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Conductance models (reversible Markov chains)

G = (V, E) locally finite, connected graph.
Edge conductances {n(z,y) > 0: (z,y) € E}.

Irreducible Markov chain (X4, ¢ € N) of transition probabilities:

m(z,y)
m(x)

p(t,r;t+1,y) = V(z,y) € £, t=>0.

Reversing measure m(z) = >_, m(z,y).
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Irreducible Markov chain (X4, ¢ € N) of transition probabilities:

m(z,y)

m(z)

Reversing measure m(z) = >_, m(z,y).

p(t,r;t+1,y) = V(z,y) € £, t=>0.

» DSRW: m(x,y) = 1p(z,y).
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Conductance models (reversible Markov chains)

G = (V, E) locally finite, connected graph.
Edge conductances {n(z,y) > 0: (z,y) € E}.

Irreducible Markov chain (X4, ¢ € N) of transition probabilities:

m(z,y)
m(x)

p(t,r;t+1,y) = V(z,y) € £, t=>0.
Reversing measure m(z) = >_, m(z,y).

» DSRW: m(x,y) = 1g(z,y).
o0
Occupation measure: Ny = Z 1,(Xy)
t=1

Recurrence/Transience
Y,y Py(Ny=00) =1 Ex(Ny) =00 Ty Py(N,>1)=1.
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Rayleigh principle, non-adaptive-RWCE

Rayleigh monotonicity principle:
SRW on G’ recurrent = SRW on G C G’ recurrent.
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Rayleigh principle, non-adaptive-RWCE

Rayleigh monotonicity principle:
SRW on G’ recurrent = SRW on G C G’ recurrent.

Time varying models [non-adaptive RwcE]: Vz,y € E, t > 0,

t) (s
P(Xip1 = y|X; = 2) == pW(a,y) = 7T(?)J)

70 (x

{7 (z,y) > 0: (z,y) € E}, independent of {X,,s > 0}.

m(-recurrence: qu) :=Py(N, = o0) =1, Vaz,y.
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Rayleigh principle, non-adaptive-RWCE

Rayleigh monotonicity principle:
SRW on G’ recurrent = SRW on G C G’ recurrent.

Time varying models [non-adaptive RwcE]: Vz,y € E, t > 0,

P(Xi11 = y|X; = ) == pV(z,y) =

7 (2, y)
70 ()

{7®(x,y) > 0: (z,y) € E}, independent of {X,,s > 0}.
7()_recurrence: Qoy = Pz(Ny =00) =1, Va,y.

Rich behavior [ABGK '08]: G =N, 3 7 < 7(¥) <7 such that:
m 7 &7 recurrent, 7" | having Qyy € (0,1) (no 0-1 law, [Ex. 4.5]).
m 7 &7 recurrent, 7(*) | is transient [Ex. 4.6]
m 7 &7 transient, ¢t — 7® non-monotone & recurrent [Ex. 3.6]
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Universality for non-adaptive-RWCE

When G = T ([ABGK '08]):
m () 7 recurrent = 7®-recurrence [Thm. 5.1] (1)
(t) | 7 transient = 7(®)-transience  [Thm. 5.2] (2,)
m 7 4, 7 &7 transient = 7()-transience [Thm. 42, N]  (3,)
) |, = = ex recurrent = 7w(")-recurrence [Thm. 4.4, N] (4,)

Proof: Unit flows yield potential F;(v), i.e. 7*-harmonic on T\{0} with
t — Fi(v) monotone. Thereby, use optional stopping for F;(X;) sub/supMG.

A. Dembo Walking within growing domains 3/11



Universality for non-adaptive-RWCE

When G = T ([ABGK '08]):
m () 7 recurrent = 7®-recurrence [Thm. 5.1] (1)
(t) | 7 transient = 7(®)-transience  [Thm. 5.2] (2,)
m 7 4, 7 &7 transient = 7()-transience [Thm. 42, N]  (3,)
) |, = = ex recurrent = 7w(")-recurrence [Thm. 4.4, N] (4,)

Proof: Unit flows yield potential F;(v), i.e. 7(-harmonic on T\{0} with
t — Fi(v) monotone. Thereby, use optional stopping for F;(X;) sub/supMG.

[Conj. 7.1, ABGK]: (14)-(4,) hold for any G.

Special case (Open): 7 € [¢,1], G = Z¢ ([DHMP '15] proved (3.)).
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Universality for non-adaptive-RWCE

When G = T ([ABGK '08]):
m () 7 recurrent = 7®-recurrence [Thm. 5.1] (1)
(t) | 7 transient = 7(®)-transience  [Thm. 5.2] (2,)
m 7 4, 7 &7 transient = 7()-transience [Thm. 42, N]  (3,)
) |, = = ex recurrent = 7w(")-recurrence [Thm. 4.4, N] (4,)

Proof: Unit flows yield potential F;(v), i.e. 7(-harmonic on T\{0} with
t — Fi(v) monotone. Thereby, use optional stopping for F;(X;) sub/supMG.

[Conj. 7.1, ABGK]: (14)-(4,) hold for any G.
Special case (Open): 7() € [¢,1], G = Z% ([DHMP '15] proved (3,)).

(1,)-(4,) hold even if 7(®)(.,.) adapted to {X,, s < t}
BUT (1,) fails for G = Z? and some adaptive 7(*) [Sec. 6, ABGK].
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DSRW, 7y-lazy, CSRW,VSRW

» DSRW periodic chain (recall p(0,z;2t +1,2) =0, t € N);
y-lazy: 7®)(z,2) >~, Va,t, s a-periodic.

» { X, s> 0} CSRW, jumps at T}, w.p. p(Tk)(XT];,y) for
ii.d. (Tgy1 — Ty) of the Exp(1) density.

» { X, s> 0} VSRW, jumps at T} w.p. p(Tk)(XTg,y) for

independent (T}, 1 — T) of the Exp(7(®)(X7,)) density at ¢.
VSRW has constant (in ¢,z), reversing measure.

» Time-invariant model: VSRW/CSRW time-changes of same DSRwW

Time-varying model: possibly recurrent VSRW, transient CSRW or vice verse!
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Gaussian heat kernel estimates

Special case: G = 724, 7 € [e, 1].

GHKE: Je; € (0,00) such that Vt > |z —y| V1,

—d/2 —c lz—y|® —d/2 —c |z—y|?
cit e 2t <p(0,x;t,y) < cst e~ U,
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Gaussian heat kernel estimates

Special case: G = Z¢, 7*) € [, 1].

GHKE: Je; € (0,00) such that Vt > |z —y| V1,

2 2
cltfd/2efc2% <p(0,x;t,y) < 03t7d/26764% .

Hold for uniformly elliptic parabolic PDE in divergence form

[Aronson '67, after De Giorgi, Nash, Moser '50-'60];

for Laplace-Beltrami operator, equivalent to VD+PI2 via parabolic Harnack
[Grigor'yan, Saloff-Coste '92]; for Dirichlet forms on metric spaces [Sturm '95];
for y-lazy Z*-conductance models with 7 € [e, 1] [Delmotte '99];

useful for random walk in random conductances [Biskup '11, Kumagai '14];
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Gaussian heat kernel estimates

Special case: G = Z¢, 7*) € [, 1].

GHKE: Je; € (0,00) such that Vt > |z —y| V1,

2 2
cltfd/2efc2% <p(0,x;t,y) < 03t7d/26764% .

Hold for uniformly elliptic parabolic PDE in divergence form

[Aronson '67, after De Giorgi, Nash, Moser '50-'60];

for Laplace-Beltrami operator, equivalent to VD+PI2 via parabolic Harnack
[Grigor'yan, Saloff-Coste '92]; for Dirichlet forms on metric spaces [Sturm '95];
for v-lazy Z?-conductance models with 7 € [, 1] [Delmotte '99];

useful for random walk in random conductances [Biskup '11, Kumagai '14];

Diagonal (z = y) GHKE (+Borel-Cantelli) = recurrence iff d < 2.

» GHKE holds for time-varying vSRW [Delmotte-Deuschel '05].

» GHKE fails for some time-varying CSRW and ~-lazy DSRW:
ballistic on Z, recurrent on Z? x N [Huang-Kumagai '15].
(non-monotone t — 7 (z), does not contradict [Conj. 7.1, ABGK]).
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Evolving sets: ¢ — 7()(x) non-decreasing [pHMP '15]

Admissible sites V; := {y € V : 7)(y) > 0}, non-decreasing in t.
(Ut,t € N), iiid. U(0,1), independent of {X,,s > 0}.
Evolving set process {S;,t € N}: So = {z}, z € Vp,

W(t) (St7 y)

7T(t+1) (y) 2 Ut+1} .

Sir1=1{y € Viqr:

Time invariant case: [Morris-Peres '05], applicable for M.C. mixing time

(also sized-biased version [Diaconis-Fill '90] for strong stationary times).
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Evolving sets: ¢ — 7()(x) non-decreasing [pHMP '15]

Admissible sites V; := {y € V : 7)(y) > 0}, non-decreasing in t.
(Ut,t € N), iiid. U(0,1), independent of {X,,s > 0}.
Evolving set process {S;,t € N}: So = {z}, z € Vp,

W(t) (St7 y)

7T(t+1) (y) 2 Ut+1} .

Sir1=1{y € Viqr:

Time invariant case: [Morris-Peres '05], applicable for M.C. mixing time

(also sized-biased version [Diaconis-Fill '90] for strong stationary times).
» 7()(S;) is a martingale, Vz,y,t > 0

" (y)
p(va,t7y) = WP{$}(y € St) .
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Isoperimetry, GHKE, transience

y-lazy DSRW or csrw; 1) (z) 1 uniformly bounded.

Isomerimetric growth (d > 1):

() (A4, A°)
. 7 ,
fu = Acvu,giﬁAKoo {w(u)(m(dl)/d} '

Example: G = Z%, #® € e, 1] — infu{ru} > da(e) > 0.
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Isoperimetry, GHKE, transience

y-lazy DSRW or csrw; 1) (z) 1 uniformly bounded.

Isomerimetric growth (d > 1):

() (A4, A°)
. 7 ,
fu = Acvu,})riﬁm@o {w(U)(m(dl)/d} '

Example: G = Z%, #® € e, 1] — infu{ru} > da(e) > 0.
Evolving sets = diagonal GHK upper-bound [DHMP '15]:

—d/2
W(O)(m)p((),x;t,y) < Cg(ZHi) Vee W,yeVy, t>1.

u<t
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Isoperimetry, GHKE, transience

y-lazy DSRW or csrw; 1) (z) 1 uniformly bounded.

Isomerimetric growth (d > 1):

() (A4, A°)
. 7 ,
fu = Acvu,loriﬁAKoo {w(w(m(dl)/d} '

Example: G = Z%, #® € e, 1] — infu{ru} > da(e) > 0.
Evolving sets = diagonal GHK upper-bound [DHMP '15]:

W(O)(m)p((),:v;t,y) < C?’(Z”i) —d/2 Ve Voy eV t31
u<t
Consequences (d > 2):
m G =24 any 1) € [¢,1], () 1 is transient ([ABGK (3.)]).
m Dy = C, the oo-cluster of bond percolation at p > pe(Z9).
Any ~-lazy DSRW on edge-set D; 1 is transient.

A. Dembo Walking within growing domains 7/11



DSRW on growing domains ID; C Z4, d > 2

[DHS '14] study DSRW on connected ID; 1 Z¢, such that:
fOB1NZI C Dy C f(t)B.NZE,
some c finite and scale 0 < f(t) 1 oc.

[Conj. 1.2, DHS]: DSRW on Dy is recurrent < J; = [ 42 7 t)d =
Special case (open): Recurrence of DSRW on IDLA; (inject at 0, constant rate).
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[DHS '14] study DSRW on connected ID; 1 Z¢, such that:
fOB1NZI C Dy C f(t)B.NZE,
some c finite and scale 0 < f(t) 1 oc.

[Conj. 1.2, DHS]: DSRW on D is recurrent < J; := [ ﬁ = 00.

Special case (open): Recurrence of DSRW on IDLA; (inject at 0, constant rate).

[Thm. 1.4, DHS]:  J; < 0o = DSRW transient.
J = 0o = DSRW recurrent in case D; = f(t)K N Z4
(Kc R? assumed *-shaped, bounded uniform domain,

f(-) assumed piece-wise constant, well separated scales).
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DSRW on growing domains ID; C Z4, d > 2

[DHS '14] study DSRW on connected I, 1 Z¢, such that:
fOB1NZI C Dy C f(t)B.NZE,
some c finite and scale 0 < f(t) 1 oc.

[Conj. 1.2, DHS]: DSRW on D is recurrent < J; := [ % = 00.

Special case (open): Recurrence of DSRW on IDLA; (inject at 0, constant rate).

[Thm. 1.4, DHS]:  J; < 0o = DSRW transient.
J = 0o = DSRW recurrent in case D; = f(t)K N Z4
(Kc R? assumed *-shaped, bounded uniform domain,

f(-) assumed piece-wise constant, well separated scales).

Proof: By invariance principle reduce to recurrence of reflected

Brownian motion on growing domains K; = f(¢)K (see [BC '11,BCS '04]);
Solve for K = B; (radial symmetry);
Extend to K by Neumann heat kernel comparisons (see [Pascu '11]).
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Universality for DSRW on growing domains

Rayleigh monotonicity principle:
SRW on G’ recurrent = SRW on G C G’ recurrent.
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Universality for DSRW on growing domains

Rayleigh monotonicity principle:
SRW on G’ recurrent = SRW on G C G’ recurrent.

[Conj. 1.8, DHS]:

Gt 1, G} 1, with G of uniformly bounded degrees.
DSRW on G recurrent = DSRW on G; C G; recurrent.
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Universality for DSRW on growing domains

Rayleigh monotonicity principle:
SRW on G’ recurrent = SRW on G C G’ recurrent.

[Conj. 1.8, DHS]:
Gt 1, G} 1, with G of uniformly bounded degrees.
DSRW on G recurrent = DSRW on G; C G; recurrent.

Special cases (open):
m G; C G} = By(;) N Z* (same as [Conj. 1.2, DHS]).
m SRW on G/ recurrent = DSRW on G} 1 G/, recurrent.
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Universality for DSRW on growing domains

Rayleigh monotonicity principle:
SRW on G’ recurrent = SRW on G C G’ recurrent.

[Conj. 1.8, DHS]:
Gt 1, G} 1, with G of uniformly bounded degrees.

DSRW on G recurrent = DSRW on G; C G; recurrent.

Special cases (open):
m G; C G} = By(;) N Z* (same as [Conj. 1.2, DHS]).
m SRW on G/ recurrent = DSRW on G} 1 G/, recurrent.

3 G} of unbounded degrees, for which [Conj. 1.8, DHS] fails.
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adaptive-RWCE, OBT & POBT

Adaptive, monotone RWCE is too general class.
[Ex. 3.3, ABGK]: Given (G,T((O)), any strictly positive measure
on paths in G can be realized by some adaptive 7(*) 1
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adaptive-RWCE, OBT & POBT

Adaptive, monotone RWCE is too general class.
[Ex. 3.3, ABGK]: Given (G,T((O)), any strictly positive measure
on paths in G can be realized by some adaptive 7(*) 1

[DHS '14b]: DSRW {X;} on G; T Go, C G of bounded degrees
(x) Bg(X,1)CG = G =Gy
B Open By Touch (0BT): Gtr1 = G UBx (Xt, 1)
m Partial Open By Touch (poBT):  Gyy1 C G UBx (Xt, 1)
infy W{P(Gy1 # G| Fi, (%)9)} = (5 > 0.
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adaptive-RWCE, OBT & POBT

Adaptive, monotone RWCE is too general class.
[Ex. 3.3, ABGK]: Given (G,T((O)), any strictly positive measure
on paths in G can be realized by some adaptive 7(*) 1

[DHS '14b]: DSRW {X;} on G; T Go, C G of bounded degrees
(x) Bg(X,1)CG = G =Gy
B Open By Touch (0BT): Gtr1 = G UBx (Xt, 1)
m Partial Open By Touch (poBT): Gy C Gy U EG(Xt, 1)
infy W {P(Gy1 # G| Fe, (%)9)} =0 > 0.

[Prop. 1.9, DHS-b]: G = Z%, d > 2.
my = [(Go)® N OBg(Xo, k)|,  Dj zits < 00 = POBT transient.
[Conj. 1.12, DHS-b]: G = Cp, p > p. => OBT transient (open).

m Once edge-reinforced walk on G is a special case of POBT!

m For finite Go the specifics of the POBT matter.
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Expanding glassy spheres, almost-regular shape

Dk:BckﬂZd,dZQ, Xo=0, ¢>1, Np>1.
EGS: Dy = ﬁk fort e [Tk,TkJrl), 71 =0, Tht1 first after Ni-th visit to Bﬁk

[Prop. 1.14, DHS-b]: EGS transient < J := Y, Npk! ™ < oo;
EGS recurrent < J = oo.
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Expanding glassy spheres, almost-regular shape

ﬁk:BckﬂZd,dZQ, Xo=0, ¢>1, Np>1.
EGS: Dy = ﬁk fort e [Tk,TkJrl), 71 =0, Tht1 first after Ni-th visit to aﬁk

[Prop. 1.14, DHS-b]: EGS transient < J := Y, Npk! ™ < oo;
EGS recurrent < J = oo.

Defn: Dy T Do C Zd, d > 2 admit c-almost-regular shape K, if:
B fOKNZE CDy, 1< £(2) 1
m sup,¢p, {db, (2, f(H)K)} < clog f(t)

[Prop. 1.18, DHS-b]: 3eq > 0 s.t. for any Dy finite
POBT on {D;} admitting c4-almost-regular shape B, must be recurrent.

Open: prove c-almost-regular shape for even one non-trivial POBT!
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Thank youl!



