Calculus of conformal fields on a compact Riemann surface

Joint work with N. Makarov

Nam-Gyu Kang KIAS

Recent developments in Constructive Field Theory

Columbia University

March 13, 2018

Outline

- ▶ Implementation of CFT constructed from GFF on a compact Riemann surface.
- Fields = certain types of Fock space fields + tensor nature.
 Cf. Gaussian free field and conformal field theory, Astérisque, 353 (2013).
- We treat a stress tensor in terms of Lie derivatives.
- ▶ Ward's equation and its examples (g = 1):
 - Addition theorem of Weierstrass
 ρ-function;
- ▶ Eguchi-Ooguri equation (g = 1): for any tensor product \mathcal{X} of fields in the OPE family \mathcal{F} , in the \mathbb{T}_{Λ} -uniformization

$$\frac{1}{2\pi i} \oint_{[0,1]} \mathbf{E} A(\xi) \mathcal{X} \, \mathrm{d}\xi = \frac{\partial}{\partial \tau} \, \mathbf{E} \, \mathcal{X}.$$

► Eguchi-Ooguri's version of Ward's equation

$$\mathbf{E} A(\xi) \mathcal{X} = \mathcal{L}_{\tilde{v}_{\xi}}^{+} \mathbf{E} \, \mathcal{X} + 2\pi i \, \frac{\partial}{\partial \tau} \, \mathbf{E} \, \mathcal{X}, \quad (\tilde{v}_{\xi}(z) = \zeta(\xi - z) + 2\eta_{1}z).$$

T. Eguchi and H. Ooguri. Conformal and current algebras on a general Riemann surface. *Nuclear Phys.* B, 282(2):308–328, 1987.

1/25

Related Topics

- ► CFT with (c ≤ 1) constructed from the central/background charge modifications of GFF.
 - ightharpoonup The background charge of (simple) PPS form φ is given by

$$oldsymbol{eta} = rac{i}{\pi}\,\partialar{\partial}arphi = \sumeta_j\delta_{q_j}$$

with the neutrality condition,

$$\int \beta(=\sum \beta_k) = b\chi(M), \qquad c = 1 - 12b^2.$$

- ▶ (With Byun & Tak) Implementation of CFT in a doubly connected domain.
 - ▶ Dirichlet boundary condition and ER (Excursion Reflected) boundary condition.
 - ▶ The neutrality condition: total sum of background charges is zero.
 - ▶ A connection to annulus SLE theory.

Gaussian free field

The Gaussian free field Φ on a compact Riemann surface M is a Gaussian field indexed by the energy space $\mathcal{E}(M)$,

$$\Phi: \mathcal{E}(M) \to L^2(\Omega, \mathbf{P});$$

here (Ω, \mathbf{P}) is some probability space. By definition, Φ is an isometry such that the image consists of centered Gaussian random variables.

The energy space $\mathcal{E} = \mathcal{E}(M)$ is the completion of test functions f satisfying

$$\int f = 0$$

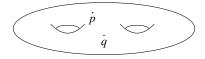
with respect to

$$||f||_{\mathcal{E}}^2 = \iint 2G_{\zeta,\eta}(z)f(z)\overline{f(\zeta)}$$

for all $\eta \in M$.

Bipolar Green's function

Let p, q be distinct marked points of the compact Riemann surface M.



By definition, bipolar Green's function $z \mapsto G_{p,q}(z)$ with singularities at p and q is harmonic on $M \setminus \{p, q\}$, and satisfies

$$G_{p,q}(z) = \log rac{1}{|z-p|} + O(1) \qquad (z o p),$$
 $G_{p,q}(z) = -\log rac{1}{|z-q|} + O(1) \qquad (z o q)$

$$G_{p,q}(z) = -\log \frac{1}{|z-q|} + O(1) \qquad (z \to q)$$

(in some/any chart).

Note that a bipolar Green's function is not uniquely determined. However, it is unique up to adding a constant.

Gaussian free field

We introduce the Fock space functionals $\Phi(z, z_0)$ as "generalized" elements of Fock space

$$\Phi(z,z_0)=\Phi(\delta_z-\delta_{z_0}),$$

where $\delta_z - \delta_{z_0}$ is the "generalized" elements of $\mathcal{E}(M)$.

We now define the correlation function of Gaussian free field by

$$\mathbf{E}[\Phi(p,q)\Phi(\tilde{p},\tilde{q})] = 2(G_{p,q}(\tilde{p}) - G_{p,q}(\tilde{q})), \quad (\tilde{p},\tilde{q} \notin \{p,q\}).$$

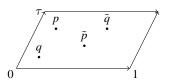
On the Riemann sphere,

$$\mathbf{E}\,\Phi(p,q)\Phi(\tilde{p},\tilde{q}) = \log|\lambda(p,q;\tilde{p},\tilde{q})|^2,$$

where

$$\lambda(p,q;\tilde{p},\tilde{q}) = \frac{(\tilde{p}-q)(\tilde{q}-p)}{(\tilde{p}-p)(\tilde{q}-q)}.$$

Gaussian free field



On the Torus $\mathbb{T}_{\Lambda} = \mathbb{C}/\Lambda$, $(\Lambda = \mathbb{Z} + \tau \mathbb{Z}, \text{Im } \tau > 0)$,

$$\mathbf{E}\,\Phi(p,q)\Phi(\tilde{p},\tilde{q}) = \log|\lambda(p,q;\tilde{p},\tilde{q})|^2 - 4\pi\,\frac{\mathrm{Im}(p-q)\,\,\mathrm{Im}\,(\tilde{p}-\tilde{q})}{\mathrm{Im}\,\,\tau},$$

where

$$\lambda(p,q;\tilde{p},\tilde{q}) = \frac{\theta(\tilde{p}-q)\theta(\tilde{q}-p)}{\theta(\tilde{p}-p)\theta(\tilde{q}-q)}$$

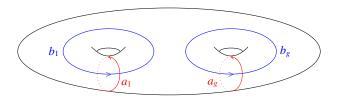
and

$$\theta(z) = \theta(z \mid \tau) = 2\sum_{n=1}^{\infty} (-1)^{n-1} e^{\pi i \tau (n - \frac{1}{2})^2} \sin(2n - 1)\pi z.$$

Canonical basis

Let *M* be a compact Riemann surface of genus $g \ge 1$.

Fix a canonical basis $\{a_j, b_j\}$ for the homology $H_1 = H_1(M)$ with the following intersection properties: $a_j \cdot b_j = 1$ and all other intersection numbers are zero.



Period matrix

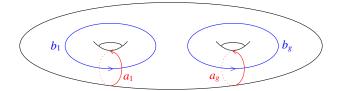
Let $\Omega(M)$ be the space of all holomorphic 1-differentials on M and let $\{\omega_j\}$ be its basis uniquely determined by the equations

$$\oint_{a_k} \omega_j = \delta_{jk}.$$

The period matrix $\tau = \{\tau_{jk}\}$ is defined as

$$au_{jk} = \oint_{b_k} \omega_j.$$

The period matrix is symmetric and its imaginary part is positive definite, Im au>0.



Theta function

Let τ be a symmetric $g \times g$ matrix with Im $\tau > 0$ (e.g., the period matrix of a Riemann surface). The theta function $\Theta(\cdot | \tau)$ associated to τ is the following function of g complex variables $Z = (z_1, \cdots, z_g)$

$$\Theta(Z \mid \tau) = \sum_{N \in \mathbb{Z}^g} e^{2\pi i (Z \cdot N + \frac{1}{2}\tau N \cdot N)} \qquad (Z \in \mathbb{C}^g).$$

The theta function is an *even* entire function on \mathbb{C}^g (or a multivalued function on the Jacobi variety). It has the following periodicity properties: For $N \in \mathbb{Z}^g$, we have

$$\Theta(Z+N) = \Theta(Z), \qquad \Theta(Z+\tau N) = e^{-2\pi i (Z \cdot N + \frac{1}{2}\tau N \cdot N)} \Theta(Z).$$

Gaussian free field

We consider the lattice $\Lambda = \mathbb{Z}^g + \tau \mathbb{Z}^g$ in \mathbb{C}^g associated to the period matrix τ of M and set

$$\mathbb{T}_{\Lambda} \equiv \mathbb{T}_{\Lambda}^g := \mathbb{C}^g/\Lambda.$$

Then

$$\mathbf{E}\,\Phi(p,q)\Phi(\tilde{p},\tilde{q}) = \log|\lambda(p,q;\tilde{p},\tilde{q})|^2 - 4\pi(\operatorname{Im}\,\tau)^{-1}\operatorname{Im}(P-Q)\cdot\operatorname{Im}(\tilde{P}-\tilde{Q}),$$

where

$$P-Q=\mathcal{A}(p)-\mathcal{A}(q)=\int_q^p ec{\omega}, \quad ec{\omega}=(\omega_1,\cdots,\omega_g)$$

and

$$\lambda(p,q;\tilde{p},\tilde{q}) = \frac{\theta(\tilde{p}-q)\theta(\tilde{q}-p)}{\theta(\tilde{p}-p)\theta(\tilde{q}-q)}, \quad \theta = \Theta \circ \mathcal{A}.$$

Cf. In the g = 1 case,

$$\mathbf{E}\,\Phi(p,q)\Phi(\tilde{p},\tilde{q}) = \log|\lambda(p,q;\tilde{p},\tilde{q})|^2 - 4\pi\,\frac{\mathrm{Im}(p-q)\,\,\mathrm{Im}\,(\tilde{p}-\tilde{q})}{\mathrm{Im}\,\,\tau}\,.$$

Fock space fields

Fock space fields are obtained from the Gaussian free field (GFF) Φ by applying the basic operations:

- i. derivatives;
- ii. Wick's products;
- iii. multiplying by scalar functions and taking linear combinations.

Examples

$$J = \partial \Phi, \quad \Phi \odot \Phi (\equiv : \Phi \Phi :), \quad J \odot \Phi, \quad J \odot J, \quad e^{\odot \alpha \Phi} = \sum_{n=0}^{\infty} \frac{\alpha^n \Phi^{\odot n}}{n!}, \quad e^{\odot \beta J}.$$

Examples

- $E[J(\zeta)J(z)] = \partial_{\zeta}\partial_{z}E[\Phi(\zeta,\zeta_{0})\Phi(z,z_{0})].$
- $J(\zeta) \odot J(z) = J(\zeta)J(z) \mathbf{E}[J(\zeta)J(z)].$

OPE

We write the OPE of two (*holomorphic*) fields $X(\zeta)$ and Y(z) as

$$X(\zeta)Y(z) = \sum C_j(z)(\zeta - z)^j \quad (\zeta \to z, \zeta \neq 0).$$

Write X * Y for C_0 .

Example (g = 1) We have

$$J(\zeta)J(z) = \mathbb{E}[J(\zeta)J(z)] + J(\zeta) \odot J(z).$$

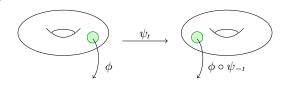
In the identity chart of \mathbb{T}_{Λ} ,

$$\mathbf{E}J(\zeta)J(z) = \partial_z \left(-\frac{\theta'(\zeta - z)}{\theta(\zeta - z)} + \frac{\pi}{\operatorname{Im} \tau}z \right) = -\wp(\zeta - z) + \frac{1}{3}\frac{\theta'''(0)}{\theta'(0)} + \frac{\pi}{\operatorname{Im} \tau},$$

where
$$\wp(z) := \frac{1}{z^2} + \sum_{m,n}{'(\frac{1}{(z+m+n\tau)^2} - \frac{1}{(m+n\tau)^2})}.$$

As
$$\zeta \to z$$
, $\mathbf{E}J(\zeta)J(z) = -\frac{1}{(\zeta - z)^2} + \frac{1}{3}\frac{\theta'''(0)}{\theta'(0)} + \frac{\pi}{\text{Im }\tau} + o(1)$. In $\mathrm{id}_{\mathbb{T}_\Lambda}$,
$$J * J = J \odot J + \frac{1}{3}\frac{\theta'''(0)}{\theta'(0)} + \frac{\pi}{\text{Im }\tau}.$$

Lie derivative



Let

$$(X_t \parallel \phi)(z) = (X \parallel \phi \circ \psi_{-t})(z),$$

where ψ_t is a local flow of v.

We define the Lie derivative (or fisherman's derivative) of X by

$$(\mathcal{L}_{\nu}X \parallel \phi)(z) = \frac{d}{dt}\Big|_{t=0} (X \parallel \phi \circ \psi_{-t})(z).$$

The flow carries all possible differential geometric objects past the fisherman, and the fisherman sits there and differentiates them.

Cf. V. I. Arnold, Mathematical Methods of Classical Mechanics.

Lie derivative

If X is a differential, then

$$X_t(z) = (X(\psi_t z) \parallel \psi_{-t}) = (\psi_t'(z))^{\lambda} (\overline{\psi_t'(z)})^{\lambda_*} X(\psi_t z);$$

and

$$\mathcal{L}_{\nu}X = \left(\nu\partial + \lambda\nu' + \bar{\nu}\bar{\partial} + \lambda_*\overline{\nu'}\right)X.$$

The Lie derivative operator $v \mapsto \mathcal{L}_v$ depends \mathbb{R} -linearly on v. Denote

$$\mathcal{L}_{\nu}^{+}=rac{\mathcal{L}_{\nu}-i\mathcal{L}_{i\nu}}{2},\qquad \mathcal{L}_{\nu}^{-}=rac{\mathcal{L}_{\nu}+i\mathcal{L}_{i\nu}}{2},$$

so that

$$\mathcal{L}_{\nu} = \mathcal{L}_{\nu}^{+} + \mathcal{L}_{\nu}^{-}.$$

If X is a differential, then

$$\mathcal{L}_{v}^{+}X = (v\partial + \lambda v')X.$$

Stress tensor

▶ A pair of quadratic differentials $W = (A_+, A_-)$ is called a stress tensor for X if "residue form of Ward's identity" holds:

$$\mathcal{L}_{\nu}^{+}X(z) = \frac{1}{2\pi i} \oint_{(z)} \nu A_{+}X(z)$$
$$\mathcal{L}_{\nu}^{-}X(z) = -\frac{1}{2\pi i} \oint_{(z)} \bar{\nu} A_{-}X(z),$$

where
$$\mathcal{L}_{v}^{\pm}=rac{\mathcal{L}_{v}\mp i\mathcal{L}_{iv}}{2}.$$

Notation: $\mathcal{F}(W)$ is the family of fields with stress tensor $W = (A_+, A_-)$.

▶ If $X, Y \in \mathcal{F}(W)$, then $\partial X, X * Y \in \mathcal{F}(W)$.

Stress tensor

We have a stress tensor

$$W = (A, \overline{A}), \quad A = -\frac{1}{2}J \odot J$$

for Φ and its OPE family.

Example.

$$A = -\frac{1}{2}J \odot J \notin \mathcal{F}(W), \text{ but } T = -\frac{1}{2}J * J = -\frac{1}{2}J \odot J + \frac{1}{12}S \in \mathcal{F}(W),$$

where

$$S(z) = 12 \mathbf{E} T(z) = 6 \lim_{\zeta \to z} \left(-2 \partial_{\zeta} \partial_{z} G_{z, z_{0}}(\zeta) - \frac{1}{(\zeta - z)^{2}} \right)$$

is a Schwarzian form of order 1.

Ward's equation

Given a meromorphic vector field v with poles η_1, \ldots, η_N , we define the Ward functional W^+ by

$$W^{+}(v) = -\frac{1}{2\pi i} \sum \oint_{(\eta_k)} vA.$$

Theorem (K.-Makarov)

If X_j 's are in $\mathcal{F}(A, \bar{A})$, then

$$\mathbf{E} W^+(v) \mathcal{X} = \mathbf{E} \mathcal{L}_v^+ \mathcal{X}.$$

Corollary

If X_j 's are primary fields with conformal dimensions $(\lambda_j, \lambda_{*j})$, then in the usual uniformization,

$$-\sum \mathbf{E} \operatorname{Res}_{\eta_k}(vA)\mathcal{X} = \sum (v(z_j)\partial_j + \lambda_j v'(z_j))\mathbf{E} \mathcal{X},$$

where $\mathcal{X} = X_1(z_1) \cdots X_n(z_n)$.

Ward's equation (g = 1)

On the torus \mathbb{T}_{Λ} , with the choice of $v_{\eta,\eta_0}(z)=rac{\theta'}{\theta}(\eta-z)-rac{\theta'}{\theta}(\eta_0-z)$,

$$\mathbf{E} (A(\eta) - A(\eta_0)) \mathcal{X} = \sum (\nu_{\eta, \eta_0}(z_j) \partial_j + \lambda_j \nu'_{\eta, \eta_0}(z_j)) \mathbf{E} \mathcal{X}$$

for the tensor product \mathcal{X} of primary fields with conformal dimensions $(\lambda_j, \lambda_{*j})$.

With the choice of $v(z) = v_{\eta}(z) = -\wp(\eta - z)$, we have

$$\mathbf{E}\,\partial A(\eta)\mathcal{X} = \sum (v_{\eta}(z_j)\partial_j + \lambda_j v'_{\eta}(z_j))\mathbf{E}\,\mathcal{X}.$$

Ward's equation with $\mathcal{X} = J(z)J(z_0)$ gives the addition theorem of Weierstrass \wp -function:

$$\begin{vmatrix} 1 & 1 & 1 \\ \wp(\eta - z) & \wp(z - z_0) & \wp(\eta - z_0) \\ \wp'(\eta - z) & \wp'(z - z_0) & -\wp'(\eta - z_0) \end{vmatrix} = 0.$$

Recall

$$\mathbf{E}J(\zeta)J(z) = -\wp(\zeta - z) + \frac{1}{3}\frac{\theta'''(0)}{\theta'(0)} + \frac{\pi}{\mathrm{Im}\ \tau},$$

An example for Ward's equation

With the choice of $v(z) = v_{\eta}(z) = -\wp(\eta - z)$, we have

$$\mathbf{E}\,\partial A(\eta)\mathcal{X}=\mathcal{L}_{\nu_{\eta}}\mathbf{E}\,\mathcal{X},$$

for the tensor product of fields in the OPE family of Φ .

Ward's equation with $\mathcal{X} = T(z) := -\frac{1}{2}J*J(z) = -\frac{1}{2}J\odot J(z) + \frac{1}{12}S$ gives

$$\partial_{\eta} \mathbf{E} A(\eta) T(z) = \mathcal{L}_{\nu_{\eta}} \mathbf{E} \, \mathcal{X} = (\nu_{\eta} \partial + 2\nu'_{\eta}) \mathbf{E} \, \mathcal{X} + \frac{1}{12} \nu'''_{\eta}$$
$$= 2 \, \mathbf{E} \, T \, \wp'(\eta - z) + \frac{1}{12} \wp'''(\eta - z).$$

Applying Wick's calculus to the left-hand side,

$$\partial_{\eta} \mathbf{E} A(\eta) T(z) = \frac{1}{2} \partial_{\eta} (\mathbf{E} J(\eta) J(z))^2 = (\wp(\eta - z) + 2 \mathbf{E} T) \wp'(\eta - z).$$

Thus we have

$$\wp\wp'=\frac{1}{12}\wp'''.$$

Eguchi-Ooguri equation on a torus

Theorem

For any tensor product \mathcal{X} of fields in the OPE family \mathcal{F} ,

$$\frac{1}{2\pi i} \oint_{[0,1]} \mathbf{E} A(\xi) \mathcal{X} \, \mathrm{d}\xi = \frac{\partial}{\partial \tau} \, \mathbf{E} \, \mathcal{X} \tag{1}$$

in the \mathbb{T}_{Λ} -uniformization.

Theorem

For any tensor product X of fields in the OPE family \mathcal{F} , we have

$$\mathbf{E}A(\xi)\mathcal{X} = \mathcal{L}_{\tilde{v}_{\xi}}^{+}\mathbf{E}\,\mathcal{X} + 2\pi i\,\frac{\partial}{\partial \tau}\,\mathbf{E}\,\mathcal{X}, \quad (\tilde{v}_{\xi}(z) = \zeta(\xi - z) + 2\eta_{1}z)$$

in the \mathbb{T}_{Λ} -uniformization.

Weierstrass ζ -function

Weierstrass ζ -function

$$\zeta(z) := \frac{1}{z} + \sum_{\lambda \in \Lambda \setminus \{0\}} \left(\frac{1}{z - \lambda} + \frac{1}{\lambda} + \frac{z}{\lambda^2} \right)$$

is a meromorphic odd function which has simple poles at $\lambda \in \Lambda$ with residue 1. Weierstrass ζ -function has the following quasi-periodicities

$$\zeta(z+m+n\tau) = \zeta(z) + 2m\eta_1 + 2n\eta_2, \qquad (\eta_1 = \zeta(1/2), \quad \eta_2 = \zeta(\tau/2)).$$

Here are two main ingredients for the proof of Eguchi-Ooguri equation.

▶ Frobenius-Stickelberger's pseudo-addition theorem for Weierstrass ζ -function:

$$(\zeta(z_1) + \zeta(z_2) + \zeta(z_3))^2 + \zeta'(z_1) + \zeta'(z_2) + \zeta'(z_3) = 0, (z_1 + z_2 + z_3 = 0),$$
 equivalently, by $\theta'(z)/\theta(z) = \zeta(z) - 2\eta_1 z$

$$2\sum_{j< k} \frac{\theta'(z_j)}{\theta(z_j)} \frac{\theta'(z_k)}{\theta(z_k)} + \sum_j \frac{\theta''(z_j)}{\theta(z_j)} + 6\eta_1 = 0, \qquad (z_1 + z_2 + z_3 = 0).$$

▶ Jacobi-theta function satisfies the heat equation,

$$2\pi i \frac{\partial}{\partial \tau} \theta = \frac{1}{2} \theta''.$$

Eguchi-Ooguri equation: a sketch of proof

For
$$\mathcal{X} = \Phi(z, z_0)\Phi(z', z'_0)$$
,

$$\mathbf{E}\,\mathcal{X} = -4\pi \frac{\mathrm{Im}(z - z_0)\,\mathrm{Im}\,(z' - z'_0)}{\mathrm{Im}\,\tau} + \log\left|\frac{\theta(z' - z_0)\theta(z'_0 - z)}{\theta(z' - z)\theta(z'_0 - z_0)}\right|^2$$

By the heat equation $2\pi i \frac{\partial}{\partial \tau} \theta = \frac{1}{2} \theta''$,

$$2\pi i \frac{\partial}{\partial \tau} \mathbf{E} \mathcal{X} - 4\pi^2 \frac{\operatorname{Im}(z - z_0) \operatorname{Im}(z' - z'_0)}{(\operatorname{Im} \tau)^2} = -\frac{1}{2} \left(\frac{\theta''(z - z')}{\theta(z - z')} + \cdots \right).$$

By the pseudo-addition theorem for ζ ,

$$\oint_{[0,1]} \mathbf{E} A(\xi) \mathcal{X} \, d\xi - 4\pi^2 \frac{\text{Im} (z - z_0) \, \text{Im} (z' - z'_0)}{(\text{Im} \, \tau)^2} \\
= - \int_0^1 \frac{\theta'(\xi - z)}{\theta(\xi - z)} \frac{\theta'(\xi - z')}{\theta(\xi - z')} \, d\xi + \frac{2\pi i}{\text{Im} \, \tau} \Big(\text{Im} \, z \int_0^1 \frac{\theta'(\xi - z')}{\theta(\xi - z')} \, d\xi + \cdots \Big) + \cdots \\
= \frac{\theta'(z - z')}{\theta(z - z')} \int_0^1 \Big(-\frac{\theta'(\xi - z)}{\theta(\xi - z)} + \frac{\theta'(\xi - z')}{\theta(\xi - z')} \Big) \, d\xi \\
- \frac{1}{2} \frac{\theta''(z - z')}{\theta(z - z')} - \frac{1}{2} \int_0^1 \frac{\theta''(\xi - z)}{\theta(\xi - z)} \, d\xi - \frac{1}{2} \int_0^1 \frac{\theta''(\xi - z')}{\theta(\xi - z')} \, d\xi - 6\eta_1 + \cdots .$$

Eguchi-Ooguri equation: an example

We present a conformal field theoretic proof for

$$\eta_1 = -\frac{1}{6} \frac{\theta'''(0)}{\theta'(0)},$$

where $\eta_1 = \zeta(1/2)$.

For $\mathcal{X} = J(z)\overline{J(z)}$, it follows from Wick's formula that

$$\mathbf{E}A(\xi)\mathcal{X} = -\mathbf{E}J(\xi)J(z)\mathbf{E}J(\xi)\overline{J(z)} = -\left(\wp(\xi - z) - \frac{1}{3}\frac{\theta'''(0)}{\theta'(0)} - \frac{\pi}{\text{Im }\tau}\right)\frac{\pi}{\text{Im }\tau}.$$

Since $\wp = -\zeta'$ and $\zeta(z+1) = \zeta(z) + 2\eta_1$, we have

$$\oint_{[0,1]} \mathbf{E} A(\xi) \mathcal{X} \, \mathrm{d}\xi = \left(2\eta_1 + \frac{1}{3} \frac{\theta'''(0)}{\theta'(0)}\right) \frac{\pi}{\mathrm{Im} \ \tau} + \left(\frac{\pi}{\mathrm{Im} \ \tau}\right)^2.$$

On the other hand, we have

$$2\pi i \,\partial_{\tau} \,\mathbf{E} \,\mathcal{X} = -2\pi i \frac{\partial}{\partial \tau} \frac{\pi}{\operatorname{Im} \,\tau} = \left(\frac{\pi}{\operatorname{Im} \,\tau}\right)^{2}.$$

Eguchi-Ooguri's version of Ward's equation on a torus: an example

Theorem

For any tensor product X of fields in the OPE family F, we have

$$\mathbf{E} A(\xi) \mathcal{X} = \mathcal{L}_{\tilde{v}_{\xi}}^{+} \mathbf{E} \, \mathcal{X} + 2\pi i \, \frac{\partial}{\partial \tau} \, \mathbf{E} \, \mathcal{X}, \quad (\tilde{v}_{\xi}(z) = \zeta(\xi - z) + 2\eta_{1} z)$$

in the \mathbb{T}_{Λ} -uniformization.

Example. Applying $\mathcal{X} = J(z)J(z_0)$ ($z \neq z_0$) to the above, we obtain

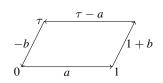
$$\frac{1}{2}\wp''(z_3) = (\wp(z_1) - \wp(z_3))(\wp(z_2) - \wp(z_3)) + \frac{1}{2}\frac{\wp'(z_1) - \wp'(z_2)}{\wp(z_1) - \wp(z_2)}\wp'(z_3)$$

if $z_1 + z_2 + z_3 = 0$.

Eguchi-Ooguri's version of Ward's equation on \mathbb{T}_{Λ} : sketch of proof

Let us consider two vector fields $\tilde{v}^1(z)=z, \tilde{v}^2_{\xi}(z)=\zeta(\xi-z)$. We remark that these two vector fields have jump discontinuities across the cycles $a=[0,1], b=[0,\tau]$. Consider a parallelogram $D:=\{z\in\mathbb{C}\,|\,z=x+y\tau,x,y\in[0,1]\}$ and use Green's formula

$$\begin{split} &-\frac{1}{\pi} \int_{D} \bar{\partial} \tilde{v}_{\xi}(z) \mathbf{E} A(z) \mathcal{X} \\ &= \sum \frac{1}{2\pi i} \oint_{(z_{j})} \tilde{v}_{\xi}(z) \mathbf{E} A(z) \mathcal{X} \, \mathrm{d}z \\ &+ \frac{\eta_{1} \tau - \eta_{2}}{\pi i} \oint_{a} \mathbf{E} A(z) \mathcal{X} \, \mathrm{d}z, \end{split}$$



where $\tilde{v}_{\xi} = \tilde{v}_{\xi}^2 + 2\eta_1 \tilde{v}^1$, so $\tilde{v}_{\xi}(z+1) = \tilde{v}_{\xi}(z)$.

- Since $\bar{\partial} \tilde{v}_{\xi} = -\pi \delta_{\xi}$, LHS = $\mathbf{E} A(\xi) \mathcal{X}$.
- ▶ By Ward's equation, RHS₁ = $\mathcal{L}_{\tilde{\nu}_{\varepsilon}}^{+} \mathbf{E} \mathcal{X}$.
- ▶ Due to Legendre, $\eta_1 \tau \eta_2 = \pi i$.
- ▶ By Eguchi-Ooguri equation, RHS₂ = $2\pi i \partial_{\tau} \mathbf{E} \mathcal{X}$.

Thank you very much.