Walking within growing domains: recurrence versus transience

Amir Dembo¹

Stanford University

Columbia prob. seminar; Sep 2015

¹Jointly with Ruojun Huang, Ben Morris, Yuval Peres, Vladas Sidoravicius.

Conductance models (reversible Markov chains)

 $\mathbb{G} = (V, E)$ locally finite, connected graph.

Edge conductances $\{\pi(x,y) > 0 : (x,y) \in E\}.$

Irreducible Markov chain $(X_t, t \in \mathbb{N})$ of transition probabilities:

$$p(t, x; t+1, y) = \frac{\pi(x, y)}{\pi(x)}, \quad \forall (x, y) \in E, \quad t \ge 0.$$

Reversing measure $\pi(x) = \sum_{y} \pi(x, y)$.

Conductance models (reversible Markov chains)

 $\mathbb{G} = (V, E)$ locally finite, connected graph.

Edge conductances $\{\pi(x,y) > 0 : (x,y) \in E\}.$

Irreducible Markov chain $(X_t, t \in \mathbb{N})$ of transition probabilities:

$$p(t, x; t+1, y) = \frac{\pi(x, y)}{\pi(x)}, \quad \forall (x, y) \in E, \quad t \ge 0.$$

Reversing measure $\pi(x) = \sum_{y} \pi(x, y)$.

▶ DSRW:
$$\pi(x,y) = \mathbf{1}_E(x,y)$$
.

Conductance models (reversible Markov chains)

 $\mathbb{G} = (V, E)$ locally finite, connected graph.

Edge conductances $\{\pi(x,y) > 0 : (x,y) \in E\}.$

Irreducible Markov chain $(X_t, t \in \mathbb{N})$ of transition probabilities:

$$p(t, x; t+1, y) = \frac{\pi(x, y)}{\pi(x)}, \quad \forall (x, y) \in E, \quad t \ge 0.$$

Reversing measure $\pi(x) = \sum_{y} \pi(x, y)$.

▶ DSRW:
$$\pi(x,y) = \mathbf{1}_E(x,y)$$
.

Occupation measure:
$$N_y = \sum_{t=1}^{\infty} \mathbf{1}_y(X_t)$$

Recurrence/Transience

$$\forall x, y \qquad \mathbb{P}_x(N_y = \infty) = 1 \Leftrightarrow \mathbb{E}_x(N_y) = \infty \Leftrightarrow \exists y \quad \mathbb{P}_y(N_y \ge 1) = 1.$$

Rayleigh principle, non-adaptive-RWCE

Rayleigh monotonicity principle: SRW on \mathbb{G}' recurrent \Rightarrow SRW on $\mathbb{G} \subset \mathbb{G}'$ recurrent.

Rayleigh principle, non-adaptive-RWCE

Rayleigh monotonicity principle: SRW on \mathbb{G}' recurrent \Rightarrow SRW on $\mathbb{G} \subset \mathbb{G}'$ recurrent.

Time varying models [non-adaptive RWCE]: $\forall x,y \in E$, $t \geq 0$,

$$\mathbb{P}(X_{t+1} = y | X_t = x) := p^{(t)}(x, y) = \frac{\pi^{(t)}(x, y)}{\pi^{(t)}(x)}.$$

$$\begin{split} &\{\pi^{(t)}(x,y)>0:(x,y)\in E\}\text{, independent of }\{X_s,s\geq 0\}.\\ &\pi^{(t)}\text{-recurrence: }q_{xy}:=\mathbb{P}_x(N_y=\infty)=1,\quad \forall x,y. \end{split}$$

Rayleigh principle, non-adaptive-RWCE

Rayleigh monotonicity principle: SRW on \mathbb{G}' recurrent \Rightarrow SRW on $\mathbb{G} \subset \mathbb{G}'$ recurrent.

Time varying models [non-adaptive RWCE]: $\forall x,y \in E$, $t \geq 0$,

$$\mathbb{P}(X_{t+1} = y | X_t = x) := p^{(t)}(x, y) = \frac{\pi^{(t)}(x, y)}{\pi^{(t)}(x)}.$$

$$\{\pi^{(t)}(x,y)>0: (x,y)\in E\}, \text{ independent of } \{X_s,s\geq 0\}.$$

$$\pi^{(t)}\text{-recurrence: } q_{xy}:=\mathbb{P}_x(N_y=\infty)=1, \quad \forall x,y.$$

Rich behavior [ABGK '08]: $\mathbb{G} = \mathbb{N}$, $\exists \underline{\pi} \leq \pi^{(t)} \leq \overline{\pi}$ such that:

- lacktriangledown $\underline{\pi}$ $\& \overline{\pi}$ recurrent, $\pi^{(t)} \downarrow$ having $q_{yy} \in (0,1)$ (no 0-1 law, [Ex. 4.5]).
- $\underline{\pi} \& \overline{\pi}$ recurrent, $\pi^{(t)} \downarrow$ is transient [Ex. 4.6]
- $\blacksquare \ \underline{\pi} \ \& \ \overline{\pi} \ {
 m transient}, \ t \mapsto \pi^{(t)} \ {
 m non-monotone} \ \& \ {
 m recurrent} \ [{
 m Ex.} \ 3.6]$

Universality for non-adaptive-RWCE

When $\mathbb{G} = \mathbb{T}$ ([ABGK '08]):

- $\qquad \qquad \pi^{(t)} \uparrow \overline{\pi} \text{ recurrent} \qquad \Rightarrow \quad \pi^{(t)} \text{-recurrence [Thm. 5.1]} \qquad (1_{\star})$
- $\qquad \qquad \pi^{(t)}\downarrow\underline{\pi} \text{ transient} \qquad \Rightarrow \quad \pi^{(t)}\text{-transience} \quad \text{[Thm. 5.2] } (2_{\star})$
- $\blacksquare \pi^{(t)} \uparrow$, $\underline{\pi} \& \overline{\pi}$ transient $\Rightarrow \pi^{(t)}$ -transience [Thm. 4.2, \mathbb{N}] (3_{\star})
- \blacksquare $\pi^{(t)}\downarrow$, $\underline{\pi}=\epsilon\overline{\pi}$ recurrent \Rightarrow $\pi^{(t)}$ -recurrence [Thm. 4.4, $\mathbb N$] (4_\star)

Proof: Unit flows yield potential $F_t(v)$, i.e. $\pi^{(t)}$ -harmonic on $\mathbb{T}\setminus\{o\}$ with $t\mapsto F_t(v)$ monotone. Thereby, use optional stopping for $F_t(X_t)$ sub/supMG.

Universality for non-adaptive-RWCE

When $\mathbb{G} = \mathbb{T}$ ([ABGK '08]):

- $\blacksquare \ \pi^{(t)} \uparrow \overline{\pi} \ \text{recurrent} \qquad \Rightarrow \quad \pi^{(t)} \text{-recurrence [Thm. 5.1]} \qquad (1_{\star})$
- $\qquad \qquad \pi^{(t)}\downarrow\underline{\pi} \text{ transient} \qquad \Rightarrow \quad \pi^{(t)}\text{-transience} \quad \text{[Thm. 5.2] } (2_{\star})$
- $\blacksquare \pi^{(t)} \uparrow, \underline{\pi} \& \overline{\pi} \text{ transient} \Rightarrow \pi^{(t)}\text{-transience [Thm. 4.2, } \mathbb{N}]$ (3*)
- $\qquad \qquad \pi^{(t)}\downarrow \text{, }\underline{\pi}=\epsilon\overline{\pi}\text{ recurrent}\Rightarrow \pi^{(t)}\text{-recurrence [Thm. 4.4, $\mathbb{N}]} \ (4_{\star})$

Proof: Unit flows yield potential $F_t(v)$, i.e. $\pi^{(t)}$ -harmonic on $\mathbb{T}\setminus\{o\}$ with $t\mapsto F_t(v)$ monotone. Thereby, use optional stopping for $F_t(X_t)$ sub/supMG.

[Conj. 7.1, ABGK]: (1_{\star}) - (4_{\star}) hold for any \mathbb{G} .

Special case (Open): $\pi^{(t)} \in [\epsilon, 1]$, $\mathbb{G} = \mathbb{Z}^d$ ([DHMP '15] proved (3_\star)).

Universality for non-adaptive-RWCE

When $\mathbb{G} = \mathbb{T}$ ([ABGK '08]):

- $\blacksquare \ \pi^{(t)} \uparrow \overline{\pi} \ \text{recurrent} \qquad \Rightarrow \quad \pi^{(t)} \text{-recurrence [Thm. 5.1]} \qquad (1_{\star})$
- lacksquare $\pi^{(t)}\downarrow\underline{\pi}$ transient \Rightarrow $\pi^{(t)}$ -transience [Thm. 5.2] (2_{\star})
- $\blacksquare \pi^{(t)} \uparrow$, $\underline{\pi} \& \overline{\pi}$ transient $\Rightarrow \pi^{(t)}$ -transience [Thm. 4.2, \mathbb{N}] (3_{\star})
- $\qquad \qquad \pi^{(t)}\downarrow \text{, }\underline{\pi}=\epsilon\overline{\pi}\text{ recurrent}\Rightarrow \pi^{(t)}\text{-recurrence [Thm. 4.4, \mathbb{N}] }(4_{\star})$

Proof: Unit flows yield potential $F_t(v)$, i.e. $\pi^{(t)}$ -harmonic on $\mathbb{T}\setminus\{o\}$ with $t\mapsto F_t(v)$ monotone. Thereby, use optional stopping for $F_t(X_t)$ sub/supMG.

[Conj. 7.1, ABGK]: (1_{\star}) - (4_{\star}) hold for any \mathbb{G} .

Special case (Open): $\pi^{(t)} \in [\epsilon, 1]$, $\mathbb{G} = \mathbb{Z}^d$ ([DHMP '15] proved (3_\star)).

 (1_\star) - (4_\star) hold even if $\pi^{(t)}(\cdot,\cdot)$ adapted to $\{X_s,s\leq t\}$ BUT (1_\star) fails for $\mathbb{G}=\mathbb{Z}^2$ and some adaptive $\pi^{(t)}$ [Sec. 6, ABGK].

DSRW, γ -lazy, CSRW, VSRW

- ▶ DSRW periodic chain (recall $p(0, x; 2t + 1, x) = 0, t \in \mathbb{N}$); γ -lazy: $\pi^{(t)}(x, x) \geq \gamma$, $\forall x, t$, is a-periodic.
- ▶ $\{X_s, s \geq 0\}$ CSRW, jumps at T_k w.p. $p^{(T_k)}(X_{T_k^-}, y)$ for i.i.d. $(T_{k+1} T_k)$ of the Exp(1) density.
- ▶ $\{X_s, s \geq 0\}$ VSRW, jumps at T_k w.p. $p^{(T_k)}(X_{T_k^-}, y)$ for independent $(T_{k+1} T_k)$ of the $\text{Exp}(\pi^{(t)}(X_{T_k}))$ density at t. VSRW has constant (in t, x), reversing measure.
- ► Time-invariant model: VSRW/CSRW time-changes of same DSRW Time-varying model: possibly recurrent VSRW, transient CSRW or vice verse!

Gaussian heat kernel estimates

Special case:
$$\mathbb{G} = \mathbb{Z}^d$$
, $\pi^{(t)} \in [\epsilon, 1]$.

GHKE:
$$\exists c_j \in (0, \infty) \text{ such that } \forall t \geq |x - y| \vee 1$$
,

$$c_1 t^{-d/2} e^{-c_2 \frac{|x-y|^2}{t}} \le p(0, x; t, y) \le c_3 t^{-d/2} e^{-c_4 \frac{|x-y|^2}{t}}$$
.

Gaussian heat kernel estimates

Special case:
$$\mathbb{G} = \mathbb{Z}^d$$
, $\pi^{(t)} \in [\epsilon, 1]$.

GHKE:
$$\exists c_j \in (0,\infty) \text{ such that } \forall t \geq |x-y| \vee 1$$
,

$$c_1 t^{-d/2} e^{-c_2 \frac{|x-y|^2}{t}} \le p(0, x; t, y) \le c_3 t^{-d/2} e^{-c_4 \frac{|x-y|^2}{t}}$$
.

Hold for uniformly elliptic parabolic PDE in divergence form [Aronson '67, after De Giorgi, Nash, Moser '50-'60]; for Laplace-Beltrami operator, equivalent to $VD+PI_2$ via parabolic Harnack [Grigor'yan, Saloff-Coste '92]; for Dirichlet forms on metric spaces [Sturm '95]; for γ -lazy \mathbb{Z}^d -conductance models with $\pi \in [\epsilon, 1]$ [Delmotte '99]; useful for random walk in random conductances [Biskup '11, Kumagai '14];

Gaussian heat kernel estimates

Special case: $\mathbb{G} = \mathbb{Z}^d$, $\pi^{(t)} \in [\epsilon, 1]$.

GHKE: $\exists c_j \in (0,\infty) \text{ such that } \forall t \geq |x-y| \vee 1$,

$$c_1 t^{-d/2} e^{-c_2 \frac{|x-y|^2}{t}} \le p(0, x; t, y) \le c_3 t^{-d/2} e^{-c_4 \frac{|x-y|^2}{t}}$$
.

Hold for uniformly elliptic parabolic PDE in divergence form [Aronson '67, after De Giorgi, Nash, Moser '50-'60]; for Laplace-Beltrami operator, equivalent to $\mathrm{VD}+\mathrm{PI}_2$ via parabolic Harnack [Grigor'yan, Saloff-Coste '92]; for Dirichlet forms on metric spaces [Sturm '95]; for γ -lazy \mathbb{Z}^d -conductance models with $\pi \in [\epsilon, 1]$ [Delmotte '99]; useful for random walk in random conductances [Biskup '11, Kumagai '14];

Diagonal (x = y) GHKE (+Borel-Cantelli) \Rightarrow recurrence iff $d \le 2$.

- ► GHKE holds for time-varying VSRW [Delmotte-Deuschel '05].
- ▶ GHKE fails for some time-varying CSRW and γ -lazy DSRW: ballistic on \mathbb{Z} , recurrent on $\mathbb{Z}^2 \times \mathbb{N}$ [Huang-Kumagai '15]. (non-monotone $t \mapsto \pi^{(t)}(x)$, does not contradict [Conj. 7.1, ABGK]).

Evolving sets: $t \mapsto \pi^{(t)}(x)$ non-decreasing [DHMP '15]

Admissible sites $V_t := \{y \in V : \pi^{(t)}(y) > 0\}$, non-decreasing in t.

 $(U_t, t \in \mathbb{N})$, i.i.d. U(0, 1), independent of $\{X_s, s \geq 0\}$.

Evolving set process $\{S_t, t \in \mathbb{N}\}$: $S_0 = \{x\}$, $x \in V_0$,

$$S_{t+1} = \{ y \in V_{t+1} : \frac{\pi^{(t)}(S_t, y)}{\pi^{(t+1)}(y)} \ge U_{t+1} \}.$$

Time invariant case: [Morris-Peres '05], applicable for M.C. mixing time (also sized-biased version [Diaconis-Fill '90] for strong stationary times).

Evolving sets: $t \mapsto \pi^{(t)}(x)$ non-decreasing [DHMP '15]

Admissible sites $V_t := \{y \in V : \pi^{(t)}(y) > 0\}$, non-decreasing in t.

 $(U_t, t \in \mathbb{N})$, i.i.d. U(0, 1), independent of $\{X_s, s \geq 0\}$.

Evolving set process $\{S_t, t \in \mathbb{N}\}: S_0 = \{x\}, x \in V_0$,

$$S_{t+1} = \{ y \in V_{t+1} : \frac{\pi^{(t)}(S_t, y)}{\pi^{(t+1)}(y)} \ge U_{t+1} \}.$$

Time invariant case: [Morris-Peres '05], applicable for M.C. mixing time (also sized-biased version [Diaconis-Fill '90] for strong stationary times).

 $\blacktriangleright \pi^{(t)}(S_t)$ is a martingale, $\forall x, y, t \geq 0$

$$p(0, x; t, y) = \frac{\pi^{(t)}(y)}{\pi^{(0)}(x)} \mathbb{P}_{\{x\}}(y \in S_t).$$

Isoperimetry, GHKE, transience

 γ -lazy DSRW or CSRW; $\pi^{(t)}(x) \uparrow$ uniformly bounded.

Isomerimetric growth (d > 1):

$$\kappa_u := \inf_{A \subset V_u, 0 < |A| < \infty} \left\{ \frac{\pi^{(u)}(A, A^c)}{\pi^{(u)}(A)^{(d-1)/d}} \right\}.$$

Example:
$$\mathbb{G} = \mathbb{Z}^d$$
, $\pi^{(t)} \in [\epsilon, 1]$ \Longrightarrow $\inf_u \{\kappa_u\} \ge \delta_d(\epsilon) > 0$.

Isoperimetry, GHKE, transience

 γ -lazy DSRW or CSRW; $\pi^{(t)}(x) \uparrow$ uniformly bounded.

Isomerimetric growth (d > 1):

$$\kappa_u := \inf_{A \subset V_u, 0 < |A| < \infty} \left\{ \frac{\pi^{(u)}(A, A^c)}{\pi^{(u)}(A)^{(d-1)/d}} \right\}.$$

Example: $\mathbb{G} = \mathbb{Z}^d$, $\pi^{(t)} \in [\epsilon, 1]$ \Longrightarrow $\inf_u \{\kappa_u\} \geq \delta_d(\epsilon) > 0$.

Evolving sets \Rightarrow diagonal GHK upper-bound [DHMP '15]:

$$\pi^{(0)}(x)p(0,x;t,y) \le c_3 \Big(\sum_{u \le t} \kappa_u^2\Big)^{-d/2} \quad \forall x \in V_0, y \in V_t, \ t \ge 1.$$

Isoperimetry, GHKE, transience

 γ -lazy DSRW or CSRW; $\pi^{(t)}(x) \uparrow$ uniformly bounded.

Isomerimetric growth (d > 1):

$$\kappa_u := \inf_{A \subset V_u, 0 < |A| < \infty} \left\{ \frac{\pi^{(u)}(A, A^c)}{\pi^{(u)}(A)^{(d-1)/d}} \right\}.$$

Example: $\mathbb{G} = \mathbb{Z}^d$, $\pi^{(t)} \in [\epsilon, 1]$ \Longrightarrow $\inf_u \{\kappa_u\} \geq \delta_d(\epsilon) > 0$.

Evolving sets \Rightarrow diagonal GHK upper-bound [DHMP '15]:

$$\pi^{(0)}(x)p(0,x;t,y) \le c_3 \Big(\sum_{u \le t} \kappa_u^2\Big)^{-d/2} \quad \forall x \in V_0, y \in V_t, \quad t \ge 1.$$

Consequences (d > 2):

- $\blacksquare \mathbb{G} = \mathbb{Z}^d$, any $\pi^{(t)} \in [\epsilon, 1]$, $\pi^{(t)} \uparrow$ is transient ([ABGK (3_*)]).
- $\mathbb{D}_0 = \mathcal{C}_p$ the ∞ -cluster of bond percolation at $p > p_c(\mathbb{Z}^d)$. Any γ -lazy DSRW on edge-set $\mathbb{D}_t \uparrow$ is transient.

DSRW on growing domains $\mathbb{D}_t \subseteq \mathbb{Z}^d$, d > 2

[DHS '14] study $ext{DSRW}$ on connected $\mathbb{D}_t \uparrow \mathbb{Z}^d$, such that:

$$f(t)\mathbb{B}_1 \cap \mathbb{Z}^d \subseteq \mathbb{D}_t \subseteq f(t)\mathbb{B}_c \cap \mathbb{Z}^d$$
,

some c finite and scale $0 < f(t) \uparrow \infty$.

[Conj. 1.2, DHS]: DSRW on \mathbb{D}_t is recurrent $\Leftrightarrow J_f := \int \frac{dt}{f(t)^d} = \infty$. Special case (open): Recurrence of DSRW on IDLA $_t$ (inject at 0, constant rate).

DSRW on growing domains $\mathbb{D}_t \subseteq \mathbb{Z}^d$, d > 2

[DHS '14] study $ext{DSRW}$ on connected $\mathbb{D}_t \uparrow \mathbb{Z}^d$, such that:

$$f(t)\mathbb{B}_1 \cap \mathbb{Z}^d \subseteq \mathbb{D}_t \subseteq f(t)\mathbb{B}_c \cap \mathbb{Z}^d$$
,

some c finite and scale $0 < f(t) \uparrow \infty$.

[Conj. 1.2, DHS]: DSRW on \mathbb{D}_t is recurrent $\Leftrightarrow J_f := \int \frac{dt}{f(t)^d} = \infty$. Special case (open): Recurrence of DSRW on IDLA $_t$ (inject at 0, constant rate).

[Thm. 1.4, DHS]: $J_f < \infty \Rightarrow {\rm DSRW}$ transient. $J_f = \infty \Rightarrow {\rm DSRW}$ recurrent in case $\mathbb{D}_t = f(t)\mathbb{K} \cap \mathbb{Z}^d$ ($\mathbb{K} \subset \mathbb{R}^d$ assumed *-shaped, bounded uniform domain, $f(\cdot)$ assumed piece-wise constant, well separated scales).

DSRW on growing domains $\mathbb{D}_t \subseteq \mathbb{Z}^d$, d > 2

[DHS '14] study $ext{DSRW}$ on connected $\mathbb{D}_t \uparrow \mathbb{Z}^d$, such that:

$$f(t)\mathbb{B}_1 \cap \mathbb{Z}^d \subseteq \mathbb{D}_t \subseteq f(t)\mathbb{B}_c \cap \mathbb{Z}^d$$
,

some c finite and scale $0 < f(t) \uparrow \infty$.

[Conj. 1.2, DHS]: DSRW on \mathbb{D}_t is recurrent $\Leftrightarrow J_f := \int \frac{dt}{f(t)^d} = \infty$. Special case (open): Recurrence of DSRW on IDLA $_t$ (inject at 0, constant rate).

[Thm. 1.4, DHS]: $J_f < \infty \Rightarrow {
m DSRW}$ transient. $J_f = \infty \Rightarrow {
m DSRW}$ recurrent in case $\mathbb{D}_t = f(t)\mathbb{K} \cap \mathbb{Z}^d$ ($\mathbb{K} \subset \mathbb{R}^d$ assumed *-shaped, bounded uniform domain, $f(\cdot)$ assumed piece-wise constant, well separated scales).

Proof: By invariance principle reduce to recurrence of reflected Brownian motion on growing domains $\mathbb{K}_t = f(t)\mathbb{K}$ (see [BC '11,BCS '04]); Solve for $\mathbb{K} = \mathbb{B}_1$ (radial symmetry); Extend to \mathbb{K} by Neumann heat kernel comparisons (see [Pascu '11]).

Rayleigh monotonicity principle: SRW on \mathbb{G}' recurrent \Rightarrow SRW on $\mathbb{G} \subseteq \mathbb{G}'$ recurrent.

Rayleigh monotonicity principle: SRW on \mathbb{G}' recurrent $\Rightarrow SRW$ on $\mathbb{G} \subseteq \mathbb{G}'$ recurrent.

[Conj. 1.8, DHS]: $\mathbb{G}_t \uparrow$, $\mathbb{G}_t' \uparrow$, with \mathbb{G}_{∞}' of uniformly bounded degrees. DSRW on \mathbb{G}_t' recurrent \Rightarrow DSRW on $\mathbb{G}_t \subset \mathbb{G}_t'$ recurrent.

Rayleigh monotonicity principle: SRW on \mathbb{G}' recurrent \Rightarrow SRW on $\mathbb{G} \subseteq \mathbb{G}'$ recurrent.

[Conj. 1.8, DHS]: $\mathbb{G}_t \uparrow$, $\mathbb{G}_t' \uparrow$, with \mathbb{G}_∞' of uniformly bounded degrees. DSRW on \mathbb{G}_t' recurrent \Rightarrow DSRW on $\mathbb{G}_t \subseteq \mathbb{G}_t'$ recurrent.

Special cases (open):

- $\blacksquare \mathbb{G}_t \subseteq \mathbb{G}_t' = \mathbb{B}_{f(t)} \cap \mathbb{Z}^d$ (same as [Conj. 1.2, DHS]).
- \blacksquare SRW on \mathbb{G}'_{∞} recurrent \Rightarrow DSRW on $\mathbb{G}'_{t} \uparrow \mathbb{G}'_{\infty}$ recurrent.

Rayleigh monotonicity principle: SRW on \mathbb{G}' recurrent \Rightarrow SRW on $\mathbb{G} \subseteq \mathbb{G}'$ recurrent.

[Conj. 1.8, DHS]: $\mathbb{G}_t \uparrow$, $\mathbb{G}_t' \uparrow$, with \mathbb{G}_∞' of uniformly bounded degrees. DSRW on \mathbb{G}_t' recurrent \Rightarrow DSRW on $\mathbb{G}_t \subseteq \mathbb{G}_t'$ recurrent.

Special cases (open):

- $\blacksquare \mathbb{G}_t \subseteq \mathbb{G}_t' = \mathbb{B}_{f(t)} \cap \mathbb{Z}^d$ (same as [Conj. 1.2, DHS]).
- \blacksquare SRW on \mathbb{G}'_{∞} recurrent \Rightarrow DSRW on $\mathbb{G}'_{t} \uparrow \mathbb{G}'_{\infty}$ recurrent.

 $\exists \ \mathbb{G}'_t$ of unbounded degrees, for which [Conj. 1.8, DHS] fails.

adaptive-RWCE, OBT & POBT

Adaptive, monotone RWCE is too general class.

[Ex. 3.3, ABGK]: Given $(\mathbb{G},\pi^{(0)})$, any *strictly positive* measure on paths in \mathbb{G} can be realized by some adaptive $\pi^{(t)} \uparrow$

adaptive-RWCE, OBT & POBT

Adaptive, monotone RWCE is too general class.

[Ex. 3.3, ABGK]: Given $(\mathbb{G},\pi^{(0)})$, any *strictly positive* measure on paths in \mathbb{G} can be realized by some adaptive $\pi^{(t)}\uparrow$

[DHS '14b]: DSRW
$$\{X_t\}$$
 on $\mathbb{G}_t \uparrow \mathbb{G}_{\infty} \subseteq \overline{\mathbb{G}}$ of bounded degrees (\star) $\mathbb{B}_{\overline{\mathbb{G}}}(X_t,1) \subseteq \mathbb{G}_t \Longrightarrow \mathbb{G}_{t+1} = \mathbb{G}_t$

- lacksquare Open By Touch (OBT): $\mathbb{G}_{t+1}=\mathbb{G}_t\cup\mathbb{B}_{\overline{\mathbb{G}}}(X_t,1)$
- Partial Open By Touch (POBT): $\mathbb{G}_{t+1} \subseteq \mathbb{G}_t \cup \mathbb{B}_{\overline{\mathbb{G}}}(X_t, 1)$ $\inf_{t,\omega} \{ \mathbb{P}(\mathbb{G}_{t+1} \neq \mathbb{G}_t | \mathcal{F}_t, (\star)^c) \} := \delta > 0.$

adaptive-RWCE, OBT & POBT

Adaptive, monotone RWCE is too general class.

[Ex. 3.3, ABGK]: Given $(\mathbb{G},\pi^{(0)})$, any *strictly positive* measure on paths in \mathbb{G} can be realized by some adaptive $\pi^{(t)}\uparrow$

[DHS '14b]: DSRW
$$\{X_t\}$$
 on $\mathbb{G}_t \uparrow \mathbb{G}_\infty \subseteq \overline{\mathbb{G}}$ of bounded degrees (\star) $\mathbb{B}_{\overline{\mathbb{G}}}(X_t,1) \subseteq \mathbb{G}_t \Longrightarrow \mathbb{G}_{t+1} = \mathbb{G}_t$

- lacksquare Open By Touch (OBT): $\Bbb G_{t+1}=\Bbb G_t\cup\Bbb B_{\overline{\Bbb G}}(X_t,1)$
- Partial Open By Touch (POBT): $\mathbb{G}_{t+1} \subseteq \mathbb{G}_t \cup \mathbb{B}_{\overline{\mathbb{G}}}(X_t, 1)$ $\inf_{t,\omega} \{ \mathbb{P}(\mathbb{G}_{t+1} \neq \mathbb{G}_t | \mathcal{F}_t, (\star)^c) \} := \delta > 0.$

[Prop. 1.9, DHS-b]:
$$\overline{\mathbb{G}}=\mathbb{Z}^d$$
, $d>2$. $m_k=|(\mathbb{G}_0)^c\cap\partial\mathbb{B}_{\overline{\mathbb{G}}}(X_0,k)|$, $\sum_k\frac{m_k}{k^{d-2}}<\infty\Rightarrow \text{POBT transient.}$ [Conj. 1.12, DHS-b]: $\mathbb{G}_0=\mathcal{C}_p$, $p>p_c\Rightarrow \text{OBT transient (open)}$.

- \blacksquare Once edge-reinforced walk on $\mathbb G$ is a special case of POBT!
- For finite \mathbb{G}_0 the specifics of the POBT matter.

Expanding glassy spheres, almost-regular shape

$$\overline{\mathbb{D}}_k = \mathbb{B}_{ck} \cap \mathbb{Z}^d \text{, } d \geq 2 \text{, } \quad X_0 = 0 \text{, } \quad c \geq 1 \text{, } \quad N_k \geq 1.$$

EGS: $\mathbb{D}_t = \overline{\mathbb{D}}_k$ for $t \in [\tau_k, \tau_{k+1})$, $\tau_1 = 0$, τ_{k+1} first after N_k -th visit to $\partial \overline{\mathbb{D}}_k$.

[Prop. 1.14, DHS-b]: EGS transient $\Leftrightarrow J := \sum_k N_k k^{1-d} < \infty$; EGS recurrent $\Leftrightarrow J = \infty$.

Expanding glassy spheres, almost-regular shape

$$\overline{\mathbb{D}}_k = \mathbb{B}_{ck} \cap \mathbb{Z}^d$$
, $d \ge 2$, $X_0 = 0$, $c \ge 1$, $N_k \ge 1$.

EGS: $\mathbb{D}_t = \overline{\mathbb{D}}_k$ for $t \in [\tau_k, \tau_{k+1})$, $\tau_1 = 0$, τ_{k+1} first after N_k -th visit to $\partial \overline{\mathbb{D}}_k$.

[Prop. 1.14, DHS-b]: EGS transient
$$\Leftrightarrow J := \sum_k N_k k^{1-d} < \infty$$
; EGS recurrent $\Leftrightarrow J = \infty$.

Defn: $\mathbb{D}_t \uparrow \mathbb{D}_{\infty} \subseteq \mathbb{Z}^d$, $d \ge 2$ admit c-almost-regular shape \mathbb{K} , if:

- $f(t)\mathbb{K} \cap \mathbb{Z}^d \subset \mathbb{D}_t, \ 1 \leq f(t) \uparrow$
- $\sup_{z \in \mathbb{D}_t} \{ d_{\mathbb{D}_t}(z, f(t)\mathbb{K}) \} \le c \log f(t)$

[Prop. 1.18, DHS-b]: $\exists c_d>0$ s.t. for any \mathbb{D}_0 finite POBT on $\{\mathbb{D}_t\}$ admitting c_d -almost-regular shape \mathbb{B} , must be recurrent.

Open: prove c-almost-regular shape for even one non-trivial POBT!

