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Quantum Yang–Mills theories

I 4D quantum Yang–Mills theories are the building blocks of
the Standard Model of quantum mechanics.

I Unfortunately, quantum Yang–Mills theories have no rigorous
mathematical foundation.

I Quantum Yang–Mills theories are defined in Minkowski
spacetime. Euclidean Yang–Mills theories are ‘Wick-rotated’
quantum Yang–Mills theories that are defined in Euclidean
spacetime.

I They are formally probability measures on spaces of
connections on certain principal bundles.

I They have lattice analogs, known as lattice gauge theories,
that are rigorously defined probabilistic models.

I Euclidean Yang–Mills theories are scaling limits of lattice
gauge theories (probability-theoretic open problem).
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Constructive field theory

I The problem of rigorously constructing Euclidean Yang–Mills
theories, and then using them to construct quantum
Yang–Mills theories, is the problem of Yang–Mills existence,
posed as a millennium prize problem by the Clay Institute.

I A standard approach is via the program of constructive
quantum field theory.

I The plan there is to first define Euclidean Yang–Mills theories
as probability measures on appropriate spaces of generalized
functions; then show that these probability measures satisfy
certain axioms (the Osterwalder–Schrader axioms); this would
then imply that the theory can be ‘quantized’ to obtain the
desired quantum Yang–Mills theories.
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Towards the formal definition of Euclidean YM theories

I Ingredients: dimension n and gauge group G .

I Assume that G is a closed subgroup of U(N) for some N.

I Examples: G = U(1) for quantum electrodynamics,
G = SU(3) for quantum chromodynamics, and
G = SU(3)× SU(2)× U(1) for the Standard Model, with
dimension n = 4 in each case.

I Let g be the Lie algebra of G .

I Then g is a subspace of the space of all N × N
skew-Hermitian matrices.
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Connections and curvature

I A smooth G connection form on Rn is a smooth map from Rn

into gn.

I If A is a G connection form, its value A(x) at x is an n-tuple
(A1(x), . . . ,An(x)) of skew-Hermitian matrices. In the
language of differential forms,

A =
n∑

j=1

Ajdxj .

I The curvature form F of A is the g-valued 2-form

F = dA + A ∧ A .

I This means that at each x , F (x) is an n × n array of
skew-Hermitian matrices of order N, whose (j , k)th entry is
the matrix

Fjk(x) =
∂Ak

∂xj
−
∂Aj

∂xk
+ [Aj(x),Ak(x)].
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The Yang–Mills action

I Let A be the space of all smooth G connection forms on Rn.
The Yang–Mills action on this space is the function

SYM(A) := −
∫
Rn

Tr(F ∧ ∗F ),

where F is the curvature form of A and ∗ denotes the Hodge
star operator, assuming that this integral is finite.

I Explicitly, this is

SYM(A) = −
∫
Rn

n∑
j ,k=1

Tr(Fjk(x)2)dx .
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Formal definition of Euclidean YM theories

I The Euclidean Yang–Mills theory with gauge group G on Rn

is formally described as the probability measure

dµ(A) =
1

Z
exp

(
− 1

4g2
SYM(A)

)
dA ,

where:

I A ∈ A, the space of all smooth G connection forms on Rn,
I SYM is the Yang–Mills action,
I

dA =
n∏

j=1

∏
x∈Rn

d(Aj(x))

is ‘infinite-dimensional Lebesgue measure’ on A,
I g is a parameter called the coupling strength, and
I Z is the normalizing constant that makes this a probability

measure.
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Problem

I The above description of Euclidean Yang–Mills theory with
gauge group G is not directly mathematically meaningful
because of the problems associated with the definition
Lebesgue measure on A.

I While it has been possible to give rigorous meanings to similar
descriptions of Brownian motion and various quantum field
theories in dimensions two and three, 4D Euclidean
Yang–Mills theories have so far remained largely intractable.
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Lattice gauge theories

I Wilson (1974) proposed a discretization of Euclidean
Yang–Mills theories, now known as lattice gauge theories.

I The lattice gauge theory with gauge group G on a finite set
Λ ⊆ Zn is defined as follows.

I Suppose that for any two adjacent vertices x , y ∈ Λ, we have
a group element U(x , y) ∈ G , with U(y , x) = U(x , y)−1.

I Let G (Λ) denote the set of all such configurations.
I A square bounded by four edges is called a plaquette. Let

P(Λ) denote the set of all plaquettes in Λ.
I For a plaquette p ∈ P(Λ) with vertices x1, x2, x3, x4 in

anti-clockwise order, and a configuration U ∈ G (Λ), define

Up := U(x1, x2)U(x2, x3)U(x3, x4)U(x4, x1).

I The Wilson action of U is defined as

SΛ(U) :=
∑

p∈P(Λ)

Re(Tr(I − Up)).
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Definition of lattice gauge theory

I Let σΛ be the product Haar measure on G (Λ).

I Given β > 0, let µΛ,β be the probability measure on G (Λ)
defined as

dµΛ,β(U) :=
1

Z
e−βSΛ(U)dσΛ(U),

where Z is the normalizing constant.

I This probability measure is called the lattice gauge theory on
Λ for the gauge group G , with inverse coupling strength β.

I An infinite volume limit of the theory is a weak limit of the
above probability measures as Λ ↑ Zn.

I The infinite volume limit may or may not be unique.

I The uniqueness (or non-uniqueness) is in general unknown for
lattice gauge theories in dimension four when β is large.
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An approximation for products of matrix exponentials

I Recall the Baker–Campbell–Hausdorff formula for products of
matrix exponentials:

eBeC = eB+C+ 1
2

[B,C ]+···.

I Iterating this gives, for any m and any B1, . . . ,Bm,

eB1 · · · eBm = e
∑m

a=1 Ba+ 1
2

∑
1≤a<b≤m[Ba,Bb]+···.

I Suppose that the Bi are skew-Hermitian. Then all terms
within the exponential are skew-Hermitian and therefore have
purely imaginary traces.

I Thus, if the entries of B1, . . . ,Bm are of order ε and if the
entries of B1 + · · ·+ Bm are of order ε2, then

Re(Tr(I − eB1 · · · eBm))

= −1

2
Tr

[( m∑
a=1

Ba +
1

2

∑
1≤a<b≤m

[Ba,Bb]

)2]
+ O(ε5).
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From LGT to Euclidean YM theory: Wilson’s heuristic

I Discretize Rn as εZn for some small ε.

I Take a G connection form A =
∑n

j=1 Ajdxj .
I Let e1, . . . , en denote the standard basis vectors of Rn.
I For a directed edge (x , x + εej) of εZn, define

U(x , x + εej) := eεAj (x),

and let U(x + εej , x) := U(x , x + εej)
−1.

I This defines a configuration of unitary matrices assigned to
directed edges of εZn.

I Take any x ∈ εZn and any 1 ≤ j < k ≤ n, and let

x1 = x , x2 = x + εej , x3 = x + εej + εek , x4 = x + εek .

I Let p be the plaquette formed by the vertices x1, x2, x3, x4.
I Then

Up = U(x1, x2)U(x2, x3)U(x3, x4)U(x4, x1)

= eεAj (x1)eεAk (x2)e−εAj (x4)e−εAk (x1).
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Wilson’s heuristic, continued

I Writing

Ak(x2) = Ak(x + εej) = Ak(x) + ε
∂Ak

∂xj
+ O(ε2)

and using a similar Taylor expansion for Aj(x4), we get

Aj(x1) + Ak(x2)− Aj(x4)− Ak(x1) = ε

(
∂Ak

∂xj
−
∂Aj

∂xk

)
+ O(ε2).

I Thus,

Re(Tr(I − Up))

= −1

2
ε4 Tr

[(
∂Ak

∂xj
−
∂Aj

∂xk
+ [Aj(x),Ak(x)]

)2]
+ O(ε5)

= −1

2
ε4 Tr(Fjk(x)2) + O(ε5).
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Wilson’s heuristic, continued

I This gives the formal approximation

S(U) =
∑
p

Re(Tr(I − Up))

≈ −1

4

∑
x∈εZn

n∑
j ,k=1

ε4 Tr(Fjk(x)2)

≈ −ε
4−n

4

∫
Rn

n∑
j ,k=1

Tr(Fjk(x)2) dx =
ε4−n

4
SYM(A).

I The above heuristic was used by Wilson to justify the
approximation of Euclidean Yang–Mills theory by lattice gauge
theory, scaling the inverse coupling strength β like ε4−n as the
lattice spacing ε→ 0.
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Scaling in dimension four

I The most important dimension is n = 4, because spacetime is
four-dimensional.

I In the above formulation, β does not scale with ε at all when
n = 4.

I Currently, however, the general belief in the physics
community is that β should scale like some multiple of
log(1/ε) in dimension four.

I But there are doubts about this belief and the question
remains an open mathematical problem.
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Wilson loop variables

I Suppose that we have an Euclidean Yang–Mills theory on Rn

with gauge group G .

I Given a piecewise smooth closed path γ in Rn and a G
connection A, the Wilson loop variable for γ is defined as

Wγ := Tr

(
P exp

(∫
γ

n∑
j=1

Ajdxj

))
,

where P is the path-ordering operator.

I In differential geometric terminology, the term inside the trace
in the above display is the holonomy of A along the closed
path γ.

I Alternatively, it is the parallel transport of the identity matrix
along γ by the connection A.

I Do not worry! Lattice definition coming soon.
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Quark confinement

I In quantum chromodynamics, the potential between a static
quark and antiquark separated by distance R is given by the
formula

V (R) = − lim
T→∞

1

T
log〈WγR,T 〉,

where γR,T is the boundary of a rectangle of length T and
breadth R, and 〈·〉 denotes expectation with respect to SU(3)
Yang–Mills theory in dimension four.

I If V (R) grows to infinity as R →∞, the quark-antiquark pair
cannot separate beyond a fixed distance.

I This is the phenomenon of quark confinement, observed in
experiments but currently lacking a satisfactory theoretical
understanding.
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Wilson’s area law

I In fact, it is believed that V (R) grows like a multiple of R for
non-Abelian Yang–Mills theories in dimension four.

I More generally, it is believed that 〈Wγ〉 behaves like e−area(γ),
where area(γ) is the minimum surface area enclosed by γ.

I This is known as Wilson’s area law.

I If the area law holds, then the quantity

lim
R→∞

V (R)

R

has physical significance. It is called the ‘string tension’ of the
continuum theory, and represents the energy density per unit
length in the theory.
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Wilson loops in LGT

I Suppose that we have a lattice gauge theory on Λ ⊆ Zn with
gauge group G .

I Given a loop γ with directed edges e1, . . . , em, the Wilson
loop variable Wγ is defined as

Wγ := Tr(U(e1)U(e2) · · ·U(em)).

I The rationale for this definition is as follows.

I Let A be a smooth G connection on Rn.

I Take some small ε and define a configuration of group
elements assigned to directed edges of εZn using the
connection A as before.

I Let γ be a smooth closed path in Rn and let γε be a loop in
εZn that approximates this path.

I Then, as ε→ 0, the discrete Wilson loop variable Wγε

approaches the continuous Wilson loop variable Wγ .
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The area law problem on lattices

Open problem (Area law)

Take any compact non-Abelian Lie group G ⊆ U(N) for some
N ≥ 2 and consider any infinite volume limit of 4D lattice gauge
theory with gauge group G at inverse coupling strength β. Let
γR,T be a rectangular loop of breadth R and length T in the
lattice. Prove that

|〈WγR,T 〉| ≤ C (β)e−c(β)RT ,

where C (β) and c(β) are positive constants that depend only on
the inverse coupling strength β and the gauge group.

I There is a proof at small β by Osterwalder & Seiler (1978).
I Proof at large β for 3D U(1) theory by Göpfert and Mack

(1982).
I Disproof at large β for 4D U(1) theory by Guth (1980) and

Fröhlich & Spencer (1982).
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Fröhlich & Spencer (1982).

Sourav Chatterjee Yang–Mills for probabilists



Correlation length

I Consider an infinite volume lattice gauge theory on Zn.

I Let γ1 and γ2 be two loops of fixed length, such as two
plaquettes.

I The correlation between Wγ1 and Wγ2 is defined as

〈Wγ1Wγ2〉 − 〈Wγ1〉〈Wγ2〉.

I Let d(γ1, γ2) denote the Euclidean distance between the two
loops.

I If the logarithm of the above correlation behaves like
−d(γ1, γ2)/ξ for some ξ ∈ (0,∞) as d(γ1, γ2)→∞, then the
number ξ is called the correlation length of the model.

I Any lattice gauge theory contains information of an associated
class of elementary particles called ‘glueballs’ or ‘gluon-balls’.

I The number ξ represents the reciprocal of the mass of the
lightest glueball in the theory.
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Critical point

I Physicists say that the model has a continuum limit if there is
a critical point βc ∈ [0,∞] such that as β → βc , the
correlation length ξ(β) tends to infinity.

I It is believed that in dimension four, many of the non-Abelian
lattice models of interest have βc =∞.
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One version of the mass gap problem

Open problem (Mass gap)

Take any compact non-Abelian Lie group G ⊆ U(N) for some
N ≥ 2 and consider 4D lattice gauge theory with gauge group G at
inverse coupling strength β. For each x ∈ R4, let px be the
plaquette that is closest to x. Let fβ(x) denote the correlation
between Wp0 and Wpx . Show that for any β > 0, there exists some
ξ(β) ∈ (0,∞) such that

lim
|x |→∞

log fβ(x)

|x |
= − 1

ξ(β)
.

Moreover, prove that

lim
β→∞

ξ(β) =∞.
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Continuum limit via Wilson loops

I One approach to the construction of continuum limits of
lattice gauge theories is via Wilson loops (advocated, for
example, by Seiler (1982)).

I Let βc be a critical point of a lattice gauge theory.

I As β → βc , we would like to show that the lattice spacing ε
can be taken to 0 in such a way that if γε is any sequence of
lattice loops converging to a loop γ in Rn, then 〈Wγε〉
converges to a nontrivial limit after some appropriate
renormalization.

I Recall that βc is believed to be ∞ for 4D non-Abelian
theories.
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One possible formulation

Open problem (Continuum limit)

Take any compact non-Abelian Lie group G ⊆ U(N) for some
N ≥ 2 and consider 4D lattice gauge theory with gauge group G at
inverse coupling strength β. Let γR,T denote a rectangular loop of
length T and breadth R. Prove that as β →∞, there are
sequences ε = ε(β)→ 0 and c = c(β)→∞, and a nonzero
constant d, such that for any R and T ,

log〈WγR/ε,T/ε〉 = −c(R + T )− dRT + o(1).

Since this has not been proved, it is not clear to me whether the
renormalization term c(R + T ) is indeed necessary. It seems
possible that the limit holds without the renormalization term.
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The 1/N expansion at strong coupling

I Consider SO(N) lattice gauge theory on Zn, n arbitrary.

I In recent work (C., 2015 and C. & Jafarov, 2016), we gave a
formula for Wilson loop expectations in this theory as
asymptotic series expansions in 1/N, where each coefficient in
the series arises as a sum over trajectories in a certain lattice
string theory.

I This proves a version of gauge-string duality.

I The expansion was proved only at small β (strong coupling).
It is an open question whether such an expansion holds at
large β.

I In 2D, the terms were explicitly evaluated by Basu & Ganguly
(2016) using combinatorial techniques.
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The master loop equation

The following is a generalization of what are called Makeenko–Migdal
equations or master loop equations. They hold at all β, and give the starting
point for the proof of the 1/N expansion and gauge-string duality.

Theorem (C., 2015)
Consider SO(N) LGT on Zn. For a collection of loops s = (`1, . . . , `m), define

φ(s) :=
〈W`1W`2 · · ·W`m 〉

Nm
.

Let |s| be the total number of edges in s. Then

(N − 1)|s|φ(s) =
∑

s′∈T−(s)

φ(s ′)−
∑

s′∈T+(s)

φ(s ′) + N
∑

s′∈S−(s)

φ(s ′)

− N
∑

s′∈S+(s)

φ(s ′) +
1

N

∑
s′∈M−(s)

φ(s ′)− 1

N

∑
s′∈M+(s)

φ(s ′)

+ Nβ
∑

s′∈D−(s)

φ(s ′)− Nβ
∑

s′∈D+(s)

φ(s ′),

where T±, S±, M± and D± are certain operations that produce new collections
of loops from old.
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A recent result

I An exact result about the behavior of Wilson loop
expectations as β →∞ in 4D Z2 lattice gauge theory.

I Not physically interesting since ∞ is not a critical point of
this theory (the group Z2 is Abelian).

I A similar result for any 4D non-Abelian theory would be a
huge breakthrough. So the proof technique may be worth
studying further.

Theorem (C., 2018)

Consider 4D Z2 lattice gauge theory. Let {γn}n≥1 be a sequence of
self-avoiding loops and βn →∞ such that |γn|e−12βn converges to
a limit θ ∈ (0,∞), where |γn| is the length of γn. Then

lim
n→∞
〈Wγn〉βn = e−2θ,

provided that the proportion of corner edges in γn tends to zero.
(Corner edge: an edge that shares a plaquette with another edge.)
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expectations as β →∞ in 4D Z2 lattice gauge theory.

I Not physically interesting since ∞ is not a critical point of
this theory (the group Z2 is Abelian).

I A similar result for any 4D non-Abelian theory would be a
huge breakthrough. So the proof technique may be worth
studying further.
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Final remarks

I The result from the previous slide shows that for 4D Z2

theory, the coupling constant β needs to to scale like
− 1

12 log ε, where ε is the lattice spacing, to obtain a nontrivial
limit of Wilson loop expectations. As mentioned earlier, such
logarithmic scaling is conjectured for 4D non-Abelian theories
in the physics literature.

I I have a very recent preprint on arXiv, with the same title as
this talk, that contains most of this talk in greater detail
(except the last theorem).

I The preprint also has an extensive review of the mathematical
literature on these topics, which I did not cover in this talk.

I Special thanks to David Brydges, Erhard Seiler and Steve
Shenker for teaching me most of what I know about
Yang–Mills theories, lattice gauge theories and quantum field
theories.
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