(X7).
Remark: The law of XV is that of a simple random walk!
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Graphical representation of the exclusion process

t y
+
-
T
—|T
0 u zd

@ Let XY be a particle starting at time t at position y following the
arrows downwards. Then,

n(y) = no(XY).

Remark: The law of XV is that of a simple random walk!
==

E[¢(x, 0)(y, )] = E[(no(x) — p)(n0(X{) — p)]
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Graphical representation of the exclusion process

t y
+
-
T
—|T
0 u z9

@ Let XY be a particle starting at time t at position y following the
arrows downwards. Then,

n(y) = no(XY).

Remark: The law of X is that of a simple random walk!
==

E[£(x, 0)£(y, )] = E[(no(x) — p)(no(X{) — p)]
=" iy, 2)E[(10(x) — p)(10(2) — )]
= pe(y; X)p(1 = p).
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Fluctuations of the exclusion process

With the help of the Markov property we may even deduce that

E[£(x, $)S(y, )] = p(1 = p)Pr—s(X, ).
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Fluctuations of the exclusion process

With the help of the Markov property we may even deduce that

E[£(x, $)S(y, )] = p(1 = p)Pr—s(X, ).

Moreover,

Poani_)(2Nx,2Vy) ~ (422N (t — )92 IXVIF/(t=s),
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Fluctuations of the exclusion process

With the help of the Markov property we may even deduce that

E[£(x, $)S(y, )] = p(1 = p)Pr—s(X, ).

Moreover,

Poengr_g)(2Vx, 2Ny) ~ (4n22N(t — 5)) =92 IXYIF/(=s),
Reasonable (and correct) guess:

@ 2Nd/2¢(x2N t22N) converges to a Gaussian process @ such that
E[®(x, S)D(y, 1)] = p(1 — p)(4r(t — 5))~9/2e-Ix=yIP/(t=s),
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Need for renormalisation
Scaling time by 22N, space by 2V and ¢ by 2N9/2 we obtain

t
u(@Nx,22Nt) ~ EQNX[exp {2Nd/2 / £(2VX(22Ns), 22N s) dsH
0

t
=1 +2Nd/252N[ / £(2NVx(22Ns), 22N) ds]
0

2
+ 2Nd_1 E2N |:/
Loz st ,1;[

1
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Need for renormalisation
Scaling time by 22N, space by 2V and ¢ by 2N9/2 we obtain

t
u(@Nx,22Nt) ~ EZNX[eXp {2Nd/2 / £(2Nx(22Ns), 22N ) dsH
0

t
1 +2Nd/ZEzN[ / £(2VX(22Ns), 22V) ds]
0

2

+2Nd71 E2N |:/
g 0<s1,s2<t,~1;I

£(2Vx(2%"sy), 22st)ds,-] +-
1

Taking expectation with respect to ¢ of the last term we get
approximately

1 N N y(|2
£ { / T K@) X@Y)IE/(s1-2) g, dsg}
2% Jo<s, so<t 181 — 852|972

— problematic as soon as d > 2.
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The result

@ Let T¢ = [0,2V)9 N Z9 and define £n(x, t) = 2Md/2¢(2Nx, 22Nt for
x € T¢2-N. Let uy be the solution to

6UN

5t —=(x, 1) = 22N A%up(x, 1) + [En(x, 1) — CnJun(x, t)

on T¢, = [0,2N)9 N 729,
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The result

@ Let T¢ = [0,2V)9 N Z9 and define &n(x, t) = 2Nd/2¢(2Nx, 22Nt) for
x € T¢2-N. Let uy be the solution to

aUN

“op (61 =22 A%un(x, 1) + [En(x, 1) — Clun(x 1)

on T¢, = [0,2N)9 N 729,
Main result. Let d € {2,3}. There is a sequence of constants Cy

tending to infinity and T > 0 such that wy converges in distribution in
C*/2(T9 x [0, T]) with o < 2 — d/2. The limit w formally satisfies

ow,
ot

x, 1) = Aw(x, t) + (®(x, t) — co)w(x, t).
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Introduction to cumulants |

@ Given an index set A and a collection of random variables

Xg={Xs: ac B} and XB:HXa.

acB

@ P(B) denotes the set of all partitions of B.
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Introduction to cumulants |

@ Given an index set A and a collection of random variables
{Xa}aca. We write for BC A

Xg={Xs: ac B} and XB:HXa.

acB

@ P(B) denotes the set of all partitions of B.

Definition
Fix a finite subset B C .A. We define the cumulant E;(Xp) via

Ec(Xg)= > (In| = )i(=1)"="TT E(X5).

weP(B) Ben
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Introduction to cumulants Il

Ec(Xg)= > (Inl = )= T] E(X®).

weP(B) Ber
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Introduction to cumulants Il

Ec(Xg)= > (Inl = )= T] E(X®).

weP(B) Ber

Examples:
(*] EC[X{172}] = E[X1 X2] — EX{EX>.
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Introduction to cumulants Il

Ec(Xg)= > (Inl = )= T] E(X®).

weP(B) Ber

Examples:
(*] EC[X{172}] = E[X1 X2] — EX{EX>.

® Eo[X(123] = E[TIL, Xl — Y01 EXE[T] X1 + 21154 EX;.
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Introduction to cumulants Il

Ec(Xg)= Y (Ja| = )i(=1)"=" TT E(XB).

w€P(B) Ber

Examples:

o Eo[X(12] = E[Xi Xz] — EXiEX;.

o Ec[X12] = EITq Xil — 7y EXEI X)) + 21171 EX;.
Remark:

@ Cumulants are a mean to measure joint interaction of all random
variables involved.

@ If the Xj’s are gaussian, then E;(Xg) = 0 unless |B| < 2.
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Introduction to Wick products

Definition
The Wick product : Xja: is recursively defined via : X;: =1 and

XA=>":Xg: > ][] E(Xp)-

BCA m€P(A\B) Ber
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Introduction to Wick products

Definition
The Wick product : Xja: is recursively defined via : X;: =1 and

XA=>":Xg: > ][] E(Xp)-

BCA m€P(A\B) Ber

Examples:
@ :X: =X - EX, and if the Xj's have mean zero,
@ X1 Xo: = X1 Xo — EXi X,
© X1 XpXa: =74 Xi— ETIiy Xi— 204 XiE [1jzi X-
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Introduction to Wick products

Definition
The Wick product : Xja: is recursively defined via : X;: =1 and

XA=>":Xg: > ][] E(Xp)-

BCA m€P(A\B) Ber

Examples:
@ :X: =X — EX, and if the X;'s have mean zero,
@ X1 Xo: = X1 Xo — EXi X,
© X1 XpXa: =74 Xi— ETIiy Xi— 204 XiE [1jzi X-

Remark: Expectations of Wick products can be expressed in terms of

cumulants.
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Application to the PAM equation

Recall that

2
oNd-1 (EZN [ / [Tc@"x(@"s;), 22Ns;)ds;] )
0SS1,SQST i=1

causes problems as soon as d > 2.

Dirk Erhard (University of Warwick) On a scaling limit of the parabolic Anderson December 8, 2015 15/21



Application to the PAM equation

Recall that

2
oNd-1g (EZN [ / [Tc@"x(@"s;), 22Ns;)ds;] )
0<sy,5<tj_4

causes problems as soon as d > 2.

Idea: Replace []2, £(2VX(22Ns;), 22Ns;) by its Wick product.
— need to control cumulants of &.
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How to obtain cumulants of & |

t y
/I\
(_
T
=T
T d
0 5 Z
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How to obtain cumulants of & |

t y
+
-
T
—|T
0 u zd

@ Let X¥1 ..., XY be a collection of random walks that jump
according to the exponential clocks from the graphical

construction, then (1¢(y1), - .., nt(¥n)) = (no(X{"). - .., mo(X{")).
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How to obtain cumulants of & |

t y
+
-
T
—|T
0 u z9

@ Let X¥1 ..., XY be a collection of random walks that jump
according to the exponential clocks from the graphical

construction, then (n:(y1), - ... nt(¥n)) = (no(X7"), ..., mo(X?")).
@ Given a measurable function f, then for any initial state 7y,
Epo [F(ne(y1), - - s me(¥n))]
= Epo[f(no(X"), - mo(X{")]
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How to obtain cumulants of & |

t y
+
-
T
—[T
0 u z9

@ Let X¥1 ..., XY be a collection of random walks that jump
according to the exponential clocks from the graphical

construction, then (n:(y1), - ... nt(¥n)) = (no(X7"), ..., mo(X?")).
@ Given a measurable function f, then for any initial state 7y,
Epo [F(ne(y1), - - s me(¥n))]
= Epo[f(no(X{"), ..., mo (X))
= 3 (2 2B [H(0(21), - m0(20))]-

Z1,...,Zn
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How to obtain cumulants of & Il

Enolf(me (1) - - -, me(Yn)]
= 3 oz, z)Eg[f(no(21), - mo(za))]. (1)
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How to obtain cumulants of & Il

Enolf(me (1) - - -, me(Yn)]
ST oz, z)Elf(no(21), - mo(za))]. (1)

AR Zn

Application of (1):

E[ﬁﬁ(xi, ti)]
i=1
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How to obtain cumulants of & Il

Enolf(me (1) - - -, me(Yn)]
ST oz, z)Elf(no(21), - mo(za))]. (1)

AR Zn

Application of (1):

4 3
E [ [1¢, ti)} =E [ [T €0, t)Ey, [€(x, ta)]
it it
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How to obtain cumulants of & Il

Enolf(me (1) - - -, me(Yn)]
ST oz, z)Elf(no(21), - mo(za))]. (1)

Zyyeeny Zn

Application of (1):

E [ f[ &(x;, t,-)} =F [ ﬁ &(xi, t)Ey, [€(xa, t4)]}
i=1

i=1

3

= P, (PP)E [ [T¢0a t)e(2, t3)]]

i=1
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How to obtain cumulants of & Il

Enolf(me (1) - - -, me(Yn)]
= 3 oz, z)Eg[f(no(21), - mo(za))]. (1)

Application of (1):

E[ﬁﬁ(xi, ti)} = E[ﬁﬁ(xi, ) B, [€(xa, T4)]}
=1 =1
- Zpg4_t3(z3)E[ﬁ§(Xi, 6)é(2°, Ts)]]

i=1

2

= > P (@)E[ [T €00 1)y, [60, t)6(2, )]

i=1
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How to obtain cumulants of & Il

Eno[f(ne(11): - - s 0e(Yn))]
= Z P2y zn) B [f(n0(21), o mo(za))). (D

.....

Application of (1)

4 3
B[ [T &0 t)] = B[ T €06 8)Ey, [€0a, )]
i=1 i=1
3
=Y P (@PE[ [T €00 )2 )]
i=1
2
=3P ([ T 60 1), €06, 6)E(Z, )]

i=1

=Y P ()P (2. 28) [Hf(x,,t, 82 L)e(F. )]
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How to obtain cumulants of & I

We obtain:
4
B[ [ ¢ 1)
i=1
3
me s P;;a’ t2(21 , Z5 )szzt: % (Z] 722723 [§(X1, tr) H &zt )} .

i=1
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How to obtain cumulants of & I

We obtain:
4
B[ [T ¢t 1)
i=1
3
me s P;;a’ t2(21 , Z5 )P;;zzt: 722(21 722723 [§(X1 b) Hf(zﬂ, t )} .

i=1
Since the initial configuration is v, = &), Ber(p), only four terms
contribute to the above sum:

Q =2z =2 =2 Pﬁ“_ts(X3)Pgs_t2(X2)sz_t1 (x1),
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How to obtain cumulants of & I

We obtain:
4
E[Hﬁ(Xi, ti)}
i=1
3
Z'DM s P;;a’ t2(21 , 25 )szzt: 722(21 ,2},23) [§(X1 b) Hf(zﬂ, t )} .

i=1

Since the initial configuration is v, = &), Ber(p), only four terms
contribute to the above sum:

Q =2z =2 =2 Pﬁ“_ts(X3)Pgs_t2(X2)sz_t1 (x1),

Q x = Z11 and Z§ = Z§1 P£4_t3(X3)PZZ_t1 (x1),
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How to obtain cumulants of & I
We obtain:

4

E[Hﬁ(Xi, ti)}

i=1

X3,Z Xp,22,72 1 1
me t3 pt33 t2(z1722)pt2 t11 2(21722723 [ X17t1 Hf(zlat1):|’
i=1

Since the initial configuration is v, = &), Ber(p), only four terms
contribute to the above sum:

Q =2z =2 =2 pt4 ts()(3):‘3;;3_1‘2()(Z)ID;S_t1 (x1),

Q x1 =z{ and z} = z}: pi* , (x3)p2_, (x1),

Q x = Z; and 211 = Zéi Zp;r—tg( )pg&tg(z X2)pt2 t (x1)
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How to obtain cumulants of & I

We obtain:

4

E[Hﬁ(Xi, ti)}

i=1

X3,Z X2,Z1 722 1 1
= Zpt4 ac4 pt3 t2(z1 ) 42 )Prz t (24 722723

i=1

Since the initial configuration is v, = &), Ber(p), only four terms

contribute to the above sum:

Q xi =2z} =2} =z;: pp} | (6)P ()P4, (x41),
Q xy =zl and z} = zl:
Q xy =2z} and z{ = z: Y- pi*  (2)P27, (2, %)PE

Q@ xi =2zjand z{ = Z}: Y pi*  (2)P25, (%, 2)PF, 4, (x4)-
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How to obtain cumulants of ¢ IV

Q i, (6)P 4, (xR)PEy, (%1),
Q Py, (x6)P2 (%),

Q X pit (2P, (2, 3%)PE 4, (x41)
o ZP t3(Z)P;;SZt2(X2= z) t27t1(X1)-
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How to obtain cumulants of ¢ IV

o P;:4,t3 (X3)p;;37t2 (X2)p;;27 , (X1),

Q Py, (x6)P2 (%),

Q X pi (2P (2 x)PE 4y, (x1)
Q X o (2P, (R, 2)PF 4, (x1).

Since £ has mean zero,

Ec(¢(xi, t), i€ {1,...,4})

= TTeo0] - 5] T cto]€] T et
i=1

i<j ke{ij} ke {ij}
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How to obtain cumulants of ¢ IV

Q Py, (xa)Py , (Xe)Pi2 4, (%1),

Q pi 1, (6)py 4, (x1),

Q Yy 3(2)pXSZ (2, %2)Pp ¢, (X1)
Q X pit (2P, (%2, 2)PE 4, (x1)-

Since ¢ has mean zero,

Ec(§(xi, t), i€ {1,...,4})
:E[ﬁg(xi, l‘;)} - ZE[ H f(Xk,fk)}E[ H €(Xk,fk)}
=1 i<j  ke{if} k{i.j}

— The first term above survives. The second term perfectly cancels
out. The third and fourth term would cancel out if

Py (v1, ¥2) = Py (y1)PE (=) for all x;, yi.

Dirk Erhard (University of Warwick) On a scaling limit of the parabolic Anderson December 8, 2015 19/21



factorising the transition probabilities |

X1,X2

Goal: Write p/""2(y1, ¥2) = p;* (y1)P2(y2) + "stuff" and characterise
the "stuff".
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factorising the transition probabilities |

Goal: Write p/""2(y1, ¥2) = p;* (y1)P2(y2) + "stuff" and characterise
the "stuff".

Let x,y, z € Z9 and define f,(z) = 1{y = z} and denote the exclusion
particle started at x by X*, then there is a martingale M;(y) such that

t
10 =y} = 1{XE = v} + /0 (LE)(XX) ds + MX(y).

Here, L is the generator of the exclusion process.
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factorising the transition probabilities |

Goal: Write p/""2(y1, ¥2) = p;* (y1)P2(y2) + "stuff" and characterise
the "stuff".

Let x,y, z € Z9 and define f,(z) = 1{y = z} and denote the exclusion
particle started at x by X*, then there is a martingale M;(y) such that

t
10X =y} = 1{XF =y} + /0 (LE)(XX) ds + MX(y).

Here, L is the generator of the exclusion process. Solving this equation
with Duhamel’s principle shows that

t
XX =y} = pi(y) + /o S P! o(2) dME(2).
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factorising the transition probabilities |

Goal: Write p/""2(y1, ¥2) = p;* (y1)P2(y2) + "stuff" and characterise
the "stuff".

Let x,y, z € Z9 and define f,(z) = 1{y = z} and denote the exclusion
particle started at x by X*, then there is a martingale M;(y) such that

t
10X =y} = 1{XF =y} + /0 (LE)(XX) ds + MX(y).

Here, L is the generator of the exclusion process. Solving this equation
with Duhamel’s principle shows that

t
XX =y} = pi(y) + /o S P! o(2) dME(2).

Note that M}, := for >, P_s(z) dMX(z) is a zero mean martingale in r.
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factorising the transition probabilities Il

We conclude that

Py, y2) = [Hu{xf:y,}— [H(p () +M;5)]
i=1

S(yi) + E[ﬁ M)

i=1

||:]m
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factorising the transition probabilities Il
We conclude that

P (1, y2) = [Hﬂ{XtX, =Ji } - [H(pt Vi) +Mflt]
i=1

Y+ E[ﬁ M),

i=1

||:]m

— Thus "stuff" is given by the expectation of the product of two
martingales. We are able to handle that.
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factorising the transition probabilities Il

We conclude that

Py (v, yo) = [H“{th' =i } = [H(pt Yi) +Mf’f]

i=1 i=1
— Thus "stuff" is given by the expectation of the product of two
martingales. We are able to handle that.

Thus, the fourth cumulants consists of a term of the form
P, (X3)P 4, (X2)Pi?_, (x1) and two terms of the form

S P (2)"Stuff'p? _, (xq).
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