Lattice gauge theory and string duality

Shirshendu Ganguly

UC Berkeley

March 17, 2018

Recent developments in Constructive Field Theory, Columbia University March 13-152018

• Definition of Lattice gauge theory.

- Definition of Lattice gauge theory.
- Discussions about Gaussian models with finitely many matrices.

- Definition of Lattice gauge theory.
- Discussions about Gaussian models with finitely many matrices.
- Review of the gauge-string duality appearing in Chatterjee's work.

- Definition of Lattice gauge theory.
- Discussions about Gaussian models with finitely many matrices.
- Review of the gauge-string duality appearing in Chatterjee's work.
- Playing around with the loop equations and some observations.

- Definition of Lattice gauge theory.
- Discussions about Gaussian models with finitely many matrices.
- Review of the gauge-string duality appearing in Chatterjee's work.
- Playing around with the loop equations and some observations.
- Future directions.

- The definition involves a gauge group. We will focus on SO(N).
- Take a finite box $B_n = [-n, n]^d$. Consider a matrix ensemble $\mathcal{Q} = \{Q(e)\}$ indexed by the positively oriented edges $e \in B_n$.
- $Q(e) \in SO(N)$ for all $e \in B_n$, and $Q(x,y) = Q^{-1}(y,x)$
- The main building blocks are the two dimensional four sided loops.

• $p = e_1 e_2 e_3^{-1} e_4^{-1}$ is a plaquette.

•
$$Q_p = Q_{e_1}Q_{e_2}Q_{e_3^{-1}}Q_{e_4^{-1}}.$$

- $Q_p = Q_{e_1}Q_{e_2}Q_{e_3^{-1}}Q_{e_4^{-1}}.$
- β is the inverse coupling constant.

•
$$Q_p = Q_{e_1} Q_{e_2} Q_{e_3^{-1}} Q_{e_4^{-1}}.$$

- β is the inverse coupling constant.
- The density with respect to product Haar measure is proportional to:

$$\exp\left(-N\beta\sum_{p \text{ is a plaquette}}\operatorname{Tr}(I-Q_p)\right)$$

•
$$Q_p = Q_{e_1} Q_{e_2} Q_{e_3^{-1}} Q_{e_4^{-1}}.$$

- β is the inverse coupling constant.
- The density with respect to product Haar measure is proportional to:

$$\exp\left(-N\beta\sum_{p \text{ is a plaquette}}\operatorname{Tr}(I-Q_p)\right)$$

• Note that $\operatorname{Tr}[(I-Q)(I-Q^{\top})] = 2\operatorname{Tr}(I-Q).$

•
$$Q_p = Q_{e_1} Q_{e_2} Q_{e_3^{-1}} Q_{e_4^{-1}}.$$

- β is the inverse coupling constant.
- The density with respect to product Haar measure is proportional to:

$$\exp\left(-N\beta\sum_{p \text{ is a plaquette}}\operatorname{Tr}(I-Q_p)\right)$$

- Note that $\operatorname{Tr}[(I-Q)(I-Q^{\top})] = 2\operatorname{Tr}(I-Q).$
- if $\beta = 0$ then we have the Haar measure. If β is large and positive then all the Q_p 's are forced to be close to the identity matrix.

•
$$Q_p = Q_{e_1} Q_{e_2} Q_{e_3^{-1}} Q_{e_4^{-1}}.$$

- β is the inverse coupling constant.
- The density with respect to product Haar measure is proportional to:

$$\exp\left(-N\beta\sum_{p \text{ is a plaquette}}\operatorname{Tr}(I-Q_p)\right)$$

- Note that $\operatorname{Tr}[(I-Q)(I-Q^{\top})] = 2\operatorname{Tr}(I-Q).$
- if $\beta = 0$ then we have the Haar measure. If β is large and positive then all the Q_p 's are forced to be close to the identity matrix.
- Everything is finite and well defined. $\langle \cdot \rangle$ will be used to denote the expectation.

• Wick's theorem (Gaussian integration by parts) allows to compute joint moments of Gaussian variables:

- Wick's theorem (Gaussian integration by parts) allows to compute joint moments of Gaussian variables:
- If X_1, X_2, \ldots, X_{2n} are jointly Gaussian, each with mean zero, then

- Wick's theorem (Gaussian integration by parts) allows to compute joint moments of Gaussian variables:
- If X_1, X_2, \ldots, X_{2n} are jointly Gaussian, each with mean zero, then

$$\mathbb{E}[X_1 X_2 \dots X_{2n}] = \sum_{\pi: \text{pair partitions}} \mathbb{E}[X_1 X_{\pi(1)}] \dots \mathbb{E}[X_i X_{\pi(i)}] \dots$$

- Wick's theorem (Gaussian integration by parts) allows to compute joint moments of Gaussian variables:
- If X_1, X_2, \ldots, X_{2n} are jointly Gaussian, each with mean zero, then

$$\mathbb{E}[X_1 X_2 \dots X_{2n}] = \sum_{\pi: \text{pair partitions}} \mathbb{E}[X_1 X_{\pi(1)}] \dots \mathbb{E}[X_i X_{\pi(i)}] \dots$$

• Sum over all $(2n-1)(2n-3)\dots 1$ pair partitions.

- Wick's theorem (Gaussian integration by parts) allows to compute joint moments of Gaussian variables:
- If X_1, X_2, \ldots, X_{2n} are jointly Gaussian, each with mean zero, then

$$\mathbb{E}[X_1 X_2 \dots X_{2n}] = \sum_{\pi: \text{pair partitions}} \mathbb{E}[X_1 X_{\pi(1)}] \dots \mathbb{E}[X_i X_{\pi(i)}] \dots$$

- Sum over all $(2n-1)(2n-3)\dots 1$ pair partitions.
- Using this many Gaussian computations are related to counting surfaces.

• Let Z_n be a $n \times n$ GUE matrix, i.e. a Hermitian matrix with complex Gaussian entries with squared moment $\frac{1}{n}$.

• Let Z_n be a $n \times n$ GUE matrix, i.e. a Hermitian matrix with complex Gaussian entries with squared moment $\frac{1}{n}$.

$$\frac{1}{n}\operatorname{Tr}(Z_n^k) = \sum_{j_1,\dots,j_k} Z_{j_1j_2} Z_{j_2j_3}\dots Z_{j_kj_1}$$

• Let Z_n be a $n \times n$ GUE matrix, i.e. a Hermitian matrix with complex Gaussian entries with squared moment $\frac{1}{n}$.

$$\frac{1}{n} \operatorname{Tr}(Z_n^k) = \sum_{j_1, \dots, j_k} Z_{j_1 j_2} Z_{j_2 j_3} \dots Z_{j_k j_1}$$

• Apply Wick's formula to each of the terms and use

 $\mathbb{E}(Z_{j_a j_{a+1}} Z_{j_b j_{b+1}}) = 1/n$

only when $j_a = j_{b+1}$ and $j_{a+1} = j_b$ and zero otherwise.

• Let Z_n be a $n \times n$ GUE matrix, i.e. a Hermitian matrix with complex Gaussian entries with squared moment $\frac{1}{n}$.

$$\frac{1}{n} \operatorname{Tr}(Z_n^k) = \sum_{j_1, \dots, j_k} Z_{j_1 j_2} Z_{j_2 j_3} \dots Z_{j_k j_1}$$

• Apply Wick's formula to each of the terms and use

 $\mathbb{E}(Z_{j_a j_{a+1}} Z_{j_b j_{b+1}}) = 1/n$

only when $j_a = j_{b+1}$ and $j_{a+1} = j_b$ and zero otherwise.

• There are k/2 pairs in the product.

• Let Z_n be a $n \times n$ GUE matrix, i.e. a Hermitian matrix with complex Gaussian entries with squared moment $\frac{1}{n}$.

$$\frac{1}{n} \operatorname{Tr}(Z_n^k) = \sum_{j_1, \dots, j_k} Z_{j_1 j_2} Z_{j_2 j_3} \dots Z_{j_k j_1}$$

• Apply Wick's formula to each of the terms and use

$$\mathbb{E}(Z_{j_a j_{a+1}} Z_{j_b j_{b+1}}) = 1/n$$

only when $j_a = j_{b+1}$ and $j_{a+1} = j_b$ and zero otherwise.

• There are k/2 pairs in the product.

• Let Z_n be a $n \times n$ GUE matrix, i.e. a Hermitian matrix with complex Gaussian entries with squared moment $\frac{1}{n}$.

$$\frac{1}{n} \operatorname{Tr}(Z_n^k) = \sum_{j_1, \dots, j_k} Z_{j_1 j_2} Z_{j_2 j_3} \dots Z_{j_k j_1}$$

• Apply Wick's formula to each of the terms and use

$$\mathbb{E}(Z_{j_a j_{a+1}} Z_{j_b j_{b+1}}) = 1/n$$

only when $j_a = j_{b+1}$ and $j_{a+1} = j_b$ and zero otherwise.

• There are k/2 pairs in the product.

• Multiplicity of a surface is $n^{\text{no of vertices}}$.

• The expression turns out to be of the form $\frac{1}{n^{k/2+1}}\sum_j a_j n^j$ where a_j is the number of surfaces obtained by gluing edges in a compatible way with j vertices

- The expression turns out to be of the form $\frac{1}{n^{k/2+1}}\sum_j a_j n^j$ where a_j is the number of surfaces obtained by gluing edges in a compatible way with j vertices
- Using Euler's charactersitic it follows that the number of vertices is maximized when the genus is zero.

- The expression turns out to be of the form $\frac{1}{n^{k/2+1}}\sum_j a_j n^j$ where a_j is the number of surfaces obtained by gluing edges in a compatible way with j vertices
- Using Euler's charactersitic it follows that the number of vertices is maximized when the genus is zero.
- These correspond to non-crossing pairings and determine the O(1) asymptotics given by Catalan numbers (semicircle law).

- The expression turns out to be of the form $\frac{1}{n^{k/2+1}}\sum_j a_j n^j$ where a_j is the number of surfaces obtained by gluing edges in a compatible way with j vertices
- Using Euler's charactersitic it follows that the number of vertices is maximized when the genus is zero.
- These correspond to non-crossing pairings and determine the O(1) asymptotics given by Catalan numbers (semicircle law).

The correction terms are given by higher genus surfaces.

- The expression turns out to be of the form $\frac{1}{n^{k/2+1}}\sum_j a_j n^j$ where a_j is the number of surfaces obtained by gluing edges in a compatible way with j vertices
- Using Euler's charactersitic it follows that the number of vertices is maximized when the genus is zero.
- These correspond to non-crossing pairings and determine the O(1) asymptotics given by Catalan numbers (semicircle law).

The correction terms are given by higher genus surfaces.

• A similar thing happens in Lattice Gauge Theory.

• Finite models of matrices with density defined by trace of polynomials have also been studied in great detail.

- Finite models of matrices with density defined by trace of polynomials have also been studied in great detail.
- Consider a polynomial $V(A_1, A_2, \ldots, A_m)$ of the matrices.

- Finite models of matrices with density defined by trace of polynomials have also been studied in great detail.
- Consider a polynomial $V(A_1, A_2, \ldots, A_m)$ of the matrices.
- Gibbs measure defined by density

 $\frac{e^{N\beta \mathrm{Tr}(\mathbf{V})}}{Z_n}$

- Finite models of matrices with density defined by trace of polynomials have also been studied in great detail.
- Consider a polynomial $V(A_1, A_2, \ldots, A_m)$ of the matrices.
- Gibbs measure defined by density

$$\frac{e^{N\beta \operatorname{Tr}(\mathbf{V})}}{Z_n}$$

• In the Gaussian case one can use Wick's theorem to get formal expansions for the log-partition function and trace statistics.

- Finite models of matrices with density defined by trace of polynomials have also been studied in great detail.
- Consider a polynomial $V(A_1, A_2, \ldots, A_m)$ of the matrices.
- Gibbs measure defined by density

$$\frac{e^{N\beta \operatorname{Tr}(\mathbf{V})}}{Z_n}$$

- In the Gaussian case one can use Wick's theorem to get formal expansions for the log-partition function and trace statistics.
- The expansion involves enumeration of certain colored maps.

- Finite models of matrices with density defined by trace of polynomials have also been studied in great detail.
- Consider a polynomial $V(A_1, A_2, \ldots, A_m)$ of the matrices.
- Gibbs measure defined by density

 $\frac{e^{N\beta \operatorname{Tr}(\mathbf{V})}}{Z_n}$

- In the Gaussian case one can use Wick's theorem to get formal expansions for the log-partition function and trace statistics.
- The expansion involves enumeration of certain colored maps.
- Rigorous proof of expansion by Alice Guionnet and coauthors for a non-trivial interval of β for a certain class of polynomials.

- Finite models of matrices with density defined by trace of polynomials have also been studied in great detail.
- Consider a polynomial $V(A_1, A_2, \ldots, A_m)$ of the matrices.
- Gibbs measure defined by density

 $\frac{e^{N\beta \operatorname{Tr}(\mathbf{V})}}{Z_n}$

- In the Gaussian case one can use Wick's theorem to get formal expansions for the log-partition function and trace statistics.
- The expansion involves enumeration of certain colored maps.
- Rigorous proof of expansion by Alice Guionnet and coauthors for a non-trivial interval of β for a certain class of polynomials.

Key tool

Rigorous versions of Schwinger-Dyson or Master loop equations which is again a clever use of Gaussian integration by parts.
Finite models: Gaussian and Unitary

- Finite models of matrices with density defined by trace of polynomials have also been studied in great detail.
- Consider a polynomial $V(A_1, A_2, \ldots, A_m)$ of the matrices.
- Gibbs measure defined by density

 $\frac{e^{N\beta \operatorname{Tr}(\mathbf{V})}}{Z_n}$

- In the Gaussian case one can use Wick's theorem to get formal expansions for the log-partition function and trace statistics.
- The expansion involves enumeration of certain colored maps.
- Rigorous proof of expansion by Alice Guionnet and coauthors for a non-trivial interval of β for a certain class of polynomials.

Key tool

Rigorous versions of Schwinger-Dyson or Master loop equations which is again a clever use of Gaussian integration by parts.

• Later extended to finite unitary setting.

8 / 33

Back to Lattice Gauge and loop variables

• For any lattice loop ℓ , let Q_{ℓ} be the product of the matrices Q_e along the loop.

• Recall the notation $W_{\ell} := \text{Tr}(Q_{\ell})$ (Wilson loop variable).

Back to Lattice Gauge and loop variables

• For any lattice loop ℓ , let Q_{ℓ} be the product of the matrices Q_e along the loop.

• Recall the notation $W_{\ell} := \operatorname{Tr}(Q_{\ell})$ (Wilson loop variable).

Assume we have an exhaustion $\Lambda_N \uparrow \mathbb{Z}^d$ and consider the measure on Λ_n with gauge group SO(N).

Key question:

For a loop does $\lim_{N\to\infty} \frac{1}{N} \langle W_\ell \rangle$ exist?

• More generally, for a loop sequence $s = (\ell_1, \ell_2, \dots, \ell_k)$, does $\lim_{N \to \infty} \frac{1}{N^k} \langle W_s \rangle$ exist? $W_s = \operatorname{Tr}(Q_{\ell_1}) \dots \operatorname{Tr}(Q_{\ell_k})$.

• A change of measure trick for unitary groups already yielded a certain type of loop equations in the finite matrix case.

- A change of measure trick for unitary groups already yielded a certain type of loop equations in the finite matrix case.
- Stein's method of exchangeable pairs can be used to perform an integration by parts argument on SO(N) and derive another set of loop equations which works in this setting.

- A change of measure trick for unitary groups already yielded a certain type of loop equations in the finite matrix case.
- Stein's method of exchangeable pairs can be used to perform an integration by parts argument on SO(N) and derive another set of loop equations which works in this setting.

Theorem (Gauge string duality (Chatterjee)) There exists $\beta_0 > 0$ such that for $|\beta| < \beta_0$ and for all loop sequence $s = (\ell_1, \ell_2, \dots, \ell_k),$ $\lim_{N \to \infty} \frac{\langle W_s \rangle}{N^k} = \sum_{j=0}^{\infty} a_j(s) \beta^j,$

where $a_j(s)$ is the weighted count of a certain class of string trajectories starting from s and ending at \emptyset .

- A change of measure trick for unitary groups already yielded a certain type of loop equations in the finite matrix case.
- Stein's method of exchangeable pairs can be used to perform an integration by parts argument on SO(N) and derive another set of loop equations which works in this setting.

Theorem (Gauge string duality (Chatterjee)) There exists $\beta_0 > 0$ such that for $|\beta| < \beta_0$ and for all loop sequence $s = (\ell_1, \ell_2, \dots, \ell_k),$ $\lim_{N \to \infty} \frac{\langle W_s \rangle}{N^k} = \sum_{j=0}^{\infty} a_j(s) \beta^j,$

where $a_j(s)$ is the weighted count of a certain class of string trajectories starting from s and ending at \emptyset .

• Trajectories are sequences of strings (loop sequences) obtained by modifying the component loops.

String theory on the lattice

- The integration by parts step makes it necessary to look at a finite sequence of loops in place of a single loop.
- Loop sequences can evolve in time according to certain local modification rules.
- The main objects of interest are trajectories of evolution of such loop sequences ending with the null sequence.
- Each such vanishing trajectory has a weight or action associated to it.

Deformations

• Positive Deformation

Deformations

• Negative Deformation

Splitting

• Negative Splitting

Splitting

• Negative Splitting

• Positive Splitting

Mergings

• Negative Merging

Mergings

• Negative Merging

• Positive Merging

Twisting

• Negative Twisting

Twisting

• Negative Twisting

• Positive Twisting

Key identity: Master-loop equation • Let $\phi(s) := \frac{\langle W_s \rangle}{N^k}$.

The loop equation relates $\phi(s)$ to $\phi(s')$ where s' is obtained from s.

• New feature: True at finite stage before taking limits

$$\begin{split} (N-1)|s|\phi(s) = &\beta N \sum_{\mathbb{D}^{-}(s)} \phi(s') - \beta N \sum_{\mathbb{D}^{+}(s)} \phi(s') + 2N \sum_{\mathbb{S}^{-}(s)} \phi(s') \\ &- 2N \sum_{\mathbb{S}^{+}(s)} \phi(s') + 2 \sum_{\mathbb{T}^{-}(s)} \phi(s') - 2 \sum_{\mathbb{T}^{+}(s)} \phi(s') \\ &+ \frac{2}{N} \sum_{\mathbb{M}^{-}(s)} \phi(s') - \frac{2}{N} \sum_{\mathbb{M}^{+}(s)} \phi(s') \end{split}$$

Key identity: Master-loop equation • Let $\phi(s) := \frac{\langle W_s \rangle}{N^k}$.

The loop equation relates $\phi(s)$ to $\phi(s')$ where s' is obtained from s.

• New feature: True at finite stage before taking limits

$$\begin{split} (N-1)|s|\phi(s) = &\beta N \sum_{\mathbb{D}^{-}(s)} \phi(s') - \beta N \sum_{\mathbb{D}^{+}(s)} \phi(s') + 2N \sum_{\mathbb{S}^{-}(s)} \phi(s') \\ &- 2N \sum_{\mathbb{S}^{+}(s)} \phi(s') + 2 \sum_{\mathbb{T}^{-}(s)} \phi(s') - 2 \sum_{\mathbb{T}^{+}(s)} \phi(s') \\ &+ \frac{2}{N} \sum_{\mathbb{M}^{-}(s)} \phi(s') - \frac{2}{N} \sum_{\mathbb{M}^{+}(s)} \phi(s') \end{split}$$

D[±](s) = {s': obtained by deforming a component loop of s}
S[±](s) = {s': obtained by splitting a component loop of s}
T[±](s) = {s': obtained by twisting a component loop of s}
M[±](s) = {s': obtained by merging component loops of s}

Action/weights of trajectories

- The weight of a trajectory is defined as the following:
- Let m be the total length of all the loops. Then

 $\frac{\beta}{m}$ if the step is a negative deformation $-\frac{\beta}{m}$ if the step is a positive deformation $\frac{2}{m}$ if the step is a negative splitting $-\frac{2}{m}$ if the step is a positive splitting.

• The weight of a trajectory is the product of the weights along each step.

• Only deformation and splitting affect the first order asymptotics.

- Only deformation and splitting affect the first order asymptotics.
- The remaining two operations produce higher genus surfaces and and show up in correction terms i.e.

$$\frac{1}{N} \langle \operatorname{Tr}(Q_{\ell}) \rangle = O(1) + O(1/N) + \dots$$

(As we saw earlier in the Gaussian setting.)

- Only deformation and splitting affect the first order asymptotics.
- The remaining two operations produce higher genus surfaces and and show up in correction terms i.e.

$$\frac{1}{N} \langle \operatorname{Tr}(Q_{\ell}) \rangle = O(1) + O(1/N) + \dots$$

(As we saw earlier in the Gaussian setting.)

• String trajectory: $s = s_1, s_2, \ldots s_m = \emptyset$

- Only deformation and splitting affect the first order asymptotics.
- The remaining two operations produce higher genus surfaces and and show up in correction terms i.e.

$$\frac{1}{N} \langle \operatorname{Tr}(Q_{\ell}) \rangle = O(1) + O(1/N) + \dots$$

(As we saw earlier in the Gaussian setting.)

- String trajectory: $s = s_1, s_2, \ldots s_m = \emptyset$ where one obtains s_i from s_{i-1} by performing one of the four operations on any one of the loops of the sequence s_{i-1} .
- $a_j(s) = \text{weighted}(\text{signed}) \text{ count of trajectories with exactly } j$ deformations. $\lim_{N \to \infty} \frac{\langle W_s \rangle}{N^k} = \sum_{j=0}^{\infty} a_j(s) \beta^j$.
- For β small enough, this is summable.
- The proof relies on bounding the growth rate of the number of trajectories using Catalan type recursions.

Playing around with the loop equation

• One more look at the equation in the 't Hooft limit.

 $\phi(s) := \lim_{N \to \infty} \frac{\langle W_s \rangle}{N^k}$

$$|s|\phi(s) = \beta \left[\sum_{\mathbb{D}^-(s)} \phi(s') - \sum_{\mathbb{D}^+(s)} \phi(s') \right] + 2 \left[\sum_{\mathbb{S}^-(s)} \phi(s') - \sum_{\mathbb{S}^+(s)} \phi(s') \right].$$

The loop equation has a lot of averaging making it hard to keep track of things.

Playing around with the loop equation

• One more look at the equation in the 't Hooft limit.

 $\phi(s) := \lim_{N \to \infty} \frac{\langle W_s \rangle}{N^k}$

$$|s|\phi(s) = \beta \left[\sum_{\mathbb{D}^-(s)} \phi(s') - \sum_{\mathbb{D}^+(s)} \phi(s') \right] + 2 \left[\sum_{\mathbb{S}^-(s)} \phi(s') - \sum_{\mathbb{S}^+(s)} \phi(s') \right].$$

The loop equation has a lot of averaging making it hard to keep track of things.

- Unsymmetrized (localized) version of the loop equation turns out to be more useful.
- Fix an edge e.
- One can write down a version of loop equations where all the operations involve the edge e.
- Note that several copies of e or e^{-1} might occur across s.

- Let ℓ be a loop and e be an edge in ℓ .
- Let A be the position of occurrences of e and B is the position of occurrences of e⁻¹, C = A ∪ B. Let m = |C|.
- Let $\mathcal{P}^+(e)$ denote the set of all positively oriented plaquettes containing the edge e.

$$a_{k}(\ell) = \frac{2}{m} \sum_{x \in A, y \in B} a_{k}(\times_{x,y}^{1}\ell, \times_{x,y}^{2}\ell) - \frac{1}{m} \sum_{x,y \in A, x \neq y} a_{k}(\times_{x,y}^{1}\ell, \times_{x,y}^{2}\ell) \\ - \frac{1}{m} \sum_{x,y \in B, x \neq y} a_{k}(\times_{x,y}^{1}\ell, \times_{x,y}^{2}\ell) +$$

- Let ℓ be a loop and e be an edge in ℓ .
- Let A be the position of occurrences of e and B is the position of occurrences of e⁻¹, C = A ∪ B. Let m = |C|.
- Let $\mathcal{P}^+(e)$ denote the set of all positively oriented plaquettes containing the edge e.

$$a_{k}(\ell) = \frac{2}{m} \sum_{x \in A, y \in B} a_{k}(\times_{x,y}^{1}\ell, \times_{x,y}^{2}\ell) - \frac{1}{m} \sum_{x,y \in A, x \neq y} a_{k}(\times_{x,y}^{1}\ell, \times_{x,y}^{2}\ell) \\ - \frac{1}{m} \sum_{x,y \in B, x \neq y} a_{k}(\times_{x,y}^{1}\ell, \times_{x,y}^{2}\ell) + \frac{1}{m} \sum_{x \in C} \sum_{p \in \mathcal{P}^{+}(e)} a_{k-1}(\ell \ominus_{x} p)$$

- Let ℓ be a loop and e be an edge in ℓ .
- Let A be the position of occurrences of e and B is the position of occurrences of e⁻¹, C = A ∪ B. Let m = |C|.
- Let $\mathcal{P}^+(e)$ denote the set of all positively oriented plaquettes containing the edge e.

$$\begin{aligned} a_{k}(\ell) &= \frac{2}{m} \sum_{x \in A, y \in B} a_{k}(\times_{x,y}^{1}\ell, \times_{x,y}^{2}\ell) - \frac{1}{m} \sum_{x,y \in A, x \neq y} a_{k}(\times_{x,y}^{1}\ell, \times_{x,y}^{2}\ell) \\ &- \frac{1}{m} \sum_{x,y \in B, x \neq y} a_{k}(\times_{x,y}^{1}\ell, \times_{x,y}^{2}\ell) + \frac{1}{m} \sum_{x \in C} \sum_{p \in \mathcal{P}^{+}(e)} a_{k-1}(\ell \ominus_{x} p) \\ &- \frac{1}{m} \sum_{x \in C} \sum_{p \in \mathcal{P}^{+}(e)} a_{k-1}(\ell \oplus_{x} p). \end{aligned}$$

- Let ℓ be a loop and e be an edge in ℓ .
- Let A be the position of occurrences of e and B is the position of occurrences of e⁻¹, C = A ∪ B. Let m = |C|.
- Let $\mathcal{P}^+(e)$ denote the set of all positively oriented plaquettes containing the edge e.

$$\begin{aligned} a_{k}(\ell) &= \frac{2}{m} \sum_{x \in A, y \in B} a_{k}(\times_{x,y}^{1}\ell, \times_{x,y}^{2}\ell) - \frac{1}{m} \sum_{x,y \in A, x \neq y} a_{k}(\times_{x,y}^{1}\ell, \times_{x,y}^{2}\ell) \\ &- \frac{1}{m} \sum_{x,y \in B, x \neq y} a_{k}(\times_{x,y}^{1}\ell, \times_{x,y}^{2}\ell) + \frac{1}{m} \sum_{x \in C} \sum_{p \in \mathcal{P}^{+}(e)} a_{k-1}(\ell \ominus_{x} p) \\ &- \frac{1}{m} \sum_{x \in C} \sum_{p \in \mathcal{P}^{+}(e)} a_{k-1}(\ell \oplus_{x} p). \end{aligned}$$

• The first three terms correspond to splittings and the last two are deformation terms.

Shirshendu Ganguly (UC Berkeley) SO(N) lattice gauge theory 21/33

Computations for a plaquette

- $a_1 = 1$ since the trajectory of length 1 consists of a single negative deformation.
- Parity considerations force a_2 to be zero.
- Computation of a_3 already on the plane from the symmetrized version seems a bit daunting!

Computations for a plaquette

- $a_1 = 1$ since the trajectory of length 1 consists of a single negative deformation.
- Parity considerations force a_2 to be zero.
- Computation of a_3 already on the plane from the symmetrized version seems a bit daunting! At this point the un-symmetrized version is really helpful.

Computations for a plaquette

- $a_1 = 1$ since the trajectory of length 1 consists of a single negative deformation.
- Parity considerations force a_2 to be zero.
- Computation of a_3 already on the plane from the symmetrized version seems a bit daunting! At this point the un-symmetrized version is really helpful.

• Begin with a plaquette

- Begin with a plaquette
- (On the plane) Apply the operations on the top edge

- Begin with a plaquette
- (On the plane) Apply the operations on the top edge

• A deformation upstairs causes a new generation (could be both positive or negative)

- Begin with a plaquette
- (On the plane) Apply the operations on the top edge

- A deformation upstairs causes a new generation (could be both positive or negative)
- A deformation at the same level causes a change in the population size at that generation (changes by 1)

More generally

- Begin with a plaquette
- (On the plane) Apply the operations on the top edge

- A deformation upstairs causes a new generation (could be both positive or negative)
- A deformation at the same level causes a change in the population size at that generation (changes by 1)
- The splitting occurs only at the top level.

More generally

- Begin with a plaquette
- (On the plane) Apply the operations on the top edge

- A deformation upstairs causes a new generation (could be both positive or negative)
- A deformation at the same level causes a change in the population size at that generation (changes by 1)
- The splitting occurs only at the top level.

The above suggests a tree like structure with a spin ± 1 associated to each level to denote whether the orientation of the plaquettes at the j^{th} level is the same or the opposite of that at the $(j-1)^{th}$ level.

Theorem (Basu,G. 2016)

For d = 2, i. and any plaquette p, $w(p, \beta) = \beta$.

Theorem (Basu,G. 2016)

For d = 2, *i.* and any plaquette p, $w(p, \beta) = \beta$. *ii.* If p^k is p wrapped around k > 1 times then, $w(p^k, \beta) = 0$.

Theorem (Basu,G. 2016)

For d = 2, *i.* and any plaquette p, $w(p, \beta) = \beta$. *ii.* If p^k is p wrapped around k > 1 times then, $w(p^k, \beta) = 0$. *iii.* For any simple loop ℓ of area k, $w(\ell, \beta) = \beta^k$.

Theorem (Basu,G. 2016)

For d = 2, i. and any plaquette p, $w(p, \beta) = \beta$. ii. If p^k is p wrapped around k > 1 times then, $w(p^k, \beta) = 0$. iii. For any simple loop ℓ of area k, $w(\ell, \beta) = \beta^k$.

Thus the power series in the above cases consists of a single term.

Theorem (Basu,G. 2016)

For d = 2, i. and any plaquette p, $w(p, \beta) = \beta$. ii. If p^k is p wrapped around k > 1 times then, $w(p^k, \beta) = 0$. iii. For any simple loop ℓ of area k, $w(\ell, \beta) = \beta^k$.

Thus the power series in the above cases consists of a single term.

Lot of cancellation among the string trajectories.

Theorem (Basu,G. 2016)

For d = 2, i. and any plaquette p, $w(p,\beta) = \beta$. ii. If p^k is p wrapped around k > 1 times then, $w(p^k,\beta) = 0$. iii. For any simple loop ℓ of area k, $w(\ell,\beta) = \beta^k$.

Thus the power series in the above cases consists of a single term.

Lot of cancellation among the string trajectories.

Theorem (Basu,G. 2016)

For d = 2, i. and any plaquette p, $w(p, \beta) = \beta$. ii. If p^k is p wrapped around k > 1 times then, $w(p^k, \beta) = 0$. iii. For any simple loop ℓ of area k, $w(\ell, \beta) = \beta^k$.

Thus the power series in the above cases consists of a single term.

Lot of cancellation among the string trajectories.

Plaquette variables can be used to determine the free energy.

• The lattice gauge measure has some redundancy.

• The lattice gauge measure has some redundancy.

The marginal on any edge is Haar distributed for any β .

• The lattice gauge measure has some redundancy.

The marginal on any edge is Haar distributed for any β .

• To see this for any gauge function $G: B_n \to SO(N)$. Let us do the change of variables $Q \to \tilde{Q}$ where

• The lattice gauge measure has some redundancy.

The marginal on any edge is Haar distributed for any β .

• To see this for any gauge function $G: B_n \to SO(N)$. Let us do the change of variables $Q \to \tilde{Q}$ where

$$\tilde{Q}(x,y) = G(x)Q(x,y)G^{-1}(y).$$

• The lattice gauge measure has some redundancy.

The marginal on any edge is Haar distributed for any β .

• To see this for any gauge function $G: B_n \to SO(N)$. Let us do the change of variables $Q \to \tilde{Q}$ where

$$\tilde{Q}(x,y) = G(x)Q(x,y)G^{-1}(y).$$

• Every gauge function keeps traces of loop variables invariant as

$$\tilde{Q}_{\ell} = G(x)Q(\ell)G^{-1}(x).$$

• The lattice gauge measure has some redundancy.

The marginal on any edge is Haar distributed for any β .

• To see this for any gauge function $G: B_n \to SO(N)$. Let us do the change of variables $Q \to \tilde{Q}$ where

$$\tilde{Q}(x,y) = G(x)Q(x,y)G^{-1}(y).$$

• Every gauge function keeps traces of loop variables invariant as

$$\tilde{Q}_{\ell} = G(x)Q(\ell)G^{-1}(x).$$

• Thus the law of \tilde{Q} is the same as that of Q implying that the marginals are Haar distributed as they are invariant under gauge action.

25 / 33

• The lattice gauge measure has some redundancy.

The marginal on any edge is Haar distributed for any β .

• To see this for any gauge function $G: B_n \to SO(N)$. Let us do the change of variables $Q \to \tilde{Q}$ where

$$\tilde{Q}(x,y) = G(x)Q(x,y)G^{-1}(y).$$

• Every gauge function keeps traces of loop variables invariant as

$$\tilde{Q}_{\ell} = G(x)Q(\ell)G^{-1}(x).$$

- Thus the law of \tilde{Q} is the same as that of Q implying that the marginals are Haar distributed as they are invariant under gauge action.
- One can create complicated gauge functions to simplify many computations.

Connections with Free Probability

• 'Freeness' is the analogue of classical independence in the non-commutative set up.

We would only care about asymptotic freeness of algebras generated by random matrices where the functional is the normalized trace.

• Let S and T be two polynomials.

 $\lim_{N \to \infty} \mathbb{E}(\operatorname{tr}(S(M_N^{(1)})T(M_N^{(2)}))) = \lim_{N \to \infty} \mathbb{E}(\operatorname{tr}(S(M_N^{(1)}))) \lim_{N \to \infty} \mathbb{E}(\operatorname{tr}(T(M_N^{(2)})))$

Independent convergent matrices with orthogonally invariant law are asymptotically free.

Connections with Free Probability

• 'Freeness' is the analogue of classical independence in the non-commutative set up.

We would only care about asymptotic freeness of algebras generated by random matrices where the functional is the normalized trace.

• Let S and T be two polynomials.

$$\lim_{N \to \infty} \mathbb{E}(\operatorname{tr}(S(M_N^{(1)})T(M_N^{(2)}))) = \lim_{N \to \infty} \mathbb{E}(\operatorname{tr}(S(M_N^{(1)}))) \lim_{N \to \infty} \mathbb{E}(\operatorname{tr}(T(M_N^{(2)})))$$

Independent convergent matrices with orthogonally invariant law are asymptotically free.

Corollary

The plaquette variables are asymptotically free.

Consequences

- A simple loop of area k can be thought of as a product of k plaquettes.
- Each of them contribute β .
- By freeness the loop variable is β^k .
- For arbitrary loops one gets a polynomial in β i.e. the power series expansion only has finitely many terms.

Freeness of diffusions also comes up in Levy's study of Wilson Loop variables under his construction of two dimensional Yang-Mills theory.

• A gauge theory is said to satisfy area law upper bound if for any loop ℓ of 'area' k, (where the area could be defined in the cell complex terminology)

 $\phi(\ell) \le C_1 \exp(C_2 k)$

• A gauge theory is said to satisfy area law upper bound if for any loop ℓ of 'area' k, (where the area could be defined in the cell complex terminology)

 $\phi(\ell) \le C_1 \exp(C_2 k)$

where C_1, C_2 depends on the gauge group and the coupling strength.

• Chatterjee proved an area law upper bound for a class of loops in any dimensions. (essentially using the fact that for a loop of 'area' k, the power series must start from the k^{th} term).

• A gauge theory is said to satisfy area law upper bound if for any loop ℓ of 'area' k, (where the area could be defined in the cell complex terminology)

 $\phi(\ell) \le C_1 \exp(C_2 k)$

- Chatterjee proved an area law upper bound for a class of loops in any dimensions. (essentially using the fact that for a loop of 'area' k, the power series must start from the k^{th} term).
- A matching lower bound was proved for planar rectangular loops by Seiler.

• A gauge theory is said to satisfy area law upper bound if for any loop ℓ of 'area' k, (where the area could be defined in the cell complex terminology)

 $\phi(\ell) \le C_1 \exp(C_2 k)$

- Chatterjee proved an area law upper bound for a class of loops in any dimensions. (essentially using the fact that for a loop of 'area' k, the power series must start from the k^{th} term).
- A matching lower bound was proved for planar rectangular loops by Seiler.
- On the plane, the computations discussed previously imply the lower bound for simple loops.

• A gauge theory is said to satisfy area law upper bound if for any loop ℓ of 'area' k, (where the area could be defined in the cell complex terminology)

 $\phi(\ell) \le C_1 \exp(C_2 k)$

- Chatterjee proved an area law upper bound for a class of loops in any dimensions. (essentially using the fact that for a loop of 'area' k, the power series must start from the k^{th} term).
- A matching lower bound was proved for planar rectangular loops by Seiler.
- On the plane, the computations discussed previously imply the lower bound for simple loops.
- For general loops, the area law lower bound under the above definition is not true since complicated loops might have zero boundary in the cell complex sense.

• A gauge theory is said to satisfy area law upper bound if for any loop ℓ of 'area' k, (where the area could be defined in the cell complex terminology)

 $\phi(\ell) \le C_1 \exp(C_2 k)$

where C_1, C_2 depends on the gauge group and the coupling strength.

- Chatterjee proved an area law upper bound for a class of loops in any dimensions. (essentially using the fact that for a loop of 'area' k, the power series must start from the k^{th} term).
- A matching lower bound was proved for planar rectangular loops by Seiler.
- On the plane, the computations discussed previously imply the lower bound for simple loops.
- For general loops, the area law lower bound under the above definition is not true since complicated loops might have zero boundary in the cell complex sense.

One can think of another notion of area being the minimum number of deformations needed to reduce the loop to the null loop.

• In the plane by gauge-fixing the plaquettes are independent.

- In the plane by gauge-fixing the plaquettes are independent.
- One can write down the joint density of eigenvalues since the eigenvalue distribution of the Haar distributed matrices is pretty explicit.

- In the plane by gauge-fixing the plaquettes are independent.
- One can write down the joint density of eigenvalues since the eigenvalue distribution of the Haar distributed matrices is pretty explicit.
- Wadia and Gross-Witten use mean field approximation techniques to predict the limiting spectral distribution in the U(N) theory.

- In the plane by gauge-fixing the plaquettes are independent.
- One can write down the joint density of eigenvalues since the eigenvalue distribution of the Haar distributed matrices is pretty explicit.
- Wadia and Gross-Witten use mean field approximation techniques to predict the limiting spectral distribution in the U(N) theory.
- It is believed that SO(N) theory for β should agree with U(N) theory for 2β .

- In the plane by gauge-fixing the plaquettes are independent.
- One can write down the joint density of eigenvalues since the eigenvalue distribution of the Haar distributed matrices is pretty explicit.
- Wadia and Gross-Witten use mean field approximation techniques to predict the limiting spectral distribution in the U(N) theory.
- It is believed that SO(N) theory for β should agree with U(N) theory for 2β .
- $\bullet\,$ Jafarov established this rigorously for SU(N) theory.

- In the plane by gauge-fixing the plaquettes are independent.
- One can write down the joint density of eigenvalues since the eigenvalue distribution of the Haar distributed matrices is pretty explicit.
- Wadia and Gross-Witten use mean field approximation techniques to predict the limiting spectral distribution in the U(N) theory.
- It is believed that SO(N) theory for β should agree with U(N) theory for 2β .
- $\bullet\,$ Jafarov established this rigorously for SU(N) theory.
- The above results and belief combined imply

$$q_p = \begin{cases} \beta & \beta \le 1/2\\ 1 - \frac{1}{4\beta} & \beta > 1/2. \end{cases}$$

- In the plane by gauge-fixing the plaquettes are independent.
- One can write down the joint density of eigenvalues since the eigenvalue distribution of the Haar distributed matrices is pretty explicit.
- Wadia and Gross-Witten use mean field approximation techniques to predict the limiting spectral distribution in the U(N) theory.
- It is believed that SO(N) theory for β should agree with U(N) theory for 2β .
- $\bullet\,$ Jafarov established this rigorously for SU(N) theory.
- The above results and belief combined imply

$$q_p = \begin{cases} \beta & \beta \le 1/2\\ 1 - \frac{1}{4\beta} & \beta > 1/2. \end{cases}$$

• There is a phase transition and large β shows freezing.

Weak Coupling and Gaussian approximation

• Limiting spectral distribution in the U(N) case (to rigorously show this one needs to use large deviation results for eigenvalue distributions for Haar distributed matrices):
• Limiting spectral distribution in the U(N) case (to rigorously show this one needs to use large deviation results for eigenvalue distributions for Haar distributed matrices):

$$u(\theta) = \begin{cases} 1 + \beta \cos \theta & \beta \le 1\\ 2\beta \cos \frac{\theta}{2} \sqrt{\beta^{-1} - \sin^2 \frac{\theta}{2}} & \beta \ge 1 \end{cases}$$

• Limiting spectral distribution in the U(N) case (to rigorously show this one needs to use large deviation results for eigenvalue distributions for Haar distributed matrices):

$$u(\theta) = \begin{cases} 1 + \beta \cos \theta & \beta \le 1\\ 2\beta \cos \frac{\theta}{2} \sqrt{\beta^{-1} - \sin^2 \frac{\theta}{2}} & \beta \ge 1 \end{cases}$$

• As β increases the spectral density concentrates near 1:

• Limiting spectral distribution in the U(N) case (to rigorously show this one needs to use large deviation results for eigenvalue distributions for Haar distributed matrices):

$$u(\theta) = \begin{cases} 1 + \beta \cos \theta & \beta \le 1\\ 2\beta \cos \frac{\theta}{2} \sqrt{\beta^{-1} - \sin^2 \frac{\theta}{2}} & \beta \ge 1 \end{cases}$$

- As β increases the spectral density concentrates near 1:
- Moreover the density approximates the semi-circle law:

$$u(\theta) \sim \sqrt{1 - \frac{(\sqrt{\beta}\theta)^2}{4}} \text{ for } \theta \leq \frac{2}{\sqrt{\beta}}$$

• Limiting spectral distribution in the U(N) case (to rigorously show this one needs to use large deviation results for eigenvalue distributions for Haar distributed matrices):

$$u(\theta) = \begin{cases} 1 + \beta \cos \theta & \beta \le 1\\ 2\beta \cos \frac{\theta}{2} \sqrt{\beta^{-1} - \sin^2 \frac{\theta}{2}} & \beta \ge 1 \end{cases}$$

- As β increases the spectral density concentrates near 1:
- Moreover the density approximates the semi-circle law:

$$u(\theta) \sim \sqrt{1 - \frac{(\sqrt{\beta}\theta)^2}{4}} \text{ for } \theta \leq \frac{2}{\sqrt{\beta}}$$

• The reason for Gaussian approximation can be seen by going through the lie algebra and taylor expanding the exponential map.

• Limiting spectral distribution in the U(N) case (to rigorously show this one needs to use large deviation results for eigenvalue distributions for Haar distributed matrices):

$$u(\theta) = \begin{cases} 1 + \beta \cos \theta & \beta \le 1\\ 2\beta \cos \frac{\theta}{2} \sqrt{\beta^{-1} - \sin^2 \frac{\theta}{2}} & \beta \ge 1 \end{cases}$$

- As β increases the spectral density concentrates near 1:
- Moreover the density approximates the semi-circle law:

$$u(\theta) \sim \sqrt{1 - \frac{(\sqrt{\beta}\theta)^2}{4}} \text{ for } \theta \leq \frac{2}{\sqrt{\beta}}$$

- The reason for Gaussian approximation can be seen by going through the lie algebra and taylor expanding the exponential map.
- The linear term does not contribute and the terms beyond the quadratic factors should be negligible.

Higher genus expansions

Recall finite loop equation:

$$\begin{split} \langle N-1\rangle |s|\phi(s) &= \beta N \sum_{\mathbb{D}^{-}(s)} \phi(s') - \beta N \sum_{\mathbb{D}^{+}(s)} \phi(s') \\ &+ 2N \sum_{\mathbb{S}^{-}(s)} \phi(s') - 2N \sum_{\mathbb{S}^{+}(s)} \phi(s') \\ &+ 2 \sum_{\mathbb{T}^{-}(s)} \phi(s') - 2 \sum_{\mathbb{T}^{+}(s)} \phi(s') \\ &+ \frac{2}{N} \sum_{\mathbb{M}^{-}(s)} \phi(s') - \frac{2}{N} \sum_{\mathbb{M}^{+}(s)} \phi(s') \end{split}$$

Higher genus expansions

Recall finite loop equation:

$$\begin{split} (N-1)|s|\phi(s) &= \beta N \sum_{\mathbb{D}^{-}(s)} \phi(s') - \beta N \sum_{\mathbb{D}^{+}(s)} \phi(s') \\ &+ 2N \sum_{\mathbb{S}^{-}(s)} \phi(s') - 2N \sum_{\mathbb{S}^{+}(s)} \phi(s') \\ &+ 2 \sum_{\mathbb{T}^{-}(s)} \phi(s') - 2 \sum_{\mathbb{T}^{+}(s)} \phi(s') \\ &+ \frac{2}{N} \sum_{\mathbb{M}^{-}(s)} \phi(s') - \frac{2}{N} \sum_{\mathbb{M}^{+}(s)} \phi(s') \end{split}$$

 $\overline{}$

Counts of higher genus objects form the coefficients of the correction terms $\frac{1}{N}, \frac{1}{N^2} \dots$

⁽Chatterjee, Jafarov.)

Higher genus expansions

Recall finite loop equation:

$$\begin{split} (N-1)|s|\phi(s) &= \beta N \sum_{\mathbb{D}^{-}(s)} \phi(s') - \beta N \sum_{\mathbb{D}^{+}(s)} \phi(s') \\ &+ 2N \sum_{\mathbb{S}^{-}(s)} \phi(s') - 2N \sum_{\mathbb{S}^{+}(s)} \phi(s') \\ &+ 2 \sum_{\mathbb{T}^{-}(s)} \phi(s') - 2 \sum_{\mathbb{T}^{+}(s)} \phi(s') \\ &+ \frac{2}{N} \sum_{\mathbb{M}^{-}(s)} \phi(s') - \frac{2}{N} \sum_{\mathbb{M}^{+}(s)} \phi(s') \end{split}$$

Counts of higher genus objects form the coefficients of the correction terms $\frac{1}{N}, \frac{1}{N^2} \dots$ Recall we saw a similar phenomenon in the Gaussian case.

⁽Chatterjee, Jafarov.)

• The free probability arguments special to the planar case however help us observe that a natural non-crossing structure exists in the trajectories in any dimension (the pair partition being formed in a way so that elements of a pair cancel each other)

- The free probability arguments special to the planar case however help us observe that a natural non-crossing structure exists in the trajectories in any dimension (the pair partition being formed in a way so that elements of a pair cancel each other)
- Prove any computational result in higher dimensions.

- The free probability arguments special to the planar case however help us observe that a natural non-crossing structure exists in the trajectories in any dimension (the pair partition being formed in a way so that elements of a pair cancel each other)
- Prove any computational result in higher dimensions.
- Can one characterize the string trajectories in higher dimensions by a suitable surface description ?

- The free probability arguments special to the planar case however help us observe that a natural non-crossing structure exists in the trajectories in any dimension (the pair partition being formed in a way so that elements of a pair cancel each other)
- Prove any computational result in higher dimensions.
- Can one characterize the string trajectories in higher dimensions by a suitable surface description ?

Chatterjee's proof at the finite level holds for any β .

- The free probability arguments special to the planar case however help us observe that a natural non-crossing structure exists in the trajectories in any dimension (the pair partition being formed in a way so that elements of a pair cancel each other)
- Prove any computational result in higher dimensions.
- Can one characterize the string trajectories in higher dimensions by a suitable surface description ?

Chatterjee's proof at the finite level holds for any β .

Small β assumption allows to show uniqueness of solution of the recursion.

- The free probability arguments special to the planar case however help us observe that a natural non-crossing structure exists in the trajectories in any dimension (the pair partition being formed in a way so that elements of a pair cancel each other)
- Prove any computational result in higher dimensions.
- Can one characterize the string trajectories in higher dimensions by a suitable surface description ?

Chatterjee's proof at the finite level holds for any β .

Small β assumption allows to show uniqueness of solution of the recursion.

• What about weak coupling: should one expect expansions in $1/\beta$?

- The free probability arguments special to the planar case however help us observe that a natural non-crossing structure exists in the trajectories in any dimension (the pair partition being formed in a way so that elements of a pair cancel each other)
- Prove any computational result in higher dimensions.
- Can one characterize the string trajectories in higher dimensions by a suitable surface description ?

Chatterjee's proof at the finite level holds for any β .

Small β assumption allows to show uniqueness of solution of the recursion.

- What about weak coupling: should one expect expansions in $1/\beta$?
- Dembo, Guionnet and Segala have some results for strictly convex polynomial potentials for one matrix proving an expansion theory, (certain variable changes allow to transform the measure from weak coupling to strong coupling).

- The free probability arguments special to the planar case however help us observe that a natural non-crossing structure exists in the trajectories in any dimension (the pair partition being formed in a way so that elements of a pair cancel each other)
- Prove any computational result in higher dimensions.
- Can one characterize the string trajectories in higher dimensions by a suitable surface description ?

Chatterjee's proof at the finite level holds for any β .

Small β assumption allows to show uniqueness of solution of the recursion.

- What about weak coupling: should one expect expansions in $1/\beta$?
- Dembo, Guionnet and Segala have some results for strictly convex polynomial potentials for one matrix proving an expansion theory, (certain variable changes allow to transform the measure from weak coupling to strong coupling).
- Can one prove something interesting in the Gaussian theory appropriately weighted to approximate Unitary matrices?

THANK YOU!