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Lattice Gauge theory

The definition involves a gauge group. We will focus on SO(N) .

Take a finite box Bn = [−n, n]d. Consider a matrix ensemble Q = {Q(e)}
indexed by the positively oriented edges e ∈ Bn.

Q(e) ∈ SO(N) for all e ∈ Bn, and Q(x, y) = Q−1(y, x)

The main building blocks are the two dimensional four sided loops.

e2e4

e3

e1

p = e1e2e
−1
3 e−14 is a plaquette.
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Lattice Gauge theory

Qp = Qe1Qe2Qe−1
3
Qe−1

4
.

β is the inverse coupling constant.

The density with respect to product Haar measure is proportional to:

exp

−Nβ ∑
p is a plaquette

Tr(I −Qp)


Note that Tr[(I −Q)(I −Q>)] = 2Tr(I −Q).

if β = 0 then we have the Haar measure. If β is large and positive then all
the Qp’s are forced to be close to the identity matrix.

Everything is finite and well defined. 〈·〉 will be used to denote the
expectation.
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Gaussian theory and sum over surfaces

Wick’s theorem (Gaussian integration by parts) allows to compute joint
moments of Gaussian variables:

If X1, X2, . . . , X2n are jointly Gaussian, each with mean zero, then

E[X1X2 . . . X2n] =
∑

π:pair partitions

E[X1Xπ(1)] . . .E[XiXπ(i)] . . . .

Sum over all (2n− 1)(2n− 3) . . . 1 pair partitions.

Using this many Gaussian computations are related to counting surfaces.
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GUE computations
Let Zn be a n× n GUE matrix, i.e. a Hermitian matrix with complex
Gaussian entries with squared moment 1

n .

1

n
Tr(Zkn) =

∑
j1,...,jk

Zj1j2Zj2j3 . . . zjkj1

Apply Wick’s formula to each of the terms and use

E(Zjaja+1Zjbjb+1
) = 1/n

only when ja = jb+1 and ja+1 = jb and zero otherwise.

There are k/2 pairs in the product.

π

Multiplicity of a surface is n no of vertices.
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Surfaces and partition

The expression turns out to be of the form 1
nk/2+1

∑
j ajn

j where aj is the
number of surfaces obtained by gluing edges in a compatible way with j
vertices

Using Euler’s charactersitic it follows that the number of vertices is
maximized when the genus is zero.

These correspond to non-crossing pairings and determine the O(1)
asymptotics given by Catalan numbers (semicircle law).

The correction terms are given by higher genus surfaces.

A similar thing happens in Lattice Gauge Theory.
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Finite models: Gaussian and Unitary
Finite models of matrices with density defined by trace of polynomials
have also been studied in great detail.

Consider a polynomial V (A1, A2, . . . , Am) of the matrices.

Gibbs measure defined by density

eNβTr(V)

Zn

In the Gaussian case one can use Wick’s theorem to get formal
expansions for the log-partition function and trace statistics.

The expansion involves enumeration of certain colored maps.

Rigorous proof of expansion by Alice Guionnet and coauthors for a
non-trivial interval of β for a certain class of polynomials.

Key tool

Rigorous versions of Schwinger-Dyson or Master loop equations which is again
a clever use of Gaussian integration by parts.

Later extended to finite unitary setting.
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Back to Lattice Gauge and loop variables
For any lattice loop `, let Q` be the product of the matrices Qe along the
loop.

Recall the notation W` := Tr(Q`)(Wilson loop variable).

Assume we have an exhaustion ΛN ↑ Zd and consider the measure on Λn with
gauge group SO(N).

Key question:

For a loop does limN→∞
1
N 〈W`〉 exist?

More generally, for a loop sequence s = (`1, `2, . . . , `k), does
limN→∞

1
Nk 〈Ws〉 exist? Ws = Tr(Q`1) . . .Tr(Q`k).
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Integration by parts on SO(N)

A change of measure trick for unitary groups already yielded a certain
type of loop equations in the finite matrix case.

Stein’s method of exchangeable pairs can be used to perform an
integration by parts argument on SO(N) and derive another set of loop
equations which works in this setting.

Theorem (Gauge string duality (Chatterjee))

There exists β0 > 0 such that for |β| < β0 and for all loop sequence
s = (`1, `2, . . . , `k),

lim
N→∞

〈Ws〉
Nk

=
∞∑
j=0

aj(s)β
j ,

where aj(s) is the weighted count of a certain class of string trajectories
starting from s and ending at ∅.

Trajectories are sequences of strings (loop sequences) obtained by
modifying the component loops.
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String theory on the lattice

The integration by parts step makes it necessary to look at a finite
sequence of loops in place of a single loop.

Loop sequences can evolve in time according to certain local modification
rules.

The main objects of interest are trajectories of evolution of such loop
sequences ending with the null sequence.

Each such vanishing trajectory has a weight or action associated to it.
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Deformations

Positive Deformation

⊕

⊕
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Deformations

Negative Deformation
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Splitting

• Negative Splitting

• Positive Splitting
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Mergings

• Negative Merging

• Positive Merging
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Twisting
• Negative Twisting

• Positive Twisting
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Key identity: Master-loop equation
Let φ(s) := 〈Ws〉

Nk .

The loop equation relates φ(s) to φ(s′) where s′ is obtained from s.

New feature: True at finite stage before taking limits

(N − 1)|s|φ(s) =βN
∑
D−(s)

φ(s′)− βN
∑
D+(s)

φ(s′) + 2N
∑
S−(s)

φ(s′)

− 2N
∑
S+(s)

φ(s′) + 2
∑
T−(s)

φ(s′)− 2
∑
T+(s)

φ(s′)

+
2

N

∑
M−(s)

φ(s′)− 2

N

∑
M+(s)

φ(s′)

D±(s) = {s′ : obtained by deforming a component loop of s}
S±(s) = {s′ : obtained by splitting a component loop of s}
T±(s) = {s′ : obtained by twisting a component loop of s}
M±(s) = {s′ : obtained by merging component loops of s}
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Action/weights of trajectories

The weight of a trajectory is defined as the following:

Let m be the total length of all the loops. Then

β

m
if the step is a negative deformation

− β
m

if the step is a positive deformation

2

m
if the step is a negative splitting

− 2

m
if the step is a positive splitting.

The weight of a trajectory is the product of the weights along each step.
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Summing up
Only deformation and splitting affect the first order asymptotics.

The remaining two operations produce higher genus surfaces and and
show up in correction terms i.e.

1

N
〈Tr(Q`)〉 = O(1) +O(1/N) + . . .

(As we saw earlier in the Gaussian setting.)

String trajectory: s = s1, s2, . . . sm = ∅ where one obtains si from si−1 by
performing one of the four operations on any one of the loops of the
sequence si−1.

aj(s) = weighted(signed) count of trajectories with exactly j

deformations. lim
N→∞

〈Ws〉
Nk

=

∞∑
j=0

aj(s)β
j .

For β small enough, this is summable.

The proof relies on bounding the growth rate of the number of
trajectories using Catalan type recursions.
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Playing around with the loop equation
One more look at the equation in the ’t Hooft limit.

φ(s) := limN→∞
〈Ws〉
Nk

|s|φ(s) =β

 ∑
D−(s)

φ(s′)−
∑
D+(s)

φ(s′)

+ 2

∑
S−(s)

φ(s′)−
∑
S+(s)

φ(s′)

 .
The loop equation has a lot of averaging making it hard to keep track of
things.

Unsymmetrized (localized) version of the loop equation turns out to be
more useful.

Fix an edge e.

One can write down a version of loop equations where all the operations
involve the edge e.

Note that several copies of e or e−1 might occur across s.
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Loop recursion in terms of coefficients
Let ` be a loop and e be an edge in `.

Let A be the position of occurrences of e and B is the position of
occurrences of e−1, C = A ∪B. Let m = |C|.

Let P+(e) denote the set of all positively oriented plaquettes containing
the edge e.

ak(`) =
2

m

∑
x∈A,y∈B

ak(×1
x,y`,×2

x,y`)−
1

m

∑
x,y∈A,x6=y

ak(×1
x,y`,×2

x,y`)

− 1

m

∑
x,y∈B,x6=y

ak(×1
x,y`,×2

x,y`) +

1

m

∑
x∈C

∑
p∈P+(e)

ak−1(`	x p)

− 1

m

∑
x∈C

∑
p∈P+(e)

ak−1(`⊕x p).

The first three terms correspond to splittings and the last two are
deformation terms.

Shirshendu Ganguly (UC Berkeley) SO(N) lattice gauge theory 21 / 33 March 17, 2018 21 / 33



Loop recursion in terms of coefficients
Let ` be a loop and e be an edge in `.

Let A be the position of occurrences of e and B is the position of
occurrences of e−1, C = A ∪B. Let m = |C|.

Let P+(e) denote the set of all positively oriented plaquettes containing
the edge e.

ak(`) =
2

m

∑
x∈A,y∈B

ak(×1
x,y`,×2

x,y`)−
1

m

∑
x,y∈A,x6=y

ak(×1
x,y`,×2

x,y`)

− 1

m

∑
x,y∈B,x6=y

ak(×1
x,y`,×2

x,y`) +
1

m

∑
x∈C

∑
p∈P+(e)

ak−1(`	x p)

− 1

m

∑
x∈C

∑
p∈P+(e)

ak−1(`⊕x p).

The first three terms correspond to splittings and the last two are
deformation terms.

Shirshendu Ganguly (UC Berkeley) SO(N) lattice gauge theory 21 / 33 March 17, 2018 21 / 33



Loop recursion in terms of coefficients
Let ` be a loop and e be an edge in `.

Let A be the position of occurrences of e and B is the position of
occurrences of e−1, C = A ∪B. Let m = |C|.

Let P+(e) denote the set of all positively oriented plaquettes containing
the edge e.

ak(`) =
2

m

∑
x∈A,y∈B

ak(×1
x,y`,×2

x,y`)−
1

m

∑
x,y∈A,x6=y

ak(×1
x,y`,×2

x,y`)

− 1

m

∑
x,y∈B,x6=y

ak(×1
x,y`,×2

x,y`) +
1

m

∑
x∈C

∑
p∈P+(e)

ak−1(`	x p)

− 1

m

∑
x∈C

∑
p∈P+(e)

ak−1(`⊕x p).

The first three terms correspond to splittings and the last two are
deformation terms.

Shirshendu Ganguly (UC Berkeley) SO(N) lattice gauge theory 21 / 33 March 17, 2018 21 / 33



Loop recursion in terms of coefficients
Let ` be a loop and e be an edge in `.

Let A be the position of occurrences of e and B is the position of
occurrences of e−1, C = A ∪B. Let m = |C|.

Let P+(e) denote the set of all positively oriented plaquettes containing
the edge e.

ak(`) =
2

m

∑
x∈A,y∈B

ak(×1
x,y`,×2

x,y`)−
1

m

∑
x,y∈A,x6=y

ak(×1
x,y`,×2

x,y`)

− 1

m

∑
x,y∈B,x6=y

ak(×1
x,y`,×2

x,y`) +
1

m

∑
x∈C

∑
p∈P+(e)

ak−1(`	x p)

− 1

m

∑
x∈C

∑
p∈P+(e)

ak−1(`⊕x p).

The first three terms correspond to splittings and the last two are
deformation terms.

Shirshendu Ganguly (UC Berkeley) SO(N) lattice gauge theory 21 / 33 March 17, 2018 21 / 33



Computations for a plaquette
a1 = 1 since the trajectory of length 1 consists of a single negative
deformation.

Parity considerations force a2 to be zero.

Computation of a3 already on the plane from the symmetrized version
seems a bit daunting!

At this point the un-symmetrized version is really
helpful.
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More generally

Begin with a plaquette

(On the plane) Apply the operations on the top
edge

A deformation upstairs causes a new generation (could be both positive
or negative)

A deformation at the same level causes a change in the population size at
that generation (changes by 1)

The splitting occurs only at the top level.

The above suggests a tree like structure with a spin ±1 associated to each
level to denote whether the orientation of the plaquettes at the jth level is the
same or the opposite of that at the (j − 1)th level.
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Understanding the string trajectories

Theorem (Basu,G. 2016)

For d = 2, i. and any plaquette p, w(p, β) = β.
ii. If pk is p wrapped around k > 1 times then, w(pk, β) = 0.
iii. For any simple loop ` of area k, w(`, β) = βk.

Thus the power series in the above cases consists of a single term.

Lot of cancellation among the string trajectories.

We use the correspondence
of the string trajectories
with such trees to compute
things inductively.

−1

−1

1

1

i. ii.

Plaquette variables can be used to determine the free energy.
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Gauge Fixing

The lattice gauge measure has some redundancy.

The marginal on any edge is Haar distributed for any β.

To see this for any gauge function G : Bn → SO(N). Let us do the change
of variables Q→ Q̃ where

Q̃(x, y) = G(x)Q(x, y)G−1(y).

Every gauge function keeps traces of loop variables invariant as

Q̃` = G(x)Q(`)G−1(x).

Thus the law of Q̃ is the same as that of Q implying that the marginals
are Haar distributed as they are invariant under gauge action.

One can create complicated gauge functions to simplify many
computations.
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are Haar distributed as they are invariant under gauge action.

One can create complicated gauge functions to simplify many
computations.
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Connections with Free Probability

‘Freeness’ is the analogue of classical independence in the
non-commutative set up.

We would only care about asymptotic freeness of algebras generated by
random matrices where the functional is the normalized trace.

Let S and T be two polynomials.

lim
N→∞

E(tr(S(M
(1)
N )T (M

(2)
N ))) = lim

N→∞
E(tr(S(M

(1)
N ))) lim

N→∞
E(tr(T (M

(2)
N )))

Independent convergent matrices with orthogonally invariant law are
asymptotically free.

Corollary

The plaquette variables are asymptotically free.

Shirshendu Ganguly (UC Berkeley) SO(N) lattice gauge theory 26 / 33 March 17, 2018 26 / 33



Connections with Free Probability

‘Freeness’ is the analogue of classical independence in the
non-commutative set up.

We would only care about asymptotic freeness of algebras generated by
random matrices where the functional is the normalized trace.

Let S and T be two polynomials.

lim
N→∞

E(tr(S(M
(1)
N )T (M

(2)
N ))) = lim

N→∞
E(tr(S(M

(1)
N ))) lim

N→∞
E(tr(T (M

(2)
N )))

Independent convergent matrices with orthogonally invariant law are
asymptotically free.

Corollary

The plaquette variables are asymptotically free.

Shirshendu Ganguly (UC Berkeley) SO(N) lattice gauge theory 26 / 33 March 17, 2018 26 / 33



Consequences

A simple loop of area k can be thought of as a product of k plaquettes.

Each of them contribute β.

By freeness the loop variable is βk.

For arbitrary loops one gets a polynomial in β i.e. the power series
expansion only has finitely many terms.

Freeness of diffusions also comes up in Levy’s study of Wilson Loop variables
under his construction of two dimensional Yang-Mills theory.
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Area Law bounds

A gauge theory is said to satisfy area law upper bound if for any loop ` of
‘area’ k, (where the area could be defined in the cell complex terminology)

φ(`) ≤ C1 exp(C2k)

where C1, C2 depends on the gauge group and the coupling strength.

Chatterjee proved an area law upper bound for a class of loops in any
dimensions. (essentially using the fact that for a loop of ‘area’ k, the
power series must start from the kth term).

A matching lower bound was proved for planar rectangular loops by
Seiler.

On the plane, the computations discussed previously imply the lower
bound for simple loops.

For general loops, the area law lower bound under the above definition is
not true since complicated loops might have zero boundary in the cell
complex sense.

One can think of another notion of area being the minimum number of
deformations needed to reduce the loop to the null loop.
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Spectral Approach

In the plane by gauge-fixing the plaquettes are independent.

One can write down the joint density of eigenvalues since the eigenvalue
distribution of the Haar distributed matrices is pretty explicit.

Wadia and Gross-Witten use mean field approximation techniques to
predict the limiting spectral distribution in the U(N) theory.

It is believed that SO(N) theory for β should agree with U(N) theory for
2β.

Jafarov established this rigorously for SU(N) theory.

The above results and belief combined imply

qp =

{
β β ≤ 1/2

1− 1
4β β > 1/2.

There is a phase transition and large β shows freezing.
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Weak Coupling and Gaussian approximation
Limiting spectral distribution in the U(N) case (to rigorously show this
one needs to use large deviation results for eigenvalue distributions for
Haar distributed matrices):

u(θ) =

{
1 + β cos θ β ≤ 1

2β cos θ2

√
β−1 − sin2 θ

2 β ≥ 1

As β increases the spectral density concentrates near 1:

Moreover the density approximates the semi-circle law:

u(θ) ∼
√

1− (
√
βθ)2

4
for θ ≤ 2√

β

The reason for Gaussian approximation can be seen by going through the
lie algebra and taylor expanding the exponential map.

The linear term does not contribute and the terms beyond the quadratic
factors should be negligible.
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Higher genus expansions

Recall finite loop equation:

(N − 1)|s|φ(s) = βN
∑
D−(s)

φ(s′)− βN
∑
D+(s)

φ(s′)

+ 2N
∑
S−(s)

φ(s′)− 2N
∑
S+(s)

φ(s′)

+ 2
∑
T−(s)

φ(s′)− 2
∑
T+(s)

φ(s′)

+
2

N

∑
M−(s)

φ(s′)− 2

N

∑
M+(s)

φ(s′)

(Chatterjee, Jafarov.)

Counts of higher genus objects form the coefficients of the correction terms
1
N ,

1
N2 . . . . Recall we saw a similar phenomenon in the Gaussian case.
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Concluding Remarks and Future Directions

The free probability arguments special to the planar case however help us
observe that a natural non-crossing structure exists in the trajectories in
any dimension (the pair partition being formed in a way so that elements
of a pair cancel each other)

Prove any computational result in higher dimensions.

Can one characterize the string trajectories in higher dimensions by a
suitable surface description ?

Chatterjee’s proof at the finite level holds for any β.

Small β assumption allows to show uniqueness of solution of the recursion.

What about weak coupling: should one expect expansions in 1/β?

Dembo, Guionnet and Segala have some results for strictly convex
polynomial potentials for one matrix proving an expansion theory,
(certain variable changes allow to transform the measure from weak
coupling to strong coupling).

Can one prove something interesting in the Gaussian theory appropriately
weighted to approximate Unitary matrices?
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THANK YOU!
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