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Preface

This is a textbook for a two-semester course on Linear Algebra. Although the pre-
requisites for this book are a semester of multivariable calculus, in reality everything
is developed from scratch and mathematical maturity is the real prerequisite. Tradi-
tionally linear algebra is the first course in the math curriculum where students are
asked to understand proofs, and this book emphasizes this point: it gives the back-
ground to help students understand proofs and gives full proofs for all the theorems
in the book.

Why write a textbook for a two semester course? First semester textbooks tend
to focus exclusively on matrices and matrix manipulation, while second semester
textbooks tend to dismiss matrices as inferior tools. This segregation of matrix tech-
niques on one hand, and linear transformations of the other tends to obscure the
intimate relationship between the two.

Students can enjoy the book without understanding all the proofs, as many nu-
merically examples illustrate all the concepts.

As is the case for most elementary textbooks on linear algebra, we only study
finite dimensional vector spaces and restrict the scalars to real or complex numbers.
We emphasize complex numbers and hermitian matrices, since the complex case is
essential in understanding the real case. However, whenever possible, rather than
writing one proof for the hermitian case that also works for the real symmetric
case, they are treated in separate sections, so the student who is mainly interested
in the real case, and knows little about complex numbers, can read on, skipping the
sections devoted to the complex case.

We spend more time that usual in studying systems of linear equations without
using the matrix technology. This allows for flexibility that one loses when using
matrices. We take advantage of this work to study families of linear inequalities,
which is useful for the optional chapter on convexity and optimization at the end of
the book.

In the second chapter, we study matrices and Gaussian elimination in the usual
way, while comparing with elimination in systems of equations from the first chap-
ter. We also spend more time than usual on matrix multiplication: the rest of the
book shows how essential it is to understanding linear algebra.
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Then we study vector spaces and linear maps. We give the classical definition
of the rank of a matrix: the largest size of a non-singular square submatrix, as well
as the standard ones. We also prove other classic results on matrices that are often
omitted in recent textbooks. We give a complete change of basis presentation in
Chapter 5.

In a portion of the book that can be omitted on first reading, we study duality
and general bilinear forms. Then we study inner-product spaces: vector spaces with
a positive definite scalar (or hermitian) product), in the usual way. We introduce the
inner product late, because it is an additional piece of structure on a vector space.
We replace it by duality in the early arguments where it can be used.

Next we study linear operators on inner product space, a linear operator being a
linear transformation from a vector space to itself, we study important special linear
operators: symmetric, hermitian, orthogonal and unitary operatrps, dealing with the
real and the complex operators separately Finally we define normal operators.

Then with the goal of classifying linear operators we develop the important no-
tion of polynomials of matrices. The elementary theory of polynomials in one vari-
able, that most students will have already seen, is reviewed in an appendix. This
leads us to the minimal polynomial of a linear operator, which allows us to establish
the Jordan normal form in both the complex and real case.

Only then do we turn to determinants. This book shows how much of the elemen-
tary theory can be done without determinants, just using the rank and other similar
tools. Our presentation of determinants is built on permutations, and our definition
is the Leibnitz formula in terms of permutations. We then establish all the familiar
theorems on determinants, but go a little further: we study the adjugate matrix and
prove the classic Cauchy-Binet theorem.

Next we study the characteristic polynomial of a linear operator, and prove the
Cayley-Hamilton theorem. We establish the classic meaning of all the coefficients
of the characteristic polynomial, not just the determinant and the trace.

We conclude with the Spectral Theorem, the most important theorem of linear
algebra. We have a few things to say about the importance of the computations of
eigenvalues and eigenvectors. We derive all the classic tests for positive definite and
positive semidefinite matrices.

Next there is an optional chapter on polytopes, polyhedra and convexity, a natural
outgrowth of our study of inequalities in the first chapter. This only involves real
linear algebra.

Finally, there is a chapter on the usefulness of linear algebra in the study of
difference equations and linear ordinary differential equations. This only uses real
linear algebra.

There are three appendices. the first is the summary of the notation used in the
boof; the second gives some mathematical background that occasionally proves use-
ful, especially the review of complex numbers. The last appendix on polynomials is
very important if you have not seen the material in it before. Extensive use of it is
made in the study of the minimal polynomial.

Leitfaden

There are several pathways through the book.
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. Many readers with have seen the material of the first three sections of Chapter
1; Chapters 2, 3, 4 and 5 form the core of the book and should be read care-
fully by everyone. I especially recommend a careful reading of the material on
matrix multiplication in Chapter 2, since many of the arguments later on depend
essentially on a good knowledge of it.

. Chapter 6 on duality, and Chapter 7 on bilinear forms form an independent sec-
tion that can be skipped in a one semester course.

. Chapter 8 studies what we call inner-product spaces: either real vector spaces
with a positive definite scalar product or complex vector spaces with a positive
definite hermitian product. This begins our study of vector spaces equipped with
a new bit of structure: an inner product. Chapter 9 studies operators on an in-
ner product space. First it shows how to write all of them, and then it studies
those that have a special structure with respect to the inner product. As already
mentioned, the material for real vector spaces is presented independently for the
reader who wants to focus on real vector spaces. These two chapter are essential.
. In Chapter 9, we go back to the study of vector spaces without an inner prod-
uct. The goal is to understand all operators, so in fact logically this could come
before the material on operators on inner product spaces. After an introduction
of the goals of the chapter, the theory of polynomials of matrices is developed.
My goal is to convince the reader that there is nothing difficult here. The key
result is the existence of the minimal polynomial of an operator. Then we can
prove the primary decomposition and the Jordan canonical form, which allow us
to decompose any linear operator into smaller building blocks that are easy to
analyze.

. Finally we approach the second main objective of linear algebra: the study of
the eigenvalues and eigenvectors of a linear operator. This is done in three steps.
First the determinant in Chapter 11, then the characteristic polynomial in Chapter
12, and finally the spectral theorem in Chapter 13. In the chapter concerning the
spectral theorem we use the results on inner products and special operators of
chapters 8 and 9 for the first time. It is essential to get to this material in a one
semester course, which may require skipping items 2 and 4. Some applications
show the importance of eigenvector computation.

. Chapter 13 covers the method of least squares, one of the most important appli-
cations of linear algebra. This is optional for a one-semester course.

. Chapter 14, another optional chapter considers first an obvious generalization of
linear algebra: affine geometry. This is useful in developing the theory of iinear
inequalities. From there is an a small step to get to the beautiful theory of convex-
ity, with an emphasis on the complex bodies that come from linear inequalities:
polyhedra and polytopes. This is ideal for the second semester of a linear algebra
course, or for a one-semester course that only studies real linear algebra.

. Finally the material on systems of differential equations forms a good applica-
tions for students who are familiar with multivariable calculus.

. There are three appendices: first a catalog of the notation system used, then a brief
review of some mathematics, including complex numbers, and what is most im-
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portant for us, the roots of polynomials with real or complex coefficients. Finally
the last appendix carefully reviews polynomials in one variable.

Recommended Books

Like generations of writers of linear algebra textbooks before me, I must disclaim
any originality in the establishment of the results of this book, most of which are at
least a century old. Here is a list of texts that I have found very helpful in writing
this book and that I recommend.

e On the matrix side, I recommend three books:

Gantmacher’s classic two volume text [8], very thorough and perhaps somewhat
hard to read;

Franklin’s concise and clear book [6].

Denis Serre’s beautiful book [24], very concise and elegant.

Horn and Johnson’s encyclopedic treatment of of matrices [13], which also shows
how matrices and analysis can be interwoven.

e On the linear algebra side an excellent example of an older textbook is Minsky.
More recently there is [12] - very complete.

e The classic textbook on the abstract side is Halmos’s book [10]. For those who
want to go even further in seeing how linear algebra is the first step in studying
“abstract algebra”, Michael Artin’s text [1] is recommended, since he uses linear
algebra as the first building block to abstract algebra.

e Linear algebra is very useful in studying advanced geometry. An excellent book
that quite unusually combines the linear algebra with the geometry is Shafare-
vich. Even more advanced is Manin’s book.

e There are two good self-described “second semester” linear algebra texts: Serge
Lang’s book [15] which suffers from its separation from his more elementary text
that develops the matrix techniques, and then Sheldon Axler’s beautifully written
book [2].

e Finally there are books that focus on the computational side. It is because linear
algebra algorithms can be implemented on computers is a central reason that lin-
ear algebra has come to occupy a central position in the mathematics curriculum.
We do not do much of that in this book. The classic text is Golub-Van Loan [9].
There are books completely devoted to the computation of eigenvectors.

Comments, corrections, and other suggestions for improving these notes are wel-
come. Please email them to me at hcp3 @columbia.edu.

HENRY C. PINKHAM
New York, NY
Draft of July 10, 2015
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Chapter 1
Linear Equations

Abstract We define linear equations, both homogeneous and inhomogeneous, and
describe what is certainly the oldest problem in linear algebra: finding the solutions
of a system of linear equations. In the case of three or fewer variables we explain
how elimination leads to the determinant - which we do not define in the general
case. We do all this without introducing matrix notation. The sections 1.5 and 1.6
are optional. The chapter concludes with a short section about the history of the
solution of linear equations

1.1 Linear Equations

The first problem of linear algebra is to solve a system of m linear equations in n
unknowns x1, xa, ..., X,. It was recognized early on that the case n = m should be
considered first. We will see why shortly.

Many readers may already familiar with linear equations. Still, since it is central
to our concerns, here is the definition.

Definition 1.1.1. A system of equations is linear if it can be written

ayxy +apxy + - +apx, = by, (1.1)
ax1x1 +axnxy + -+ +axyx, = b,

Am1X1 + QX2 + -+ Ap Xy = by

The coefficients a1, ..., a, are numbers, as are by, ..., b, on the right hand side.
The coefficients a;; have a double index: the first one, i, designates the equation; the
second one, j, designates the variable it is the coefficient. The coefficients b; form
the constant term of each equation and therefore have only one index designating the
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equation. Thus a3 is the coefficient of the third unknown x3 in the second equation,
and b3 is the constant term of the third equation. The unknowns are xy, xp, ..., Xp.

Definition 1.1.2. In this book, the coefficients a;; of the x; and the constants b; are
either real or complex numbers. For uniformity they are called scalars.

Using summations, we can write (1.1) as
n
Zaijszbi, 1§l§m
j=1

We will often use S to denote this system of linear equations. We will usually asso-
ciate the running index i with the number of equations (usually m), and the running
index j with the number of variables (usually n), as done above.
When we need to give the expression in the i-th equation of our system $ a name,
we call it f;. So
fi=anx1 +apxy+-- -+ apx, — b;. (1.2)

Note that the constant b; has been moved to the left-hand side of the equation, so
that the right-hand side is always 0. Setting the expression f; to O turns it into the
i-th equation.

Definition 1.1.3. An equation is a linear combination of the equations in § if it can
be written

cifiteft-+cenfu=0

for some scalars ¢y, ..., cp.

Example 1.1.4. Take the 3 x 3 system

X1 —x +2x3 = 1
3X1 —2)C2 —ZX3 = 4
—X1 +5x; =—1

Then 3x; 4+ 2x, = 4 is a linear combination of the equations in this system. Indeed
c1 =1,cp =1 and c3 = 1. This raises an interesting question: how do you find the c;
systematically? Set up the equations you need to solve: first the coefficients of each
x; must be the coefficients of the proposed linear combination, so you must solve

c1 +3c —c3=3
—c| —2¢p +5x3 =2
201 —26‘2 =0

The last step is to deal with the constant terms: we need ¢ +4c, —c3 = 4. This is
a system of 4 linear equations in 3 unknowns, precisely the kind of system we will
solve later in this chapter.

Definition 1.1.5. To solve the system S given by (1.1) means finding all the n-tuples
of scalars (¥1,%2,...,%,) that satisfy the system when the constants X; are substituted
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for the unknowns x;, 1 < j < n. We write Z(S) for the set of all solutions of the
system S: the letter Z stands for ‘zeroes’.

Thus Z(S) is the set of n-tuples X = (%i,...,%,) where for all i, f;(X) = 0. This
means that Z(S) is the intersection

2(8) = Z(fi = 0)NZ(f = 0) N+ N Z(fon = 0).

This just says that Z(S) consists of the n-tuples that are simultaneously solutions to
the first through the last equations.

When we have to evaluate the unknowns at more than one point we will also
use upper indices to indicate constant values: for example xil) and xgz) denote two
different values for the unknown x;.

In Example 1.1.4 it is easy to check that ¥; =22/17, %, = 1/17, and x5 = —2/17

is a solution to the system: in fact the only solution, as we shall see shortly.

Definition 1.1.6. If all the right hand constants b;, 1 < i < m, are equal to 0, then the
system is homogeneous. Otherwise it is inhomogeneous. If you set all the constants
b; in an inhomogeneous system 1.1.1 to zero, you get the homogeneous system
associated to the inhomogeneous one.

So the homogeneous system associated to Example 1.1.4 is

X1 —x +2x3 =0
3x1 —2x0 —2x3 =0
—x1 +5x2 =0

The reason an inhomogeneous system and its associated homogeneous system
are always considered together is:

Theorem 1.1.7. If (xgl),xgl), ... 7x£})) and (xgz),xgz),...,xf)) are solutions of the
inhomogeneous system 1.1, then their difference

(xg1> —x(12)7xgl) _xgz)’ . 7)c,(ll) —x,(,z))

is a solution of the associated homogeneous system.

Proof. Just subtract the corresponding equations. The details are left to you as an
exercise. a

Here is another example of three equations in three variables.

Example 1.1.8.

2x1 —x» +x3= 1
—2x1 —2xp +3x3= 4
SX2 —X3 = —1

The corresponding homogeneous system of equations is
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2x1 —x» +x3 =0
—2x1 —2xp +3x3 =0
SXQ —X3 = 0

We will find the solutions later.

We are not interested in the system of equations § for itself, but only in its solu-
tions Z(S). The three fundamental questions are:

1. Does the system S have any solutions at all, or is the set of solutions empty? If it
is empty we write Z(S) = 0.

2. If there is a solution, is it unique? This means Z(S) is a single element.

3. If there is more than one solution, what does the set of all solutions look like?

We can already answer the first question when the system is homogenous, since
X{=xy=--=x,=0 (1.3)

is clearly a solution., as we established in Theorem 1.1.7. So a homogeneous system
always has the solution (1.3), called the trivial solution.

On the other hand, it is easy to produce an inhomogeneous system without solu-
tions. The simplest example is perhaps

x1 =0 1.4)
X1 = 1.
Here n = 1 and m = 2. Similarly
2x1—x =1 (1.5)
2x1 — X2 = 2.

The solutions of the first equation of (1.5) are just the points of a line in the plane;
the solutions of the second equation are the points of a distinct parallel line. Since
the lines do not intersect, there is no solution to the system.

This can also be proved algebraically. If scalar values (¥,%;) satisfy both equa-
tions, they they satisfy the difference of the two equations. But that says that 0 = —1,
a contradiction.

Definition 1.1.9. A system of linear equations S that does not have any solutions is
inconsistent. Thus Z(S) = 0. A system with at least one solution is consistent.

Corollary 1.1.10. A consistent inhomogeneous system has exactly one solution if
and only if the corresponding homogeneous solution has only one solution, which
must be the trivial solution.

Proof. This is an immediate consequence of Theorem 1.1.7 and the existence of the
trivial solution for homogeneous systems of equations. a
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Notice that the homogenous system associated to (1.5) is simply 2x; —x, = 0,
so that it has an infinite number of solutions of the form (%;,2%) ), even though the
inhomogeneous system of equation has no solutions at all.

We now make an important definition concerning systems of linear equations.

Definition 1.1.11. Two systems of linear equations in the same variables are equiv-
alent, if their set of solutions is the same.

Given a system of linear equations, our goal is to transform it into an equivalent
system that is easier to solve. Here is a useful tool.

Proposition 1.1.12. If the equations in a linear system S| are all linear combina-
tions of the equations in a linear system S, the Z(S) C Z(S1). Therefore if all the
equations in S are also linear combinations of those in Sy, the two systems are
equivalent: Z(Sy) = Z(S).

The proof is left to you.

1.2 Geometry Interpretation

When the scalars are the real numbers R, and the number of variables is at most
three, then it is important to interpret the linear equations geometrically. Here are
some simple but useful remarks. Work out the easy case of only one variable on
your own.

Example 1.2.1. Suppose you have two variables x| and x;, so we are working in the
plane.

First assume the system just consists of one linear equation ax; +axx; = b. If
both a; and a, are 0, then we are left with the equation 0 = b, which is inconsistent
unless b = 0. So the set of solutions X(S) is either empty or the entire plane R
When at least one of a; and a» is not zero, the set of solutions is a line ajxj +azx; =
b, as you know. Thus we have an infinite number of solutions. If b = 0 the line goes
through the origin.

What if there are two equations? The only interesting case occurs when each
equation has at least one non-zero coefficient: then the solutions to each equation
form a line. So the solutions to the system is just the intersection of two lines. What
could happen? There are three cases: either the lines have different slopes so they
intersect in a point. If they have the same slope, then they are either parallel and
distinct, in which case there are no solutions, or they are the same line, in which
case there is a line of solutions.

If there are three equations or more, then “usually” the set of solutions is empty,
since usually the intersection of three lines in the plane is empty

Example 1.2.2. Finally the case n = 3. We are working in space. If there is only
one equation ajx| + axx; + azxz = b, then unless all the coefficients a; are zero, the
solutions form a plane in space.
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If there are two equations, the set of solutions is the intersection of two planes in
space. What can happen? In general they intersect in a line, which goes through the
origin if the equations are homogeneous. But the planes could be parallel: what does
that mean in terms of the coefficients? In that case there are no solutions unless the
planes are the same plane. Check that two planes in R? cannot intersect in a point.

Finally assume there are three equations. The set of solutions to each equation is
a plane, so we are studying the intersection of three planes in space. If all goes well,
we get the intersection of a plane and a line. You should convince yourself that this
is usually a point, but in “degenerate” cases you could get a line or even a plane. Or
as usual the intersection could be empty. But you cannot get more complicated sets,
such an two lines, or two points.

If there are more than three equations, then “usually” the intersection is empty.

Our goal is to give a precise meaning to “usually” and “degenerate”, and to an-
alyze the set of solutions in higher dimensions in a systematic way, without using
geometric intuition.

Exercise 1.2.3. Write down explicit numerical examples to illustrate all possible
cases. For example two lines in the plane that intersect in a point: just take x; =0
and x, = 0 for the two equations.

1.3 Elimination

The key to understanding the solutions of a system of linear equations S, which we
always write as (1.1), is a process called Gaussian elimination. It is an algorithm
that does two things:

o if the system S is not homogeneous, it determines whether it is consistent or not.
This step is unnecessary for a homogeneous system which we already know is
consistent.

o if the system is consistent, it determines all the solutions.

This is the most important algorithm of linear algebra. We will study it more al-
gebraically when we have developed matrix technology in Chapter 2. Here we use
some geometric ideas. For simplicity we only consider the case of real scalars, but
the result goes through for complex scalars without change.

The key notion is that of the projection map from R” to R"~! obtained by omit-
ting one of the coordinates. Any one of the coordinates could be omitted, but without
loss of generality we may assume it is the last one. When n = 3 the projection maps
(x1,%2,X3) to (x1,X2). The image of the map is clearly all R?, and the inverse image'
of any given point (aj,az) is (a1,az,x) for any x € R.

More generally the projection maps (xy,...,X,—1,%;) to (x1,...,%,—1), and the
inverse image of any point is again R. We will need to consider the case n = 1, the

! See §B.1 if you need to review this notion.
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projection R! to R?, so we need to define R: it is a single element, written 0. If
you compose a projection p,: R” — R"~! with a projection p,_;: R*"! — R*~2
to get p,_1 © p, you get a new projection from R” to R”~2, which omits two of the
coordinates. More generally we can omit any number r of the coordinates and get
a projection, which we can view as the composition of r projections that just omit
one coordinate each. This is what we will do.

Assume we have a system S of m equations in n variables.

First we handle the trivial case: all the a;; = 0. Therefore the left-hand side of
all the equations is 0, so they take the form 0 = b;. If any one of the b; is nonzero
the system is obviously inconsistent, and if all the b; are equal to 0, then the sys-
tem imposes no conditions, so the set of solutions is R". Our goal is to repeat an
elimination step, which is described next, until we reach the trivial case.

So assume that there is a variable that occurs with non-zero coefficient in at least
one of the equations. By renumbering the variables, we may assume the variable is
Xxp. This is the variable to be eliminated. We call it the pivot variable for this elimi-
nation step. By renumbering the equations we may assume that in f;, the coefficient
amn of x,, is nonzero. Divide f;, by a,,,. Of course they may be several equations in
which the pivot variable has a non-zero coefficient: just pick one. Clearly the new
system is equivalent to the old one: for instance use Proposition 1.1.12. We con-
tinue to call the new system S, in other words we assume the coefficient of the pivot
variable in f,, is 1.

Now replace S by the new system S; given by

g1(xiy o xnm1) = il xn) = fm(Xn, e, x0)
g2(x17-~~7xn—1) = f2(x17~~~7xn) _szm(xh'”u-xn)

gmfl(xlwuaxnfl) = fmfl(xla-“vxn) _Cmflfm(xlwwaxn)
J((X15 s Xn—1,%) = 0

where c; is the coefficient of the pivot variable in f;. By Proposition 1.1.12 again,
the two systems are equivalent: they have the same solutions. In particular Z(S) = 0
if and only if Z(S;) = 0. By construction, in all g; the variable x, appears with
coefficient 0: we say these equations do not contain x,. The collection of all the g; is
called the set of residual® equations. On the other hand the equation f,, = 0 contains
Xn, the pivot variable. The process of replacing S by the equivalent S; process is
called eliminating x,, because x, has been eliminated from the residual equations.
Underlying this is the projection map p,,: R — R"~! omitting the last coordinate.
The linear system S lies in R”, while the residual equations of §; lie in R"~!.

Example 1.3.1. Let’s apply this technique to the system S:

2x1 —2xp +3x3
4x; —x3 = —1
x; —x +x3= 1

2 This is not standard terminology.
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Then f3 = x; —x3+x3 — 1, so by subtracting 3 times f3 from the first listed equation,
and adding it to the second, we get the system S

—X1 +x =1
X1 +3x =0
X] —xp +x3 =1

It is easy to see by hand, or by repeating the process that there is only one solution
to S1: x; = —3/4, x, = 1/4. Putting these values into f3 gives x3 = —x; +x, + 1 =
3/4+1/4+ 1 =2, and therefore S has the unique solution (—3/4,1/4,2).

Exercise 1.3.2. Apply this technique to Example 1.1.8. Here again m = n.

The process of elimination consists in repeating the elimination step describe
above as long as it is possible. The elimination step is only applied to the last col-
lection of residual equations, which does not include any of the variables that have
already been eliminated. So after each elimination step the number of variables in
the residual equations decreases by one, since the pivot variables are all distinct.
After k eliminations steps we are dealing with a projection p: R” — R"~*_ The pro-
cess terminates when there are no more candidates for a pivot variable left in the
residual equations. Note that when there is only one residual equation left with a
variable with a non-zero coefficient, that variable a pivot variable so we can do one
more elimination, after which the set of residual equations is empty.

We will see in Chapter 4, the number of eliminations steps does not depend on
the order in which the pivot variables are chosen. Therefore we get an important
invariant of the system of equations, called the rank of the system. We will not use
that fact here. Start with a system S of m linear equations in n unknowns. Eliminate
one variable at a time: each time the set of solutions gets projected in a one-to-one
manner to the next lower dimension. After each elimination step, the number of
variables decreases exactly by one, while the number of equations decreases by at
least one. The elimination process terminates when

1. either the set of residual equations is non-empty, and they are all of the form
0 = b, because there are no more candidates for a pivot variable. As we have
already noted, in this case the system of equations could be inconsistent.

2. or the set of residual equations is empty. Then the system is consistent.

In both cases the variables that have not been eliminated are called the free variables.
When the system is consistent, the set of solutions is in bijection with R".
Thus we get two of the main theorems of linear equations.

Theorem 1.3.3. A system of n linear equations in m variables, m < n, is either in-
consistent or has an infinite number of solutions.

Proof. The first statement follows from repeatedly applying Proposition 1.1.12.
Next assume the system is consistent. In each projection there is one pivot variable,
and they are all distinct. So after at most m elimination steps, the process terminates,
because we run out of equations. Assume the actual number of steps is [ < m. Then
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we have at most m — [ residual equations that do not contain any of the [ pivot vari-
ables. Then by the hypothesis m < n, we have n — [ > 0 free variables Therefore the
set of solutions is in bijection with R"*~7. ad

So this restricts the possibilities for the set of solutions of a system of linear
equations: if it is finite, then it is just one point.
We record a special case of the theorem:

Corollary 1.3.4. If there are k free variables left when elimination terminates, the
set of solutions is either empty or in bijection with RK.

It is also worth recording the

Corollary 1.3.5. The system S is inconsistent if and only if there is a linear combi-
nation of its equations that reduces to 0 = b £ 0.

At the end of the elimination process, we get a convenient representation of a
system of equations equivalent to any system S:

Theorem 1.3.6. Repeat the elimination process on the system of linear equations S
until it terminates. The system S is equivalent to a system with r equations

filxi,x2, .., x0) =X+ Cijp1Xip1 - FCinXn—bi=0 , 1<i<r (1.6)

for suitable scalars c; j, j <iandb;. The x;, 1 <i <r are the pivot variables, given in
the order they are eliminated and r is the total number of elimination steps needed.

This results is simply a translation of what we have already done, with a differ-
ence numbering of the pivots.

Example 1.3.7. Assume we are in R3, and that the system S has three equations, and
that we can eliminate x3. Then we get a new system S; with two residual equation
in x; and x, only, and a single equation that can be written, after dividing by the
coefficient of 3 as x3 = a;x; + ar»x» — b for suitable real constants a;, a’2 and b.

Consider the zeroes of the two residual equations in the plane with coordinates x;
and x,. We have the intersection of two lines, therefore a point, in general. However
the intersection could be a line or empty, as we have already seen. Assume the
intersecion is a point. Now consider the zeroes of the residual equation in R3: for
each solution p of S7 in the x1x, plane we get the whole vertical line above p in
R3, where the third coordinate is any real number. Then the remaining equation
x3 = ajx| + axxy — b picks out a unique point on this line which is a solution of the
original equation.

Thus geometrically we have done the following. To find the zeroes of S in R?
we project them to R2. then the remaining equation, from which x3 has not been
eliminated picks out a unique point in above the locus of projection.
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1.4 Examples of Elimination

Example 1.4.1. If § is the system

2x1 =1 so f1=2x—1,
x2:2 Sszixzfz,
x3=—1 so f3=x3+1,

then it is clear consistent and the three equations are already the equations fl(o) =0,
fz(l) =0, and f3(2> =0, so r = 3. Of course this example is so simple we did not need
elimination.
The slightly more complicated example
2x14+x0—x3=1
Xp+x3=2

X3 = —1
is solved the same way: no actual elimination occurs.

Example 1.4.2. Now we apply this process to Example 1.1.8, another inhomoge-
neous case.

2x1 —x2+3x3 =1
4x; —2xp —x3 =—5
IO)C1 —S)CQ —6)63 =-16

We eliminate x| using the first equation. Our system gets replaced by the system
$M), omitting the first equation of zeroes:

—Tx3 =-7
—21x3 =-21

We eliminate x3 to get S@), where all the coefficients are zero. So the original
system is consistent, 7 = 2, and our new system of equivalent equations is:

2x1 —x2+3x3 =1
x3 =1

Since there is only one unknown in the last equation, we can solve for it, getting
x3 = 1. Substituting this value in the first equation, we get

2)C1 —x2:—2 (1.7)

which we recognize as the equation of a line in the plane. Thus there are an infinite
number of solutions: for each value of x, we can find a solution
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)C2—2

X1 = 3

A particular solution is given by (—1,0,1). Now let us consider the homogeneous
equation corresponding to 1.7. :

2x;1 —x2+3x3 =0
—7X3 =0

Thus x3 = 0 and x, = 2x is the most general solution of the homogeneous equation.
By Theorem 1.1.7, any solution to the inhomogeneous equation can be written

(—170, l) + (x1,2x1,0).
You should check that this is what we found above.
Exercise 1.4.3. Show that the following system has a unique solution:

xX1—x2+3x3 =1
2)61-)62-)(3 =-5
—2x1+xp —2x3 = =2

Since numerical computation is error-prone you should substitute the values you
find into the original equations to confirm that you have not made a mistake.

Finally, you should check that the only solution to the corresponding homoge-
neous equation is (0,0, 0), so that Theorem 1.1.7 is again verified.

Example 1.4.4. Next we treat the general case of two equations in two variables. We
use the usual notation

anx) +apxy = b

a1x1 +axx; = b

for the system S.

1. If all four coefficients a;; are zero, we are already in Case 1.

Otherwise we may assume that aj; # 0 by interchanging the variables x; and
xp, or the order of the equations if necessary. Then ffo) is just the first equation
ay1x1 +apxy —by = 0, and the new system SV is

Ox;+0x, =0 (1.8)

ay a
axp ——ai)xy =by—22b
(a2 an 12)X2 = by — Z2by
Examine carefully how the coefficients of the second equation are formed. The
expressions become cleaner if we multiply it by the non-zero quantity a;;. We get
for the second equation:
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1 1 1
fz( ) = (an1aa — anas )xs —anby —biaz) = aéz)xz - 19(2 '—o, (1.9)
using our usual notation.
2. If the coefficient of x; is zero, then we are in Case 1. In the original variables
this coefficient is
aijax —apaz = 0. (1.10)

If this happens, then if the right hand side is also 0, then the system is consis-
tent. If the right hand side is not 0, then we have a contradiction and the system is
inconsistent, as in Example 1.5. In both cases the analysis is over.

3. The last case to consider is the case where the coefficient of x; in (1.9) is non-
zero. Then we are still in Case 2, so we do elimination again to get S® which is
just the trivial matrix.

Our general theorem says that the original system is equivalent to that formed
by the two equations fl(o) =0 and fz(l) = 0. From the second equation we get the
unique solution

_anby —biay
apaz —appayg
so substituting this value into the first equation, we get

aiby —biay araxp —apnay)
anxi+ap————=bj=bj—————
a11a — a12a31 ai1ax —appasi
or
. —apay by —apbiax +biayaxn —brappaz  —apan by +biayaxn
11x1 = =
a11a — a12a1 ai1a — a12asy

which simplifies, since aj; # 0, to the unique solution
_ biaxn —anh
X =——7 .
a|azz —apnaz)
So the system has a unique solution. Notice that the expression of x; can be
obtained from that for x, simply by interchanging the indices 1 and 2 everywhere.
Notice the key role played by the coefficient of x; in (1.9). This is called the
determinant of the system, and is written

ary ar

1.11
a1 axn (1.11)

Similarly the numerators in the expressions for x; and x, are written

an by
az; by

by app
by ax
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respectively. Notice how they arise from the determinant by replacing the appropri-
ate ‘column’ of the determinant by the right hand side of the equation. You have
probably seen these expressions for a previous mathematics class.

When the coefficients are the real numbers, our analysis has a geometric inter-
pretation in the plane with coordinates x; and x, . We only deal with the case the
equations are consistent. If all the coefficients are all zero, then the set of solutions
is the entire plane. Otherwise, if the coefficients of one equation are all zero, we are
just left with the other equation: the set of solutions is then a line. Otherwise, the
locus where each one of the equations is satisfied in a line: call them L; and L;. The
locus where both are satisfied in the intersection of the two lines: what can that be?

1. The two lines could be the same: L; = L. Then the intersection is just this line,
so the system has an infinite number of solutions.

2. The two lines could be distinct and parallel: then the intersection is empty. So the
system is inconsistent.

3. If the two lines are not parallel, they meet in a point, giving a unique solution.

Exercise 1.4.5. How does the determinant change when two equations are inter-
changed?

Example 1.4.6. Finally we treat the general case of three equations in three vari-
ables. We first eliminate x, as in the two variable case, getting a system with only
two variables, in addition to the equation in which x; can be solved in terms of x
and x3. We write the two new equations as

1 1
a(22>x2 + a§3)

dsy'x +dsy

X3 = bgl)

X3 = bgl).
where the coefficients aglz), a%), bgn, a(312), aé?, bgl) can be written in terms of the
original coefficients.

From the 2 x 2 case, we already know we can continue eliminating variables if

and only if one of the four quantities al(}) is different from 0. Otherwise the left-
hand sides of the two remaining equations are 0. Then if one of the right-hand sides
is different from O, there is no solution; if both right-hand sides are 0, we are in fact
dealing with only one equation. the solutions of which form a plane in three-space.
If one of the four quantities al( }) is different from 0, by changing the numbering
of the variables and the order of the equations, we may assume without loss of

generality that aglz) # 0. The final step is to eliminate the variable x, from the last
equation, by adding to it a suitable multiple of the second equation. The last equation
becomes " )
()~ a2 s = bl fa<312>%. (1.12)
ar a
To finish the analysis, we need to determine when the coefficient of x3 is non-zero.
Since we already know that aglz) =0, we can multiply (1.12) by that quantity, getting
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1 (1 1 (1 1), (1 1), (1
(alyaly) —aal) )xs = bl —all)bl)). (1.13)

Not surprisingly, this is precisely parallel to (1.9). Now we substitute in the origi-
nal coefficients and multiply by a suitable power of aj; # 0. Then we get for the
coefficient of x3, up to a non-zero constant:

a a
(a11a22 —anarz) (azs — Pais) — (anazs —anaiz) (ax — $lar)
= ay1a00a33 — 13022031 — 412021433
—ajaxaxn +anaxas; +a13a21a3;. (1.14)

It is called the determinant of the system: it was so named by Gauss in 1806. Gauss
formalized this elimination process, which is now called Gaussian elimination. In
the classic literature the determinant is always written

a arp a3
ar| ax ax (1.15)
asy azp as3

If it is non-zero, then the last equation gives a unique solution for x3, the second
equation a unique solution for x, and the first equation a unique expression for x;.
If the system is homogeneous, the only solution is (0,0,0).
Exercise 1.4.7. In Example 1.4.3, determine the coefficients ag}) obtained after one
elimination, and then the coefficients obtained after the second elimination. In par-
ticular you should compute the determinant, which is 3.

Exercise 1.4.8. From the way we computed the unique solution in Example 1.4.6,
it may seem that several conditions need to be satisfied. First we need to to find a
a;j that is non-zero. Then we need to find a a,i}) that is non-zero, where k # i and
[ # j. Finally we need that the determinant (1.14) be non-zero. Show that if either
of the first two conditions fails, then the determinant is zero. Thus the vanishing of
the determinant by itself tells us if there is a unique solution to the system. So far we

only have this for a 3 x 3 system, but, as we will see later, the result is true generally.

Exercise 1.4.9. Work out the right hand side of equation (1.13) exactly as we did
for the coefficient of x3 in (1.14).

Remark 1.4.10. What is the difference between doing the computation of the so-
lution as in Example 1.4.3 and in Example 1.4.6? The first difference is that the
method in Example 1.4.6 applies to any set of coefficients, and tells us exactly when
the method fails. It does this by treating the coefficients as variables. This is a major
advantage.

On the other hand, treating the coefficients as variables makes the computation
more difficult. In fact, when there are a large number of variables, which often hap-
pens in applications, the general method is not feasible. The difference, in modern



1.5 Consequences of Linear Systems 15

computer terminology is that in Example 1.4.3 we are doing a numerical computa-
tion, while in Example 1.4.6 we are doing a computer algebra computation, which
explodes as the number of variables becomes large.

Remark 1.4.11. The determinant is a function of the coefficients. If one randomly
chooses values for the coefficients, the probability that the determinant vanishes is
zero. Why?

Thus a non-zero determinant is the expected case. In fact, in the theory of equa-
tions, it was well known, from the earliest times that every time one imposes an
equation on n variables, the degrees of freedom of the variables should go down by
one. Thus the key case is the case of n equations, where there should be 0 degrees
of freedom, meaning a finite number of solutions. As we already see that for the
examples above, this is not always true, even in the case of linear equations.

The classic expression for the solution of a system of n equations in n variables
was given by Cramer in 1750. We will return to it when we study determinants in
Chapter 11.

1.5 Consequences of Linear Systems

We now record the following interesting corollary of elimination. This section is not
used later in the book.
A consequence of the linear system S to be any linear equation :

g(x)=dixi+---+dx,—e=0 (1.16)

that vanishes on the zeroes Z(S). This definition is uninteresting when Z(S) = 0,
since any linear equation is then a consequence of S. So we will only use the defini-
tion when S is consistent.

Corollary 1.5.1. Any consequence of a consistent system S can be written as a lin-
ear combination of the equations in S.

Proof. Tt is enough to show that the consequence (1.16) is a linear combination of
the f; given in (1.6), since these are linear combinations of the equations in S. Here
is how we do this. We first replace g by

gV =g-af’.

Because both g and ffo) vanish on Z(S), so does their difference ¢". By construc-
tion g(1) does not contain the first pivot. Continuing in this way we can successively
eliminate all the pivot variables until we get a g(’) that contains none of the pivot
variables. It too is a consequent of S, so it vanishes of Z(S). If g(’ ) contains any
variables (which must be free variables) then it fails to vanish somewhere in the
projected set of solutions. This is impossible since by elimination the inverse image
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of any point in the projection of Z(S) is non-empty. So g\") contains no variable, so
it is of the form 0 = b. Since we assume the system S is consistent, b is 0, which says
precisely that the equation g we started with is a linear combination of the equations
in S. O

1.6 Diagonally Dominant Systems

This section is not used later in the book. It is a source of examples of n x n ho-
mogenous systems whose only solution is the trivial one.

Suppose we have a homogeneous system of n equations in n variables, which we
write in the usual way as

anxy+apxy+--+apx, =0, (1.17)
ax1xy +axnxy +---+axyx, =0,

A1 X1 +apxy + -+ appxy, =0

where the a;; can be real or complex.
Assume that the system is diagonally dominant. This means that for each equa-
tion f; in the system

n
laig| > Y lay|, for1<i <n. (1.18)
Jj=1j#i

Thus the absolute value of the ‘diagonal coefficient’ a;; is greater than the sum of
the absolute values of the other coefficients in the same equation. Then

Theorem 1.6.1. The only solution to a diagonally dominant system is the trivial
solutionx; =0, 1 < j<n.

Proof. We prove this by contradiction. Assume there is a non-trivial solution
xj = cj, for constants c;. Some |ci| is greatest among the |c;|, 1 < j < n. Since
the solution is non-trivial, |c;| > 0. Because the ¢ ; form a solution, all equations, in
particular the k-th equation vanishes:

n
agex=— Y, acj,
j=1.j#k

so that

n
| |ex| < Z lak;llc;l-
=Lk

By choice of k, |cx| > |cj| for all j, so
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n
lawellexl <Y lagllexl-
j=Ljk

Divide by |cx| > 0 to get

n
lawel <Y, lagl.
=TIk

This contradicts the hypothesis that the system is diagonally dominant. a

So we have a way of producing n x n homogeneous systems that only have the trivial
solution. The proof works (just by relabeling the variables) as long as there is one
coefficient in each equation that satisfies the equivalent of (1.18), as long as that
coefficient is that of a different variable in each equation.

Example 1.6.2. Consider the homogeneous n X n system with a; = +n and all the
other terms a;; = £1, i # j. This system is diagonally dominant, as you should
check

Exercise 1.6.3. Write down some numerically explicit diagonally dominant 3 x 3
systems, especially where the diagonal coefficients are negative.

Exercise 1.6.4. Now take a diagonally dominant system with real coefficients. As-
sume that that all the diagonal terms are positive. Then do Gaussian elimination.
Show that at each step the new system obtained is diagonally, so Gaussian elimina-
tion can continue without changing the order of the equations. Thus the system only
has the trivial solution.

Exercise 1.6.5. Do Gaussian elimination on any example of diagonally dominant
matrices you found in Exercise 1.6.3 that satisfies the hypotheses of Exercise 1.6.4.

1.7 History

Example 1.7.1. Babylonians already knew how to solve this problem: see Neuge-
bauer [20], p. 181-183, in two variables at least. Here is a typical example. A field
of area a is to be planted with two different grains, one where the yield per unit area
is g1, the other where the yield is g». The goal is to have a certain total yield b of
both grains, and the question is how much surface area x; to plant in the first grain,
and how much x; to plant in the second grain. If the area of the field is a, then we
have the two inhomogeneous linear equations

X1 +x2 =a;

g1x1+gxy =b.

Here is the Babylonian method of solution. If you plant half the surface area in grain
1, and the rest in grain 2, you get a difference from the desired yield of
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a a
b—(581+58)

2 2
X1 +x2
=g1x1 +gx2— > (g1+82)
1
= g1X1 +g2x2 — E(glxl +gox2 + g1x2 + gox1)

1
= E(gm +g2x0 — g1x2 — goxX1)

= (g0 )

This allows us to solve for (x; —x2)/2 on the right hand side:

Mox o 4 g1t8&2
2 27g1—&

Since the first equation gives us % = 5. by adding and subtracting we can find

x1 and xp.

This is actually more than just a linear algebra problem, in that we insist that the
solutions X; and X, be non-negative. Therefore x; < a. We may assume that g; > g».
Then we must have gja > b and gra < b. The numerical case that is actually treated
is (in suitable units) a = 30, b = 18.2, g1 =20 and g, = 15.

However, if we forget about this positivity requirement, the only case where we
will not get a unique solution is when g; = g», which makes perfect sense. If the
yields of the two grains are the same, it obviously does not matter how much we
plant of one or the other. If g; = g, then we only get a solution if a = b/g;.

A shorter account of Babylonian Mathematics, in English, is given by Neuge-
bauer in [19]. A more recent account in given in Robson [22]

Example 1.7.2. Chinese linear algebra is very well presented in Roger Hart’s book

[11].

Example 1.7.3. In a letter to De L’Hospital in 1693 Leibnitz indexed the coefficients
of linear equations in the way we do above: the first index gives the equation the
coefficient belongs to, and the second the ‘letter’ it belongs to. Then he shows how
to eliminate the letters. His fundamental example is the inhomogeneous system of
n+ 1 equations in n variables, which is our notation would be written:

ayp+anxy+apxy+---+apx, =0
axo + a1 xy +axpxy + - +azyx, =0

Aps1,0 +An11X1 + App12X2 + -+ g1 pXn =0

from which he concludes that the system has a solution if and only if the determinant
of the square matrix of all the (a,-j), 1 <i<n+1,0<j<n. Leibnitz’s letter was
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only published in 1850, so his work did not have an effect on he development of
linear algebra.

Instead, it is the 1750 work of Cramer that became famous because of its solu-
tion to (1.19), but where there are as many equations as variables. This rule is still
referred to today in linear algebra books as Cramer’s rule.

For more details on the early history of the solution of linear equations, see [18],
Volume 1.

Example 1.7.4. We have seen that elimination from linear equations is rather easy.
If we allow, instead of just equalities, a mixture of equalities and inequalities, the
problem becomes more interesting. It was first considered by Fourier in 1826. We
will consider this situation in Chapter 15. For comprehensive details also consult
the first chapter of [27].






Chapter 2
Matrices

Abstract Matrices are the fundamental tool for computing in linear algebra. They
are defined and studied in this chapter. After defining matrices themselves, our first
task is to define the three fundamental matrix operations. The only difficult one is
matrix multiplication. Then we focus on square matrices, the most interesting case
we cause we can multiply two square matrices of the same size, and consider which
ones have an inverse, a fundamental concept in linear algebra. In the two sections
§2.4 and §2.9 on submatrices and block decomposition of matrices, we write matri-
ces and parts of matrices in new ways. This will be useful later in the course. Then
in a fundamental section we write systems of linear equations in terms of matrices,
and we redo Gaussian elimination, studied in the first chapter, in the language of
matrices. Using the same operations as in the first chapter, we put the matrix of
coefficients in row echelon form, and then in reduced row echelon form, which is
ideal for solving systems of linear equations. We see how this corresponds to row
operations, that can be implemented by left multiplication of the matrix of coeffi-
cients by elementary matrices, which are very simple square matrices. Noting that
elementary matrices are invertible, we show that any invertible matrix is a product
of elementary matrices.

2.1 Matrices

The term matrix was proposed by Sylvester in his 1850 article [29] in the Philo-
sophical Magazine. See Muir [18], Volume 2, p. 51. It is surprising to realize that
matrices were only conceptualized as independent entities a hundred years after the
theory of the solution of linear equations was understood.
A matrix of size m X n is a collection of mn scalars indexed in the following
particular way:
aij,1<i<m,1<j<n.

These scalars are called the entries of the matrix.

21
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We will write our matrices using capital roman letters, and their entries by the
same lower case roman letter, with a double index. So for example, if A isam X n
matrix, we write A = (a;;), where 1 <i<mand 1 < j < n. We also write matrices
out as rectangular arrays:

ail a ... dip

ay) axp ... Ay
@2.1)

aAml Am2 --. Amp

which allows us to talk about the rows and the columns of a matrix. We write the
i-th row of the matrix A as a' and the j-th column as a;.

So the 2 x 3 matrix
1 24
A= (—1 3 5>

has two rows and three columns, and

a’=(-135) anda; = (g)

Definition 2.1.1. A matrix of size n x 1 is called a column vector of length n, or
a n-column vector. A matrix of size 1 x m is called a row vector of length m, or a
m-row vector. Column vectors are written

but in the body of the text we will often write column vectors as a row vector, but
with brackets: x = [x1 xn]. If we just say vector, we always mean a column
vector.

Definition 2.1.2. We can define two simple operations on m X n matrices A and B.

1. First addition: A + B = C where C = (c;;) is the m x n matrix with ¢;; = a;; + b;;
for all i, j. Thus the corresponding entries are added.

2. Then multiplication by a scalar ¢: cA = (ca;;), so each entry of the matrix A is
multiplied by the scalar c.

Definition 2.1.3. We can combine these two operations to form a linear combina-
tion of m X n matrices Ay, ..., Ag, using scalars cy, ..., ¢;: This is just the m X n
matrix

A=clA1+ -+ Ax.

This is the same concept as for systems of linear equations: see Definition 1.1.3.

Exercise 2.1.4. Determine the entry a;; of the matrix A in terms of ¢y, ..., ¢; and
the entry in position (7, j) of the matrices Ay, ..., Ag.
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Definition 2.1.5. Here are some special and important matrices to which we give
names. First note that the diagonal of a square matrix A is the set of entries with
equal indices: a;;. The remaining elements are the off-diagonal terms.

e The m x n whose entries are all zero is written 0, or 0,,, if it is important to keep
track of its size. The remaining definitions concern square matrices.

e The square matrix A is diagonal if all its off-diagonal terms are 0.

e The identity matrix / is the diagonal matrix with all diagonal terms equal to 1. If
its size n needs to be recalled we write I,. We usually write the entries of / as e;;.
Soe;=1foralli,and e;; =0if i # j.

o A is upper-triangular if all the terms below the diagonal are zero. In other words
a;j =0 when i > j. Correspondingly A is lower triangular if a;; = 0 when i < j.

Here are some examples in the 3 x 3 case.

000 100
03x3=(000) and3={010 (2.2)
000 001
The matrix
123
A=[0-20 (2.3)
005
is upper triangular and
100
B=[2-20 2.4)
305

is lower triangular.

Definition 2.1.6. The franspose of a m x n matrix A = (g;;) is the n X m matrix
B = (bjj) such that b;; = aj;. The transpose of A is written A’. Thus the rows of A
are the columns of ', and the columns of A are the rows of A’. Obviously (A”)" = A.
A square matrix that is equal to its transpose is called symmetric.

A row vector is the transpose of a column vector, and will usually be written x’
to make it explicit that we are dealing with a row vector.

The transpose of an upper triangular matrix is lower triangular. See the matrices
A and B above..

Example 2.1.7. The transpose of the matrix
1 -1

a=(1 28 = (22
45

The matrix
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12 4
23 -1
4-1-2

is symmetric.

Now assume our matrix has complex entries. Then using complex conjugation
(reviewed in Section B.5) we get the important:

Definition 2.1.8. The conjugate of the complex m x n matrix A = (a;;) is A = (aj;).

The conjugate transpose of A is the n x m matrix B = (b;;) such that b;; =a;;. The
conjugate transpose of A is written A*. A square matrix that is equal to its conjugate
transpose is called hermitian. This is the most important kind of complex matrix. If
A is real, its conjugate transpose is the same as its transpose, and to be hermitian is
to be symmetric.

Example 2.1.9. The conjugate transpose of the square matrix

I T WA -
A_<—1 3—1) is A_(Z—i 3+i)'
12—
24i 3

Problem 2.1.10. Show that for any square matrix A, the matrix A+ A’ is symmetric.

The matrix

is hermitian.

Problem 2.1.11. For any two matrices A and B of the same size, show that
(A+B) =A"+B.

Problem 2.1.12. Show that for any square matrix A, the matrix A +A* is hermitian.
Show that the diagonal elements of a hermitian matrix are real.

2.2 Matrix Multiplication

The fundamental matrix operation is multiplication of a m x n matrix A with a col-
umn vector X of length n to yield a column vector of length m.. Here is the all-
important formula:

ap ap ... aip X1 axy+apnx+ - +amx,

azl ax ... Az X2 ax| Xy +axxy + -+ dyuxy 25

Aml Am2 --- Amn Xn Am1X1 + QX2 + - - - + AmnXn
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If we replace the column vector on the right hand side by b, then we have recre-
ated (1.1.1) using matrix notation: Ax = b.
Note the important special case where A is a row vector:

Definition 2.2.1.

(a1 a ... an) . =a1x1 +axyxy +-- -+ aypx,.
Xn
Calling the row vector a and the column vector x, we get ax.

Later in this book we will also call this the inner product, or scalar product of the
two vectors a and x, written (a,x). See Chapter 8.
Example here.

Exercise 2.2.2. If A is any m X n matrix, show that [,,A = A and Al,, = A.

Definition 2.2.3. The product C = AB of a m X n matrix A multiplied on the right
by a n x r matrix B is the m x r matrix C = (cy), where

cik = ajnbix +apby + -+ ainbp.

Using summation notation, we have
n
Cik = Z Cll‘jbjk.
j=1

Note that as often in such cases we are summing over the repeated index j.

Remark 2.2.4. We can only form the product AB of a m X n matrix A by a r X s matrix
B if n = r. In that case the product is a m x s matrix. This of course still works when
B is a column vector of length n, the special case where s = 1, in which C =ABisa
column vector of length m.

Remark 2.2.5. In terms of the rows a’ of A and the columns by of B, matrix multi-
plication can be written using the notation of Definition 2.2.1 as:

a'b; a'b, ... a'b,

a’b; a%b, ... a2b,
AB=|

(2.6)
a”b; a”b, ... a"b,

which we can write more compactly as cj; = ab, 1<i<m 1<k<r,

Exercise 2.2.6. Work out the matrix multiplication of a row vector A, namely a 1 x n
matrix, by a n X r matrix B.
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Observe from (2.6) th;lt the k-th column ¢ of C only depends on k-th column by,
of B, while the i-th row ¢’ of C only depends on the i-th row a’ of A. In fact:

Proposition 2.2.7. IfAB=C, then Aby =¢;, 1 <k <r,anda'B=c¢, 1 <i<m.
This can be reformulated:

n

cx =bpa +---+bya, = Z bja; 2.7)
j=1
and .
¢ =anb' +-+apb" =Y a;b/, (2.8)
j=1

showing that the columns ¢ of C are linear combinations of the columns a; of A,
and the rows ¢' of C are linear combinations of the rows b’ of B.

Proof. The first two equalities are the special cases of (2.6) when B has only one
column and A has only one row.
For the reformulation,

Clk anbix+anby+ -+ ainbuk
o= | | = | @2butanbut-+ambu
Conk am1 b1k + ampbog + - -+ + Amnbnk
aribik abok ainbuk
_ | @b | | amba | | d2nbuk
am1 b1k ambok Amnbk
ahi arn ain
=by a1 + by a2 4+ by @an =bya;+ -+ bya,.
aml am? Amn
The second reformulation is proved the same way, so the proof is left to you. a

Exercise 2.2.8. Prove the second reformulation.

Exercise 2.2.9. For any m x n matrix A, compute the product AQ, where 0 is the zero
matrix of size n X r. Also compute 0A, where 0 is the zero matrix of size s X m.

Theorem 2.2.10. Let A be a m x n matrix, B a n X r matrix, and C a r X s matrix.
Then
A(BC) = (AB)C.

Thus matrix multiplication is associative.

Proof. We first write down the (i,k)-th element of the matrix AB:
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n
aitbix +apby + -+ ainbpyi = Z aijbjk
=1

Using this, we form the (i,/)-th element of the matrix (AB)C:

Z aijbji)c Z Z aijbjxcnr).- 2.9)

HM\

If instead we write down the (j,/)-th element of the matrix CD:

bjiciy+bjpcy+---+bjcy = Z bjkcy

we can form the (i,/)-th element of the matrix A(BC):

n

Y aii (Y bjcu) = Z ( Z aibjrcu)- (2.10)
=1 k=1 =1 il

We need to convince ourselves that the sums in (2.9) and (2.10) are the same. This
is true because we are summing the same terms over the same variables: we have
changed the order of summation, but in finite sums that makes no difference. a

Example 2.2.11. When all the matrices are 2 x 2, for the triple product D we get,
both ways
diy = anbuicii +aibiaca +anbrici +anbxnca

di2 = ayibiicip +arbacyn +anbacip +anbanexn

dr1 = az1byic11 +axbiacar +anbrici +anbrncr

dy = ax1byic12 +az1bracy +anbaicia +anbicxn
Notice the beautiful pattern.

Exercise 2.2.12. In the two cases below, compute (AB)C and A(BC) and note they
are equal.

1.A2x2,B2x2,C2x 2 with numeric values.
2. A2 x3,B3x2,C2x 2 with numeric values.

Theorem 2.2.13. Let A and B be m X n matrices, and let C and D be n X r matrices,
and let ¢ € F be a scalar. Then

A(C+D) =AC+AD and (A+B)C = AC+ BC.

So matrix multiplication distributes over matrix addition, whenever the two opera-
tions are possible. Furthermore

(cA)(D) = c(AD) and A(cD) = ¢(AD).

Proof. By Definition 2.2.3, the element of A(C + D) in position (i,k) is
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A(CHD)i = ait (c1x +dix) +an(cox +dag) + - - + ain (o + duk)
= ajic1k +apco+ -+ AinCur +apndig + apdog + - - + aindpk
= (AC)jix + (AD)x

The other parts of the proof can be done the same way. Instead, we prove (cA)(D) =
c(AD) by noting that the i-th row of cA is ca’, so by Definition 2.2.1 the (i, k)-th entry
of (cA)(D) is

(cai)dk = c(aidk).

This is ¢ times the (i,k)-th entry of AD, as required. O

Exercise 2.2.14. Prove (A + B)C = AC + BC by writing the (i, k)-th entry of each
side in terms of the appropriate rows of A and B and columns of C.

Proposition 2.2.15. If A is a m X n matrix, and B a n X r matrices, then (AB)' = B'A".

So the transpose of a product is the product of the transposes, but in the reverse
order. Note that A’ is a n X m matrix, and B' a r X n matrix, so the product B'A’
is possible. The proof is easy and left to you. Write C = AB, and D = B'A’, and
compare the (i,k)-th entry of C with the (k,i)-th entry of D.

Exercise 2.2.16. If A is a m X n matrix, B a n X r matrices, and C a r X s matrix, then
(ABC) =C'B'A'.

Exercise 2.2.17. For complex matrices, show that AB = AB. Then show that for the
conjugate transposes, (AB)* = B*A*.

Definition 2.2.18 (Matrix Multiplication Algorithm). Here are the details for the
computation of the product matrix C = AB, done in place, with the entries c;; first
being initiatized to 0 and then being updated:

fori=1:m,
fork=1:r,
for j=1:n,
Cik = ajjbjx +ci
end
end
end

The first two loops just tell you which entry you are working with; with the inner
loop producing the sum of products. in the formula.

2.3 Square Matrices

A square matrix is a matrix with the same number of rows as columns. Instead of
saying a ‘n X n matrix’, we will sometimes say a ‘square matrix of size n’. The extra
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feature that arises when dealing with two square matrices A and B of the same size it
that we can form both products AB and BA. As a special case we can raise a square
matrix A to any power, which we write A”. In fact we can take polynomials in the
square matrix A:

A+ AT el A+ ool

Because matrix multiplication is associative and the matrices A and the identity
matrix / commute (Al = IA = A), polynomials in matrices behave like ordinary
polynomials. We will use this intensively later in this book.

Remark 2.3.1. Matrix multiplication is not necessarily commutative. If A and B are
two square matrices of the same size n, so that AB and BA are both square matrices
of size n, it is not necessarily the case that AB = BA. Proposition 2.2.7 shows how
to construct examples systematically.

Give examples here.

Exercise 2.3.2. Let A and B be square matrices that commute: AB = BA. Using The-
orem 2.2.13, show that

(A+B)> =A>+3A’B+3AB>+ B> and (A+B)(A—B) = A> — B>,

This shows that we can do algebra with squares matrices as with numbers, taking
account, of course, that matrix multiplication is not generally commutative.

One key feature of multiplication of numbers is that there is a neutral element
for multiplication, usually denoted 1. There also is a neutral element for matrix
multiplication, the identity matrix /.

Continuing the analogy with multiplication of numbers, we may ask if every
square matrix other than 0 has an inverse. What does that mean?

Definition 2.3.3. A square matrix A has an inverse if there exists a square matrix B,
called the inverse of A, of the same size as A such that

AB=1=BA. (2.11)
The equation AB = [ says that B is a right inverse of A, and BA = I says that Bis a
left inverse of A.

So we require that A have a left inverse and a right inverse, and that they be the same.
It is reasonable to require both, since matrix multiplication is not commutative. It is
easy to show that we do not need all this.

Theorem 2.3.4. If A has an inverse, then its inverse B is unique. If A has a left
inverse B and a right inverse C, then they are equal and the inverse of A.

Proof. Assume there is another matrix C satisfying (2.11) when C replaces B. Then
C=CI=C(AB)=(CA)B=IB=B. (2.12)

This proves the first statement. The proof only uses that C is a left inverse and B a
right inverse, so we get the last statement. a
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Definition 2.3.5. If A has an inverse, it is said to be invertible or nonsingular. The
unique inverse is written A~!. A matrix that is not invertible is singular.

Obviously (A=)~ = A.

Exercise 2.3.6. Show by direct computation that the inverse of the upper triangular
matrix

11...11 1-1... 00
01 11 01 ~1...0
Do is e
00...11 00 . 1 -1
00...01 00 . 0 1

Proposition 2.3.7. Any product of invertible matrices A and B is invertible, and
(AB)"! =B~'A"1.

Proof. Indeed just compute, using the associativity of matrix multiplication:
(B'A"YAB) =B Y(A"'A)B=B'IB=B"'B=1

and
(AB)(B'AY)Y=ABB A '=Aa"l1A=A"1A=1.

Proposition 2.3.8. If a matrix A is invertible, its transpose A’ is too.

Proof. This is easy. Let B be the inverse of A, so AB = I = BA. Take transposes
using Proposition 2.2.15 to get B'A" =1 = A'B’, so C = A’ is invertible. O

Exercise 2.3.9. Show that the inverse of the transpose is the transpose of the in-
verse: (A")~! = (A~!)". Hint: take the transpose of the identity AA~' = I and use
the uniqueness of the inverse.

Exercise 2.3.10. If a complex matrix A is invertible its conjugate A is invertible. Its
conjugate transpose A* is also invertible, with inverse (A~1)*.

One of the main questions of linear algebra is: which square matrices are invert-
ible? Clearly not the zero matrix, since its product with any matrix is again the zero
matrix. However there are many other square matrices that are non invertible. An
important goal of this course is to develop criteria telling us when a matrix is invert-
ible. In particular we will associate to every square matrix of size n a number r < n
, called its rank, and prove that the matrix is invertible if and only if » = n. The rank
of any matrix (not just square matrices) is defined in §5.6. Later we will show that
a square matrix is invertible if and only if its determinant is non—zero: Corollary
11.3.13.

For triangular matrices we can give an criterion for invertibility. Later in this
chapter we will give a less computational proof of the same statement, so you can
skip the second half of the proof.
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Proposition 2.3.11. A diagonal matrix A is invertible if and only if all its diagonal
entries are non-zero. Its inverse B is diagonal with diagonal elements b;; = ai”

An upper—triangular matrix A is invertible if and only if all its diagonal elements
are non-zero. Its inverse B is also upper-triangular, with diagonal elements b;; = ai”
Similarly for lower—triangular matrices.

Proof. The first assertion is of course special case of the second one, but it is worth
giving the one-line proof: just multiply A by the matrix B given by the statement of
the proposition, and note that the product is the identity matrix.

Now assume A is upper—triangular, so a;; = 0 when i > j. We will attempt to
solve for its inverse B, and determine under which conditions on A and B this can
be done. Assume B is the inverse of the upper—triangular A. Then last row of AB,
which is supposed to be [0 ...0 1] is

[annbnl Amnbny .. annbnn]

showing a,,, # 0 and b,,, = 1 /a,, since the last entry must be 1. Then b, ;= 0forall
the others. Using these values, we see that the first n — 1 entries of the next-to-last
row are

[an-1n-1bn-11  @n-tn-1bu-12 - Gp-1p-1bp-1n-1]

So in the same way, we see that a,_) ,—1 7 0 and b,_1 ,—1 = 1/a,_1 ,—1 and there-
fore b,—1,; =0 for j =1,...,n— 2. Furthermore b, 1,1 = Continuing

a,—
this argument by decreasmg the row index, we see that all the dlggonal entries of
A are non-zero, and B is also upper-triangular with non-zero elements b; = ai” on
the diagonal. This shows that an upper—triangular matrix is only invertible if all its
diagonal elements are non—zero, and it computes the diagonal entries

Now prove the converse: assume A is upper—triangular with non—zero diagonal
terms. Then we prove it it has a right inverse B. We have already shown that B is
upper-triangular with diagonal terms b; = —. Next we solve for the terms b; ;.
Take the product of the i-th row of A with the i+ 1-th column of B, we, get, for the
(i,i+ 1)-th entry of the product, which must be 0:

aiibiiv1+aiir1b141,i41 =0

We already know byy1,41, and a;; is non—zero, so we can solve for all elements
bii+1,1 <i<n—1.This allows us to compute all the terms on the super diagonal.
Continue in this way: next we solve for the elements b; ;1> in terms of the b;; and
bj j+1.in other words, by induction on j —i we compute b;;, i < j, by evaluating the
ij term of the product AB, which must by 0:

aiibij+aji1b1ij+--+aij1bj1j+aijbjj =0

Thus b; j can be solved in terms of by ; with j—k < j—i. Thus A has a right inverse.
By repeating the argument on CA, we see that A has a left inverse. So by Theorem
2.3.4, it is invertible.
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For the lower-triangular case just reduce to the upper-triangular case by taking
transposes. O

Example 2.3.12. Consider the n X n matrix

010...00
001 ...00
A= b
000 ...01
000 ...00

with

1, ifj=i+1;
ajj = .
0, otherwise.

A is not invertible, as we know. Furthermore, it satisfies A” = 0, but A" ! = 0. Work
out the multiplication and determine what all the A* are.

A matrix A for which a power A* is the 0 matrix is nilpotent. Being nilpotent im-
plies A is singular. Indeed, suppose by contradiction that A is invertible with inverse
B, so

AB=1.

Let k be the smallest integer such that A¥ = 0 Multiply the equation by the matrix
A*=1 on the left, giving This gives A*B = A*~!, an impossibility since the left hand
side is 0 and the right hand side is not.

How do you decide if a general square matrix A is invertible? Use Gaussian
elimination, as described in §2.5 to transform A into a upper triangular matrix B.
Then show that A is invertible if and only if B is: this is Proposition 2.8.8. Then
apply Proposition 2.3.11 to B

2.4 Submatrices

This short section only contains definitions. Given a m X n matrix A, it is useful to
refer to submatrices of A.

In this chapter we will only need very special cases of submatrices: first we may
remove the first k rows of A. Therefore we are left with a (m — r) x n matrix B where
bij = ajyr j. We might remove the first / columns, getting the matrix m x (n — 1)
matrix C with ¢;; = a; j4;. Of course we could also do both simultaneously, to get a
matrix D with d;; = a; j1;. These are the submatrices we will need immediately.

For later purposes we need notation for the general case. No need to read this
until you need it. Pick first a certain number k of rows of A: those with indices iy,
i, ..., ix. Then pick first a certain number / of rows of A: those with indices ji,
J2, ..., Ji. For short call I the collection of indices of rows, and J the collection of
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indices of columns. Then we can form a k x [/ submatrix of A, indexed by the rows
and columns:

Qiyjy --- Qiyjy
I . L N .. .
Ay =A(i, i i) = 0 (2.13)
igji -+ Qigjy

A principal submatrix arises from picking the same rows as columns. Our nota-
tion is
ajyiy --- Qigiy
A[ZA(il,...,ik): 2.14)
Ajpiy - Aigiy,
The leading principal submatrix of size k is A(1,2,...,k): pick the first k rows
and the first k columns of A.
Principal submatrices are by definition square, while more general submatrices
are only square if k = 1[.

Example 2.4.1. Assume A is the matrix

123
456
789

Then the notation A(1,2;2,3) means to take the first two rows of A, and the second
and third columns.

A(1,2:2,3) = @ 2>,whileA(1,2) _ <i g)

is the leading principal submatrix of size 2 of A.

More numerical examples here.

2.5 Gaussian Elimination in Matrix Notation

We now redo elimination on systems of linear equations, studied in §1.3, using ma-
trix notation and operations. Equation (1.1) can be written Ax = b, where A is the
m X n matrix (a,'j), x is the column vector of n unknowns, and b is the m-column
vector of constants. Recall that we call this system of equations S, and its set of
solutions Z(S).

The key point is that the operations on linear equations used to derive Theorem
1.3.3 and others can be formulated in terms of matrix operations on A and b. We will
work with two different matrices: either the m x n matrix A, called the coefficient
matrix or the matrix m x (n+ 1) whose first n columns form the coefficient matrix
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A, and whose last column is b. It is called the augmented matrix and usually written
(4] D).

Example 2.5.1 (Special Case). We start with the simplest, but most important case:
the matrix A is invertible matrix, and therefore square. So the system S has the same
number of variables as of equations. Then, multiplying both sides of the equation
by the inverse A~! of A, we get the unique solution x = A~'b of the system. So
Z(S) is a point. In particular the system is consistent. To get the solution we need to
compute A~!. We will learn one way of doing this in §2.6.

The goal of Gaussian elimination in the general case is to replace the augmented
m x (n+ 1) matrix (A | b) by a simpler matrix (C | d) of the same size, where the
systems Ax = b and Cx = d are equivalent, meaning they have the same solutions.
The i-th equation of the system Ax = b can be written a’x = b;, where a' is the i-th
row of A.

If we multiply the i-th equation by the non-zero scalar c, the i-th row a of A is
replaced by ca’, b; is replaced by cb;, so the solutions Z(S) do not change. We are
using the operation of multiplication of a matrix (in this case a row vector) by a
scalar, see Definition 2.1.2.

If we interchange two equations, say the first and the second equations, then we
interchange the first and second row of (A | b). This also does not change Z(S).

Finally, if we add to the second equation, a multiple ¢ of the first equation, then
we replace the second row of A by a> +ca', and leave the other rows unchanged. We
replace the second element by of b by b, + cb;. Here we are using the operation of
matrix addition (in the case of row vectors) in addition to multiplication by a scalar:
again see Definition 2.1.2.

Motivated by these operations, we make the following definition. We only write it
down for a matrix A that can stand for either the coefficient matrix or the augmented
matrix.

Definition 2.5.2. Given a m X n matrix A, if we perform one of the following three
rows operations on A, the new m X n matrix A’ is row equivalent to A:

1. Multiply a row of A by a non-zero constant;
2. Interchange two rows of A;
3. Add to a row of A a multiple of a different row.

More generally if A can be transformed into A’ by a finite sequence of row opera-
tions, A’ is row equivalent to A.

You should now use the matrix in Example 1.4.3 to repeat the operations we did
on the system of equations.

Theorem 2.5.3. Row equivalence is an equivalence relation on m X n matrices.

Proof. We must check the three properties of Definition B.2.1.
First A is row equivalent to itself: use, for example, the trivial row interchange.
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Next we need to show that if A is row equivalent to A’, then A’ is equivalent to
A. The key is to realize that each one of the three row operations has an inverse
operation that undoes it. So it you multiply the i-th row of A by ¢ # 0 to get A’, then
by multiplying the i-th row of A’ by 1/c you get A back. The reader should find the
inverse for the other two operations.

Finally we need to show that if A is row equivalent to B and B to C, then A is
row equivalent to C. This is clear: just use the row operations that transform A to B
followed by the row operations that transform B to C. a

Exercise 2.5.4. Fill in the details of the proof.

The beauty of having an equivalence relation is that m x n matrices are partitioned
into equivalence classes: see Definition B.2.3 and Proposition B.2.4. This allows us
to search for the most convenient matrix in each equivalence class: this is what we
do next.

Here is a convenient form for A.

Definition 2.5.5. The m x n matrix A is in row echelon form if

1. All the rows of A that consist entirely of zeroes are below any row of A that has
a non-zero entry;

2. If row a' has its first non-zero entry in position j, then row a’*! has its first non-
zero entry in position > j. In other words if j; denotes the column index of the
first non-zero entry a;; of al, then j; < jo < -+ < jm, Where we only take into
account rows with a non-zero entry.

Example 2.5.6. The matrices

123 023 -123
040),({002]),and | O 22
001 000 0 00

are in row echelon form, while

123 023 003
040|,{000|,and {002
021 001 001

are not. In each matrix the first non-zero element of each row is marked in bold.

Remark 2.5.7. For A to be in row—echelon form is a generalization of being upper—
triangular: it implies that the first non-zero entry a;; of row a’ in a position j > i.
Thus if A is in row echelon form, a;; = 0 for all j < i. If A is square, it means that A
is upper—triangular.

Exercise 2.5.8. Check that the matrix of coefficients of the left hand side of the
system of equations produced by elimination in §1.3 is in row—echelon form.

The central theorem, which mimics Theorem 1.3.6 in the language of matrices,
is:



36 2 Matrices

Theorem 2.5.9. Any matrix A can be put in row—echelon form by using only row
operations.

Proof. Consider the columns of the m X n matrix A moving from left to right, there-
fore starting with column a;.

1. If column a; is the zero—vector, move to column 2. If a, is still the zero—vector,
keep moving right until you get to the first / such that a; is not the zero—vector. If
there is no such [/ then the matrix A is the zero matrix, and we are done.

2. Otherwise pick any row a* with ar; # 0. If k = 1, do nothing. Otherwise inter-
change rows 1 and k. Continue to call the new matrix A.

3. Then subtract from each a¥, k > 1, the appropriate multiple of a' so that the (1,k)-
th entry of the new matrix, still called A, is zero. Therefore A’s first [ — 1 columns
are zero, and its /-th column is zero except for entry a;;, which is definitely
non-zero. This entry is called the first pivot.

Now repeat this operation to the (m — 1) x (n —[) submatrix A; of A consisting
of the last m — 1 rows and the last n — [ columns. Notice that the first pivot, which
is entry ajy, is not in Ay, so its position will not change in the repetitions, Keep
repeating the procedure, say r times, until the new matrix A, is the 0 matrix. Then
you have r pivots, one in each of the first r rows. If g; j; is the i-th pivot, then by
construction j; < ji11, for all i. Each pivot is the first non—zero entry in its row. The
columns that contain pivots are called the pivot columns, and the remaining ones
are called the free variables. a

Make sure you can relate this construction with that in Example 1.4.6.

Exercise 2.5.10. Reduce the matrices in Example 2.5.6 that are not already in row
echelon form to row echelon form.

Now we get to the central result concerning systems of linear equations, an easy
corollary of Theorem 2.5.9.

Theorem 2.5.11. Let Ax = b be a system of m equations in n variables. Do row
operations on the augmented matrix (A | b) to put it in row echelon form, Then the
new system Cx = d is equivalent to the original system, so by definition it has the
same solutions as the original system. a

Many examples here.

The number r4 could conceivably depends on what choices of pivot are made
to put A in row echelon form. We will see in §5.6 that this is not the case: r4 only
depends on A, and is called the row rank of A. This number is the same number as
the » from Theorem 1.3.6.

Example 2.5.12. If you happen to be able to write A = LU, the product of an invert-
ible lower-triangular matrix L by an invertible upper-triangular matrix U, then A is
invertible and the unique solution can be easily found.

With these hypotheses, it is equivalent to first solve Ly = b, which since L is
invertible gives us a unique y = L~ 'b, and then solving Ux = y. Since U is invertible,
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this gives a unique x, and by multiply the last equation on the left by L, we get
LUx = Ly, which is the equation we wanted to solve.

Why is this better than just knowing that A is invertible? It is almost trivial to
solve the system Ux =y, when y is known. Indeed the last row is u,,,x,, = y;, so since
Uy, 7 0 by assumption, x, = MyT’; The previous equation is u,—1 p—1X—1 +Un—1,0Xn =
Yn—1, Which allows to to solve for the only unknown x,_;, because u,_1,—1 7# 0.
Continuing in this way we can solve for all the x;, in a small number of steps. This
simple process is called back substitution. Similarly we can easily solve Ly = b,
by an analogous process of forward substitution. Unfortunately it is not always
possible to write an invertible matrix in LU form.

Remark 2.5.13. This is why it may not be possible to write a square matrix as LU,
as in Example 2.5.1: because we allow row interchanges in Gaussian elimination,
this may prevent it. We will see in §11.2 how to analyze this problem by analyzing
the row interchanges.

2.6 Reduced Row-Echelon Form

Suppose the m x n coefficient matrix A is in row—echelon form. We now simplify
it even further using row operations, to put it in reduced row echelon form. In the
older literature this is called Hermite form. In the current literature it is called RREF
form. The row operations needed to get from row—echelon form to RREF form are
known as back substitution. This is is a generalization of what we did in Example
2.5.1.

As before, let r be the number of rows with a non—zero element in them, and for
these rows let j; be the smallest column index of a non-zero element in the i-th row.
Thus ij;, 1 <i < r are the coordinates of the i-pivot. Because A is in row—echelon
form, the j; increase strictly with i. Example here.

Then do the following elementary row operations.

e Fori=rdown to 1, multiply the i—th row of A by 1/a; ;..
— Fork=i—1downto k=1, subtract Qi times the i-th row from the k-th row.

At each step you update the matrix A. Here is what is happening. First you make the
last pivot take the value 1. Then you subtract a suitable multiple of this pivot row
from all the rows above it to make the terms above the pivot 0. Then you repeat this
on the next-to-last pivot. Notice that because of the previous operations, this does
not affect the Os already produced.

After these operations are complete each pivot column has a 1 for a pivot and a
0 in all other entries. No improvements is made to the free columns.

After this process the matrix is in reduced row echelon form.

Definition 2.6.1. A m x n matrix A in reduced row—echelon form if has two different
kinds of columns.
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1. For i =1to r, column vecaj, has a 1 is position (i, j;) and zeroes every where else.
Furthermore j; < j;11, for i < r. They are called the pivot, or bound columns.

2. For any column a;, with j; <[ < ji1+1, then ag = 0 for k > i. These are the free
columns. There are n — r of them.

Therefore the rows a’ with i < r have their first non—zero element in position j;. The
other rows are 0.

Need examples here.

Remark 2.6.2. When we studied elimination in systems of linear equations in Chap-
ter 1, we arranged by changing the order of the variables to have all the bound
columns on the left, and the rows with all coefficients zero at the bottom.

Example 2.6.3. In the following matrices, a, b, ¢, d, e, f denote arbitrary scalars.
The matrices

1a00 1aOc
A=10010] andB={0015b
0001 0000

are in reduced row echelon form. Columns 1, 3 and 4 of A are bound. Columns 1
and 3 of B are bound. The matrices

1a00b 100ab
C=(0010c|] andD=|010cd
0001d 001lef

are also in reduced row echelon form. Columns 2 and 5 of C are free; columns 4 and
5 of D are free.

Exercise 2.6.4. Put the matrices of Example 2.5.6 into RREF form.

2.7 Solving Linear Systems of Equations

Next we record the following elementary consequence of matrix multiplication. Do
not forget Example 2.5.1.

Theorem 2.7.1. Consider the system of m equations in n variables, written in matrix
notation as AX = b. As always A is the m x n matrix (a;;), X is the n column vector
with coordinates xj and b is the m column vector with coordinates b;.

1. This system can be written as the vector equation
xja; +xa + - +x,8, =b (2.15)

where aj is the j-th column of A.
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2. It can also be written as the system of m matrix products
alx=>b;,1<j<n, (2.16)
where al is the j-th row of A.

Recall that when b is not the zero vector, the inhomogeneous system may be
inconsistent: no solutions at all. In §1.3 we showed how elimination allows us to
determine effectively when this is the case.

Suppose we take a linear combination of the rows of Ax =b. A moment’s thought
we tell you that this amounts to multiplying the system on the left by the row vector
y' of length m: then

yAx =y'b. (2.17)

This is a single equation that is the sum of y; times the first equation, y, times the
second equation, ..., up to y,, times the last equation. It can also be written

yial 4 yua™ = yiby 4+ Vb

So it is a linear combinations of the rows of the system of equations, if the system
has a solution, the equation (2.17) must have a solution. In fact we have:

Theorem 2.7.2. The equation AX = b has a solution X if and only if there is no
vector'y in F™ with
YA=0 and yb#0.

Proof. Assume there is a solution x. Then just multiply the system Ax = b on the
left by the row vector y’. We get

Y (Ax) = y'b.

Since this is a linear combinations of the rows of the system, it must have a solution
in x. By the associativity of matrix multiplication, the left hand side can be written
(y'A)x. Thus for any y such that y’A = 0, we must have y’b = 0, since otherwise we

get the absurd equation 0 = y’b # 0.
To prove the converse, we must use row reduction. Rather than doing it again,
refer to Corollary 1.3.5. It is a good exercise to rewrite the proof in matrix notation.
O

This proves the result because Theorem 2.5.11 tells us that we only need to con-
sider systems Ax = b where the matrix A is in reduced row echelon form, since the
original system will have the same solutions as the one where A is in row reduced
echelon form, and the corresponding row operations have been made on b. Let us
make that assumption, and see what we can deduce.

First we assume our original system is homogeneous, so b = 0 after any row
operation. We may throw out all the bottom rows of the system of the form 0 = 0.
The number of equations, which we still call m, may therefore be smaller than the
number of equations we started out with.
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Since A is in RREF form, in the i-th equation, the variable with non-zero coeffi-
cient of smallest index is x;;, where the indices j; are strictly increasing in i, and thus
all distinct. These variables are called the pivot variables or the bound variables, and
they give the bound columns of Definition 2.6.1. These are the same pivot variables
as defined in Chapter 1. The remaining n — m variables are called the free variables,
and they give the free columns. We can use each one of the m equations to write
each x;, in terms of the free variables, which can take on arbitrary values. Thus we
can solve the homogeneous system. If m = n the system has a unique solution: the
trivial solution. If m < n, then the n — m free variables can take on arbitrary values,
so the solution is not unique. We will not pursue this here: see Proposition 5.7.2.

Examples of homogeneous systems here. Mention that there many be several
ways of choosing the bound variables.

Now we assume the system is inhomogeneous. Theorem 2.7.2 gives a criterion
for the existence of a solution. So assume that the system has at least one solution.

Row reduction may create equations where both the left hand side and the right
hand side are 0. Those we can just discard. Thus the number of rows in the system
may decrease after row reduction.

Prove in matrix notation the very first theorem of the previous chapter:

Exercise 2.7.3. If x; and x; are distinct solutions of an inhomogeneous system, then
X| — X is a solution to the corresponding homogeneous equation.

Examples of inhomogeneous systems here. How to do this in practice.

2.8 Elementary Matrices

It is a remarkable fact that the three types of elementary row operations of Defini-
tion 2.5.2 can be achieved by left multiplication of the matrix A by suitable square
matrices, which we call elementary matrices.

We introduce the three types of elementary matrices, and show they are invert-
ible. We first define the matrix /,; to be the square matrix with a i, = 1, and zeroes
everywhere else. So for example in the 3 x 3 case

000
bhy=1001
000

Now we define the elementary matrices.
Definition 2.8.1. Elementary matrices E are square matrices, say m X m. There are
three types of elementary matrices.
1.
E.(c):=14(c—1)I,.
E,(c) is diagonal with a 1 for all diagonal elements except the r-th, where it has
c.
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2.
erSar # Sa

is the matrix that has

e a1 in all the diagonal entries except those with index (r,r) and index (s, s);
e a1 in the two entries with indices (r,s) and (s,r);
e a0 in all other entries.

3. The matrix
Es(c) :=1+cly,r #s.

Proposition 2.8.2. Here is how the elementary matrices E transform the matrix A
by left multiplication: EA.

1.
E (c) =14 (c— 1)y

multiplies the r-th row of A by c.
2. T, interchanges row r of A with row s and leaves the rest of A unchanged.
3. Exs(c) :=1I+clys, v # s, adds c times the s-th row of A to the r-th row of A.

Proof. This is a simple exercise in matrix multiplication, left to you.

Example 2.8.3. Here are some 3 x 3 examples of elementary matrices, acting on the
3 x 4 matrix
ap aiz 413 a4
A= | a1 ax ax ax
as| az as3 ass
1. Since
c00
Ei(c)=1010],
001

matrix multiplication gives
cayy cai2 capz cdig

E\(c)A= | ax ax axan
az1 a3 azas4

2. Since
100
Ts=[001
010

we get

ap app a1z ais
T3A = | a3z a3 azz aza
az1 axy a3 ax
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3. Since
10c¢
Ein(c)=(010
001

we get

a1 +caszy ain+cazy apz+casz aig+cazs
Ei3(c)A= az; ay an an
asy as asz as4

Here is an essential feature of elementary matrices.
Theorem 2.8.4. All elementary matrices are invertible.

Proof. The proof is an simple computation in each case: For each type of elementary

matrix £ we write down an inverse, namely a matrix F' such that EF =1 = FE.
For E;(c) the inverse is E;(1/c). T;; is its own inverse. Finally the inverse of Ej;(c)

is E,'j(—c). O

Remark 2.8.5. The matrices E;j(c) and T;; are symmetric, while the transpose of
Eij(c)is Ej,'(c).

We stated when two m X n matrices are row equivalent in 2.5.2. Now we prove

Theorem 2.8.6. Two m x n matrices A and C are row equivalent if there is a product
of elementary matrices E such that C = EA. Then the system of linear equations with
augmented matrix (A | b) is transformed to (EA | EDb).

Proof. This is clear, since any row operation can be achieved by multiplication by
an elementary matrix. d

Here is an important generalization. Again assume the coefficient matrix of a
linear system is the m x n matrix A. Instead of taking an augmented matrix with
only one column b, take one with / columns. Call it B. Thus B is a m x [ matrix.
Because we only do row operations, the different columns do not interact with each
other, so we can do row operations on each of the systems where the coefficient
matrix is A, and the right-hand side is b;, 1 <i <[, the columns of B. We write
this augmented matrix as (A \ B). This allows us to solve / systems with the same
coefficient matrix simultaneously.

Corollary 2.8.7. If left multiplication by product of elementary matrices E puts A
is row-echelon form then the augmented matrix is (EA | EB). The same holds if E
puts A in RREF form.

This is a convenient way of solving several systems of linear equations with the
same left-hand side simultaneously.

From now on we consider the important case where the coefficient matrix A is
square.
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Proposition 2.8.8. If A is a square matrix, and if B is row equivalent to A, then A
has an inverse if and only if B has an inverse.

Proof. Any product of elementary matrices E is invertible by Theorem 2.8.4. If A is
invertible, then by Proposition 2.3.7 B = EA is invertible, with inverse A~'E~!. By
the same argument, if B is invertible, sois A = E -1p, O

Remark 2.8.9. So being invertible or not is a property of the equivalence class. An
interesting question is: how many equivalence classes contain invertible matrices.
This can be easily established by looking at reduced row—echelon form.

Exercise 2.8.10. Using RREF form, list all the equivalence classes of n x n matrices.

Theorem 2.8.11. The square matrix A is either row—equivalent to the identity matrix
I, and therefore invertible, or it is row—equivalent to a matrix with bottom row the
zero vector, and not invertible.

Proof. By Theorem 2.5.9 A is row—equivalent to a A’ in row—echelon form. By Re-
mark 2.5.7, A’ is upper-triangular, so the only possible non-zero entry in the bottom
row is a,. If a,, # 0, then since A is row reduced, all the previous diagonal ele-
ments are non-zero.

Under this hypothesis, if we put A in reduced row-echelon form, we may make
all the diagonal elements 1, all the terms above the diagonal 0, so we get the identity
matrix. Therefore A is row equivalent to /.

If a/,,, = 0, we are in the second case. O

Proposition 2.8.12. Let A be a square matrix with one row equal to the zero vector.
Then A is not invertible.

Proof. Assume the i-th row of A is the zero vector. Multiply the matrix A by the
column vector e;, which has a 0 in all entries except the i-th where is has a 1. Then
matrix multiplication shows that Av = 0. Assume A has an inverse B. Then by the
associativity of matrix multiplication v = (BA)v = B(Av) = B0 = 0, a contradiction.

O

Finally, we get to a key result of this section: we only need to assume that A has
an inverse on one side, for it to have an inverse.

Theorem 2.8.13. Let A be a square matrix which has a right inverse B, meaning
that AB = I. Then A is invertible and B is its inverse.

Similarly, if A has a left inverse B, meaning that BA = I, the same conclusion
holds.

Proof. Suppose first that AB = I. Perform row reduction on A. By Theorem 2.8.11,
there are elementary matrices Ey, Ey, ..., E; so that the matrix C = E;...E{A is in
reduced row—echelon form. Write E = Ey ... E].

Then multiply by B on the right and use associativity:

CB = (EA)B = (E)(AB) =E.
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This is invertible, because elementary matrices are invertible. Therefore all the rows
of CB are non-zero by Proposition 2.8.12. Now if the i-th row of C were 0, then
matrix multiplication shows that the i-th row of CB is 0. This is impossible since CB
is invertible. So C is invertible. Since A is row-equivalent to C, it is invertible.

To do the direction BA = I, just interchange the role of A and B to find that B is
invertible. But then A = B~! is invertible. O

Now we can establish a good method for computing the inverse of a square ma-
trix. This is a special case of Corollary 2.8.7.

Theorem 2.8.14. Let A be an invertible n X n matrix and I the identity matrix of size
n. Then the product E of elementary matrices that reduce A to the identity matrix is
the inverse of A.

Proof. Since EA=1,A"' =E. o

Here is how one usually sets up the computation. Do row-reduction on the aug-
mented matrix (A | 1 ) until you have reached the identity matrix by row-reduction.
Since A is invertible, by Theorem 2.8.11, A row-reduces to the identity, so the row
reduction by E on (A | 1 ) gives (EA | E ) Therefore the inverse of A appears on the
right-hand side of the augmented matrix when the left-hand side reaches int identity
matrix.

Examples of this process here.

Exercise 2.8.15. Let A be a square matrix.

1. If A2 = 0, then I — A is invertible, with inverse I + A;
2. More generally, if A" = 0 for some positive integer n, then / — A is invertible;
3. More generally, if A satisfies an equation

A+ ep AT A=

where the ¢; are scalars, then A is invertible. Hint: just factor the left hand side.
4. What is the inverse of I + A, where A is the matrix of Example 2.3.12?

Exercise 2.8.16. Find all 2 x 2 matrices such that A2 = 0.

A4 — (cos 0 —sin6
~ \sin® cos6
1. determine A2, A3, ..., A" using the trigonometric addition formulas and induc-

tion.
2. Let A act on (x,y) € R? by matrix multiplication:

N\ cos® —sinB) (x\ (xcosf —ysin0
y sinf cos6 y) \xsinB+ycos6

What happens to R??

Exercise 2.8.17. Let
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3. Does this explain your result in the first part of this exercise?

Exercise 2.8.18. The trace trA of a square matrix A of size n is defined as the sum
or the diagonal terms of A:

trA=aj+ax+-+auy.

. Show trA” = trA.

. Show trA = trA and trA* = trA.

. If B is a second square matrix of the same size, show tr (A + B) = trA +trB.

. Prove that tr (AB) = tr (BA).

. If C is a third square matrix of the same size, show that tr (ABC) = tr (CAB) =
tr (BCA). Give an example where tr (ABC) # tr (ACB).

6. If B is invertible, then tr (B~'AB) = trA.

O O R S

Remark 2.8.19. The first five chapters of Artin’s book [1] form a nice introduction to
linear algebra at a slightly higher level than here, with some group theory thrown in
too. The main difference is that Artin allows his base field to be any field, including
a finite field, while we only allow R and C.

Exercise 2.8.20. Reduce the matrices in Example 2.5.6 either to a matrix with bot-
tom row zero or to the identity matrix using left multiplication by elementary ma-
trices.

For example, the first matrix

123
040
001
backsubstitutes to
123 120 100
010],then{010],then{010
001 001 001

2.9 Block Decomposition of Matrices

A good reference for this easy material is the classic [9]. As the authors say, facility
with block matrix notation is crucial for matrix computation, which is why we study
it here.

It is often convenient to think of a matrix as being made up of a grid of smaller
submatrices. Here is the general procedure. There is nothing difficult except for the
notation.

Definition 2.9.1. Let A be a m X n matrix. Write m as the sum of positive numbers
my, ..., mg and n as the sum of positive integers ny, ..., n;.
Then we can write
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A”Alz...Alt

A21 A22 A2t
A=

A:vl ASZ A.st

where A"/ is the m; x n ; submatrix of A in the appropriate position. So there are st
submatrices. By definition all blocks in a given column share the same columns of
A, while all blocks in a given row share the same rows of A.

This is known as partitioning, or decomposing, the matrix into blocks.

Example 2.9.2. The 3 x 4 matrix

aip a2 b1z bis
M = | az1 ax b3 by
€31 €32 d33 d3g

can be partitioned into the blocks
AB
= (eo)

where A and B are 2 x 2 matrices, and C and D are 1 x 2 matrices. So in this example
s=t=2,and m; =n; =ny =2 while mp = 1.

Matrix multiplication behaves nicely with respect to block decomposition. So if
some of the blocks are repeated or are simple (for example the identity matrix or
the zero matrix) block multiplication can speed up the computation of the matrix
product. Here is the main theorem of this section.

Theorem 2.9.3. Let A be a m X n matrix block decomposed according to Definition
2.9.1. Let B be a n x p matrix block decomposed along its rows exactly as A is along
its columns, and where p = p1 + - - -+ p,, is the block decomposition of its columns,
S0

Bll Bl2 Blu

BZI 322 B2u
B =

ét] B.s2 étu

Thus B/* is an i X pr submatrix of B. Then AB = C, where the m X p matrix C can
be blocked decomposed as

Cll C]Z “.Clu

C21 C22 ”.C2t
C:

C.sl C:s2 .“Clvsu '

where C* is a m; x p ; matrix such that
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t
Cik:AilBlk+Ai232k+"'+AitBrk: ZAIJBjk (218)
j=1
Note that (2.18) is Definition 2.2.3 with blocks replacing numbers.

Proof. The details of the proof are left to the reader. First notice that the matrices on
the right hand side of (2.18) are of the appropriate size to be multiplied and added..
Finally just check that for each entry of the matrix C** you have all the terms of the
appropriate entry of C: all that is needed is Definition 2.2.3. a

An important special case occurs when the matrices A and B are square, meaning
that m = n = p, and when the diagonal blocks are also square, implying that s =1,
and m; = n;, 1 <i < n.In this case, A" is an n; X n; matrix.

Example 2.9.4. Let A be an m X n matrix and let B be an n X p matrix. Let C be the
product matrix AB of size m x p. We block decompose A with

m=mj+my;

n=n,
so there is no decomposition into columns. We block decompose B with

n=n,

p=Dp1+p2,

so there is no decomposition into rows. So

A

All
= (AZI), B=(B'"' B?) (2.19)

Then C can be partitioned according to the partition of the rows of A and the

columns of B so that .
ct'c
C= (C21 sz) (2.20)

with C/ = A1 BlJ.

Example 2.9.5. If A and B are decomposed in the other direction, with the common
index n written as n; + ny for both matrices, and no decomposition of the other
indices m and p, then we can write the matrix product as

(A1 A12) (g;) _ Al L g12p21

You should check that the matrix multiplications and the matrix addition on the right
hand side are well defined.

Exercise 2.9.6. Let
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1 =2

1 =21
A= :? g andB:<_3 ) ())

Break A into two blocks

All (13 —22> A2 = (—13)

Now break B into two blocks so that the decomposition of the column size (3 =
2+ 1) of A agrees with that of the row size (3 =2+ 1) of B.

n_ (1 =2 2_ (1
B = (575 7= (o).

This allows block multiplication. Check that the formula of Example 2.9.4 applies
by computing the matrix product two ways.

Definition 2.9.7. Assume that the matrix A is square of size n and that its diagonal
blocks A" are square of sizes ny, ny, ..., ng withn=n; +ny+--- +nj.

e Then A is block diagonal if AV i # j, is the zero matrix:

Al 0 ... 0
0 A2 ... 0

A= . . . (2.21)
0 0 ...A%

e A s block upper triangular if AV, i > j, is the zero matrix:

All A12 Als
0 A% .. A>

A= . . . . (2.22)
0 0 ...A%

In the same way we can define block lower triangular.

Proposition 2.9.8. Assume A and B are square matrices of size n, and and that
blocks are of size ny, ny, ..., ngwithn =n; +ny +--- +n.

e [fthey are both block diagonal, their product C = AB is also block diagonal, with
C'' = AB", Furthermore

A 0 ... 0
0 A2k 0
A= ( .) . (2.23)

0 0 ... (A%
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e [fA and B are both block upper triangular, then so it their product.

Proof. We prove Proposition 2.9.8 using the main theorem. The diagonal case is
trivial, so let’s just consider the upper triangular case. If C = AB we must show that
Cix = 0 when i > k. By hypothesis A” = 0 when i > ¢ and B'* = 0 when ¢ > k. By
(2.18) this means that the only non-zero terms in the sum are those with i <7 < k.
Since i > k, there are no such terms. O

Example 2.9.9. A special case that will be important to us in the one where A and B
are both square of size n = r 4+ s and decomposed as

AL 712 i Bl g2
AZl A22 B21 B22 .
where A!! and B!! are r x r matrices,
A'2 and B'? are r x s matrices,

A% and B?! are s x r matrices,
A% and B?? are s X s matrices. Then

AlLBIL 4 A12521  flipl2 | 412p22
AB = <A2‘B” LARR p2ige +A22322)
If A and B are both block upper triangular, meaning that A>' and B?! are both the
zero matrix, then their product AB is also block upper triangular. It is easier to check
in this special case that the formula is correct.

Exercise 2.9.10. Let A be a 4 x 2 matrix and B be a 2 x 4 matrix, written in block
form as in (2.19), where all the blocks are 2 x 2. Further assume that

1 1 2 1
11 _ 421 _ 11 _ pl2 _ .
A=A —(1 2) ,and B =B —<1 1),

Write out the matrices A and B, compute the product AB directly, and then compute
it by block multiplication.

Exercise 2.9.11. If you have the block decomposition of a matrix A, write a decom-
position for its transpose A7 .

2.10 Column Operations

This short section will only be used in $ 7.5 and can be skipped. There is noth-
ing special about row operations. We can also perform column operations. Because
(EA)" = A’E", the matrix E' , when multiplying A’ on the right, performs column
operations on A’. For simplicity we only write the result when A is symmetric. This
is the only case we will need later. Then by analogy with Proposition 2.8.2 we have
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Proposition 2.10.1. Here is how the elementary matrices E transform the matrix A
by right multiplication: AE.

1. E,(c) multiplies the r-th column of A by c.
2. T, interchanges columns r of A with column s and leaves the rest of A unchanged.
3. Exs(c),r # s, adds c times the r-th column of A to the s-th column of A.

Proof. This is also a simple exercise in matrix multiplication, left to you. Note the
reversal of the roles of r and s in the third item. This is because the transpose of

E(c) is Eg(c).



Chapter 3
Vector Spaces

Abstract The reader is presumably familiar with the definition of a vector in a space
of dimension n: an ordered n-tuple of numbers. These n-tuples can be added, simply
by adding corresponding entries, and can be multiplied by a number by multiplying
each entry of the vector by that number: this last operation is called scalar mul-
tiplication. In this chapter we formalize these notions. First we look carefully at
what properties of numbers we need to make the operations, say, of the last chapter.
Because we allow different kinds of numbers (in this book only real and complex
numbers) we refer to the numbers as scalars. Then we make the first fundamental
definition of the book: that of a vector space. We simply axiomatize the rules of
vector addition and scalar multiplication given above. Then we define a basis of a
vector space, and define a finite dimensional vector space as a vector space that ad-
mits a basis with a finite number of elements. One of the most important and subtle
theorems of linear algebra then tells us that all bases of a given vector space have
the same number of elements. That number is called the dimension of the space. An
easy corollary, using a basis, that a finite dimension vector space is in bijection with
the set of ordered n tuples of scalars, so we recover the definition you know, but at
the cost of choosing a basis. The chapter continues with one important method of
deriving new vector spaces from old ones: direct sums.

3.1 Scalars

The coefficients of linear equations, and the entries of matrices are called scalars. In
this book they will either be real numbers or complex numbers. It is worth writing
down the properties of the scalars that we will use: they form a field, that we denote
F'. This means that they satisfy the following properties.

e Any two elements a and b of F can be added: a+ b € F and multiplied: ab € F.
Both operations are commutative, meaning that a + b = b+ a and ab = ba. They
are also associative: (a+b)+c=a+ (b+c) and (ab)c = a(bc).

51
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e The element 0 is the neutral element for addition, so that for everya € F,a+0=
0. Every a € F has an additive inverse —a, so that a+ (—a) = 0.

e The element 1 # 0 is the neutral element for multiplication: for every a € F,
la = a. Every element a € F other than 0 has a multiplicative inverse a~! such
that aa=!' = 1.

To establish these properties for complex numbers consult Section B.5.

Each one of our two fields of choice, the real numbers and the complex numbers,
have an important property that we now recall.

The real numbers are ordered. This means that any two real numbers a and b can
be compared: we either have a < b, a = b or a > b. The complex numbers do not
share this property.

The complex numbers are algebraically closed: every polynomial f(f) with com-
plex coefficients has a complex root, meaning that there is a complex number ¢ such
that f(c) =0.

3.2 Vector Spaces

Now we can make the first of the two key definitions of this course: that of a vector
space V over the field F. The elements of a vector space are called vectors, naturally.

Definition 3.2.1. A vector space is a set equipped with two operations:

1. Scalar multiplication, which associates to a scalar @ € F' and a v € V an element
written av € V.
2. Addition, which associates to elements v and w in V the element v+win V.

These operations satisfy the following eight properties:

VS 1 Addition is associative, meaning that for any u, vand win V,
(u+v)+w=u+(v+w).
VS 2 There is a neutral element for addition, denoted 0, so that
0+v=v+0=v.

VS 3 There is an additive inverse for any element v € V, written —v, satisfying
v+ (—v)=0.

VS 4 Addition is commutative, so that foralluand vin V,
ut+v=v+u

VS5  Scalar multiplication distributes over vector addition: if a is a scalar, then

a(u+v) =au+av.



3.2 Vector Spaces 53

VS 6  Scalar multiplication distributes over scalar addition: if a and b are scalars,
then
(a+b)v=av+bv.

VS 7 Multiplication of scalars and scalar multiplication are associative: If a and
b are two scalars, then
(ab)v = a(bv).

VS 8 Normalization: if 1 denotes as usual the multiplicative neutral element of F,
lv=vw.

The first four properties only concern vector addition in V: as we will learn later,
the first three say that V is a group for addition, and the fourth that this group is
commutative. The remaining four properties describe the interaction between vector
addition and scalar multiplication.

Example 3.2.2. We start with a trivial example. Over every field, there is a vector
space consisting just of the element 0. We could write it R® or C°, and we call it the
trivial vector space.

Example 3.2.3. The most important examples are the real vector space R” of ordered
n-tuples of real numbers, and the complex vector space C” of ordered n-tuples of
complex numbers. Here n is any positive integer. We write a vector in each one of
these spaces as v = (vq,vy,...,V,), where each v; is a scalar. Scalar multiplication
of a vector v with the scalar a is

av = (avy,avy,...,avy)
while addition of vectors is
V+w=(vi+wi,vo+wa, ..., v+ wy).
The neutral element for addition is clearly
0=(0,0,...,0).

In particular R' = R is a vector space over the reals, and C! = C is a vector space
over the complex numbers.

Example 3.2.4. A special case of this example is the space of all m x n matrices.
Similarly the set of all symmetric matrices is a vector space.

Example 3.2.5. The set of solutions of a homogeneous system of equations Ax = 0
is a vector space.

Example 3.2.6. The space of polynomials F[t] is a vector space over F. By the defi-
nitions of §C.1 addition is just addition of coefficients of the same degree: if

g(t) =but" +by1t" '+ +bit+ by



54 3 Vector Spaces
is a second polynomial, then (assuming n > m)
F(6)+8(t) = bt + ... (am + b))t + -+ (a0 + bo).
Scalar multiplication is
cf(t) = camt™ +cam 1"V 4+ cart +cag
The next example is more abstract, but quite important.

Example 3.2.7. Let V be the set of all maps on any set S into a vector space W. Then
we may add two such maps f and g in V by defining the sum map f + g by

(f+g)(s)=f(s)+g(s), foralls € S.

In this equation the + on the left hand side is the definition of addition in V in terms
of the right hand side, where the + is simply addition in W.

Similarly we define a scalar multiplication by letting af, a € F be the map whose
value at s € S'is

(af)(s) = a(f(s))-

The multiplication af on the left hand side is the definition of scalar multiplication
in V in terms of the right hand side, where the multiplication is scalar multiplication
in W of a by f(s). The neutral element 0 of V is the map that takes every s € S to the
neutral element of W. We then need to check the remaining properties of a vector
space: for example the inverse of the map f is the map g such that g(s) = —f(s)
This makes V into a vector space, since all the other properties follow from the fact
they are true in W.

Example 3.2.8. The complex numbers form a vector space over the real numbers.
Indeed, any complex number can be written a + bi, where a and b are real: for
more details see Chapter 1. The two operations that give the complex numbers the
structure of a real vector space are

e scalar multiplication is multiplication of a complex number by a real number c:
c(a+bi) = ca+ chi.
e vector addition is just the addition of two complex numbers:
(a+bi)+ (c+di) = (a+c)+ (b+d)i.

These operations are exactly those of R?. Note that we do not need the full strength
of the multiplication of two complex numbers.
On the other hand, R is not a vector space over C.

Next we prove the important cancelation rule for vector addition. Note that in-
stead of writing u+ (—v) we write u —v. Thus v—v =0.



3.3 Subspaces 55
Theorem 3.2.9. Ifu, v and w are elements of a vector space V, and if
U+v=w-+v,

then u = w.

Proof. We give all the details of the proof: add to each side of the equation the
additive inverse —v of v, which exists by VS 3. Then we have

(u+v)—v=(W+v)—v.
Next we use associativity (VS 1) to get
u+(v—v)=w+(v—v).
Finally we use VS 2 to get the conclusion. a

Corollary 3.2.10. The additive identity is unique. The additive inverse is unique.

Proof. Assume there were two additive identities 0 and 0'. But then for any v € V,
V+0=v=v+0

so after cancelation 0 = /. The same proof works for the additive inverse. a

Proposition 3.2.11. We now deduce some additional properties of the operations of
vector spaces.

e ForallveV,0v=0. Indeed, OV+1v=v by VS 6, and v=0+v by VS 2. Now
finish by using VS 8 and then cancelation.

e (—1)v = —v. In other words, multiplying a vector by the number —1 gives its
additive inverse. Thus we must show

v+ (—1)v=0.

Since v=(1)vby VS 8, v+ (—1)v= (1 —1)v by VS 6 and so we are done by
what we just proved.

In the exercises below, V is a F-vector space.

Exercise 3.2.12. Show that a0 =0 for alla € F.
Exercise 3.2.13. If a #£ 0, then if av =0, v=0.

3.3 Subspaces

A subspace W of a vector space V is a subset that is a vector space in its own right,
using the operations of V. To check that W is a subspace, we must show that it is
closed under the operations of V. In other words,
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Definition 3.3.1. A subset W of the vector space V is a subspace of W if

l.Forallvandwin W,v+wisin W;
2. For all scalars a € F and all w € W, then aw is in W.

This implies that 0 is in W, since 0 = Ow, for any w € W.

Note that the trivial vector space (Example 3.2.2) is a subspace of any vector
space. The space V is a subspace of itself. We call both of the subspaces the trivial
subspaces of V.

Example 3.3.2. Check that the following subsets are actually subspaces.

e The subset of all triples in R? where the last entry is 0: (v1,v2,0).
e The subset of all n-tuples in R" where the last entry is O: (vy,...,v,_1,0).

Example 3.3.3. In the vector space of polynomials in ¢ over F, consider the subset
Py of polynomials of degree at most &, for any integer k. Show P is a subspace of the
vector space of polynomials over F. Explain why the polynomials of degree exactly
n do not form a subspace.

Example 3.3.4. As before let V be the set of functions on a set S. Consider the subset
Vs of functions in V that vanish at a fixed point s € S. Show Vj is a subspace.

The key example for us is

Example 3.3.5. If A is a m X n matrix with coefficients in F, then the set of solutions
of the homogeneous system of equations Ax = 0 is a subspace Ny of F".

Show that if the system is not homogenous, then the set of solutions is not a
subspace.

See Theorem 4.2.2 for a restatement of this result: N4 will be called the nullspace
of the linear map associated to A.

Definition 3.3.6. If V is a vector space, and vy, ..., v, a collection of r elements of
V, then any expression

aivi+azvy+---+a,v,, where all a; € F,
is called a linear combination of vy, ..., v,.

Proposition 3.3.7. Given a collection vy, ..., v, of elements in'V, the set of all linear
combinations of these vectors is a subspace of V, called the subspace generated by
the elements vy, ..., V,.

Proof. The only difficulty is understanding what needs to be proved. Let W be the
space of all linear combinations. Thus if v and w are in W, we have

v=aivi+ava+---+a,vy
wW=>b1Vi+byvo+---+bv,
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so that
V+w=(a;+b1)vi+(az+b2)va+ -+ (ar+b,)v,

which is a linear combination, so in W. The other property is even easier to prove.
O

Two important ways of producing new subspaces are by intersection and by sums
of subspaces. If U and W are subspaces of a vector space V we let U NW be their
intersection. This is a purely set-theoretic construction. On the other hand, let

U+W ={u+w|VuelU\VweW}
be their sum. This depends on having addition in V.

Proposition 3.3.8. I[f U and W are both subspaces of the vector space V, then U NW
is a subspace of V.

Proof. This is elementary set theory. If wis in U "W, then u is both in U and in W.
Since U is a subspace, cu is in U for every scalar c; since V is a subspace, cu is in
W for every scalar c. So cuisin UNW.

If wand v are in U "W, then u is both in U and in W, and v is both in U and in
W.Sou+vinin U, because U is a subspace, and it is also in W, because W is a
subspace. Thusu+visin UNW. a

Proposition 3.3.9. IfU and W are both subspaces of the vector space V, then U +W
is a subspace of V.

Proof. Take two elements u; +w; and up + wy in U +W. We must show that their
sum is in U + W. This is clear because

(u1+w1)+(u2+w2) = (u1+u2)+(w1+w2) cU+W.

Notice how we have used the associativity and commutativity of addition. The sec-
ond property is even easier to prove, and left to you. a

Exercise 3.3.10. If U is the subspace generated by uy,...,u, and W is the subspace
generated by wy, ..., w,, then U + W is the subspace generated by

up,..., 0, Wi,...,Ws.

Examples in R3.
It is important not to confuse affine subspaces with linear subspaces.

Example 3.3.11. In R? with coordinates x; and x,, let L be the line with equation:
aixy +axxy =b.

Assume that a; and ap are not both 0. Then if b # 0, L is not a linear subspace of
R2, since 0 is not a point of L.
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3.4 Bases

Before getting to the definition of a basis, we need two preliminary definitions.

Definition 3.4.1. V is again a vector space over F, and vy, ..., v, elements of V.
Then vy, ..., v, are linearly dependent if there are elements a;,a;,...,a, in F, such
that

aivy+azvy +---+a,v, =0, where not all the a¢; = 0. 3.1

Such an equation is called an equation of linear dependence. The key requirement
is that the a; cannot all be 0. Otherwise we could set all the a; to be zero, and all sets
of vectors would be linearly dependent.

If no equation of linear dependence exists, then the elements vy, ..., v, are lin-
early independent.

Example 3.4.2. If one of the v; is the zero vector, then the collection of vectors is
linearly dependent, since for any scalar a, a0 = 0. See Exercise 3.2.12. On the other
hand, if v is not the zero vector, the set consisting just of v is linearly independent
by Exercise 3.2.13.

Example 3.4.3. In F3,leti= (1,0,0),j=(0,1,0) and k = (0,0, 1). Prove these three
vectors are linearly independent.

Example 3.4.4. Without difficulty we can generalize the previous example to F”".
For each i between 1 and n, let e; be the i-th coordinate vector in F”*, meaning that
it has a 1 in the i-th position, and a 0 everywhere else. So for example:

e; =(1,0,...,0),e, = (0,1,0,...,0),...,e, = (0,...,0,1).

Then the vectors ey, e, ..., e, are linearly independent.

Proof. Assume we have an equation of linear dependence:
aije;+aer+---+ae, =0

This can be written:
(a17a27' "’an) = (0307" M ?0)

so all the a; must be 0. Therefore our equation was not an equation of linear depen-
dence. Contradiction. O

Here is a typical use of linear independence:

Theorem 3.4.5. Let V be a vector space, and vy, ..., Vv, a collection of linearly
independent elements in V. Suppose that the following two linear combinations of
the v; are the same vector:

aivi+axva+---+arve =b1vi+byva+ -+ byv,y

for scalars a; and b;, 1 < i < r. Then a; = b; for all i, so that they are in fact the
same linear combination.
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Proof. The equation yields:
(a1 —b1)vi+(a—ba)vi+---+(ar—b,)v, = 0.

Linear independence of the v; then says that all the coefficients are equal to zero,
which is the desired result. O

Here is the second preliminary definition.

Definition 3.4.6. The vector space V is generated by vy, ..., v, if every element in
V can be written as a linear combination of the v;. We also say that the v; span V.

Example 3.4.7. The vectors e;, 1 <i < n of Example 3.4.4 span F". However if you
omit any one of them, the new collection does not span: why?

We can now make the fundamental definition of this section.

Definition 3.4.8. A basis of a vector space V is a set of linearly independent vectors
that span V. If V has a basis with a finite number of elements, it is finite-dimensional.

Notice that we have defined what it means for a vector space to be finite dimen-
sional without defining its dimension: that we will do in the next section.

A word of warning: zero-dimensional vector spaces do not have a basis. This
means that zero-dimensional spaces have to be handled specially. Since they are
trivial spaces (they only have one element: 0) this is not too much of a problem.
We will usually be concerned with finite dimensional vector spaces, but we want a
definition that applies to infinite dimensional vector spaces.

Example 3.4.9. The vectors e;, 1 <i<nof F" in Example 3.4.4 form a basis. Indeed
we have already seen that they are linearly independent, and that they obviously
span. This basis is called the standard, or the natural basis of F".

Example 3.4.10. The vectors 1, ¢, 2, ...,¢", ... form an infinite basis for the polyno-
mial ring F[¢]. It is clear that they generate. Let us show they are linearly indepen-
dent. This is always shown by contradiction: suppose there is an equation of linear
dependence between a finite number of the basis element. This would imply that
there is a polynomial of degree m:

f(t) = ant™ +am_1t"' + - +ait+ap
that is identically equal to the zero polynomial. This cannot be.

Exercise 3.4.11. This is a continuation of Example 3.2.7. We now require that S be
a finite set, and let V be the vector space of functions from S to R. For any s € S, let
is be the function that takes the value 1 on s, and 0 on all the other points of S. Show
that the i;, s € S form a basis for V. So V is a finite dimensional vector space. For an
arbitrary subset T of S, let

ir=Y i,

seT
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so i is an element of V. Then

i (s) 1, ifseT,;
ir(s)=
’ 0, otherwise.

which is why ir is called the indicator function of 7. Note that we have already
written i7 as a linear combination of the basis elements: where?

Definition 3.4.12. By Theorem 3.4.5, any v in the finite dimensional vector space V
can be written uniquely as

v=a1vi+avi+---+a,v,

with respect to the basis vy, ..., v,. The a; are called the coordinates of v with
respect to the basis.

In F" we write vectors as ordered r-tuples of F: (aj,ay,...,a,). Using the stan-
dard basis of F" given in Example 3.4.9, we see that the g; are the coordinates with
respect to the standard basis, justifying the terminology in Chapter 2.

Example 3.4.13. This yields one of the most important maps of linear algebra:
the mapping C»: V — F” that associates to any vector v € V with basis & =
{v1,...,v,}, the r-tuple of coordinates (aj,a,...,a,) of v. We will have more to
say about this mapping later. In particular we will show that it is a linear map (Ex-
ample 4.1.9) and that it is injective and surjective. The injectivity follows from the
uniqueness of the coordinates proved in Theorem 3.4.5, and the subjectivity then
follows from the Rank-Nullity Theorem of Chapter 4.

Proposition 3.4.14. Let vy, ..., v, be a maximal subset of linearly independent ele-
ments in'V, meaning that they are linearly independent, and that any element w € V
is linearly dependent on them. Then vy, ..., v, is a basis of V.

Proof. Since the vy, ..., v, are linearly independent, to show they form a basis we
only have to show they generate V. Assume they do not. Then there is an element
w € V that cannot be written as a linear combination of the v;. By the hypothesis of
maximality, we know that there is an equation of linear dependence:

aivy+---+av,+bw=20.

Because w is not a linear combination of the v;, we must have » = 0. Then, because
the v; are linearly independent, all the a; must be 0. Thus there is no equation of
linear dependence, and we have the desired contradiction. O

Along the same lines we have:

Theorem 3.4.15. Let V be a vector space of positive dimension. Assume that it is
spanned by {vi,...,V,}. Then a suitable subset of these elements forms a basis of
V.
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Proof. If these is no equation of linear dependence between vy, ..., v,, they form a
basis, so we are done. Otherwise there is an equation of linear dependence

a\vi+---+a,v, =0.

Since not all the coefficients are equal to 0, we may assume that a, # 0. Then we
may solve for v, in terms of the other generators. This shows that {vy,...,v,_}
stills spans V. Continue eliminating generators on at a time in this way until there
no longer is an equation of linear dependence. The remaining vectors form a basis.

O

The assumption that V' is positive dimensional is there only to exclude the trivial
case V = (0), in which case V does not have a basis. We will sometimes omit any
mention of this case.

It is traditional to refer to this theorem by saying that one can extract a basis of
any vector space from any set of generators.

3.5 Dimension

The key result of this section is that all bases of a finite dimensional vector space
have the same number of elements, called its dimension. This is proved by the
Steinitz exchange theorem:

Theorem 3.5.1. Let V be a vector space. Assume that it is spanned by {vy,...,v,},

and that {wy,...,w,} is a linearly independent set of vectors in V. Then r < n.
Proof. Let ¥ be the set {vy,...,v,}. Since the collection of vectors
W = {Wla"'awr}

is linearly independent, w; is non-zero, so we can write
Wi =aivy+...a,v,

where not all the scalars a; are 0. By changing the numbering of the variables, we
may assume @) # 0. Dividing by a; and solving for v in terms of

Y ={w1,v2,...,Vn},

we see that #] generates V. The set #5 = {wa,...,w,} is linearly independent so
we repeat the argument: w; is non-zero, so we can write

Wy = bW +cavo+ ...V

At least one of the ¢;, 2 < i < n must be non-zero because w; and w, are linearly
independent. By renumbering we may assume it is ¢;. Thus we can solve for v, in
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terms of
Y = {W1,W2,V3,...,V,}.

Thus 75 generates V.
Assume by contradiction that n < r. Continuing as above, replacing one element
of ¥ by an element of 7, we see that

7/n :{WhWZw“vwn}

spans. But then w,_ | can be written as a linear combination of the elements of 7},
which contradicts the linear independence of %, and we get the desired contradic-
tion. a

Corollary 3.5.2. Any two bases of a finite dimensional vector space have the same
number of elements.

Proof. Call the bases {vi,...,v,} and {wy,...,w,}. Since the vectors in both sets
are linearly independent and span, we can apply the theorem in both directions:
n <mand m < n, so we are done. O

Definition 3.5.3. The dimension of a finite-dimensional vector space V is the num-
ber of elements in one (and therefore any) basis, assuming V has a basis. To the
trivial vector space 0 we assign the dimension O.

Example 3.5.4. The dimension of F" is n. By convention this holds even for n = 0.

Exercise 3.5.5. Establish the dimensions of the following vector spaces by exhibit-
ing a basis.

The dimension of the vector space of m x n matrices is mn.

The dimension of the space of diagonal matrices of size n is n.

1.
2.
3. The dimension of the space of upper-triangular matrices of size n is w
4.
5.

. . . . . . 1
The dimension of the space of symmetric matrices of size n is @

n(n—1)

The dimension of the space of skew-symmetric matrices of size n is =———. A
skew-symmetric matrix is a square matrix such that a;; = —aj; for all i and j.

Exercise 3.5.6. Show that any square matrix can be written as the sum of a symmet-
ric matrix and a skew-symmetric matrix.

Corollary 3.5.7. Let V be a vector space of dimension n. Suppose that vy, ..., V,
are linearly independent elements in V. Then they form a basis.

Proof. By Proposition 3.4.14, if they do not form a basis, then we can find an ele-
ment v, | € V such that vy, ..., v,1 are linearly independent. This contradicts the
Steinitz Exchange Theorem 3.5.1 above. a

Corollary 3.5.8. If V is a vector space of dimension n, and W a subspace of V of
dimension n, then V. =W.
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Proof. By the previous corollary, a basis for W, namely a set of n linearly indepen-
dent elements of V, is a basis for V. O

Corollary 3.5.9. Let V be an n dimensional vector space, and W a subspace of V
that is not 0 dimensional. Then W has a basis with at most n elements.

Proof. Since W has positive dimension, we can pick a non-zero vector wy in W. This
gives a linearly independent set. If it does not span W, we may find a w; linearly

independent from wy, etc... O
Corollary 3.5.10. Let vy, ..., v, be r linearly independent vectors in the n-dimensional
vectors space V. Then n —r elements v, 1, ..., vV, can be added to that vy, ..., v,

forms a basis of V. We say any linearly independent subset of V can be completed
to a basis.

Proof. If r = n we already have a basis by Corollary 3.5.8. Otherwise, by Corollary
3.5.9, r < n. So by Definition of the dimension, we can find a v, that is linearly
independent of the first r vectors. Then repeat the argument to the » 4 1 vectors if
r+ 1 < n until you get to n vectors. Then we have a basis. a

Other examples:

3.6 Products and Direct Sums

We discuss two ways of producing new vectors spaces from old ones. We are given
two vector spaces U and W, both over the same field F'. Considering U and W as
sets, we can form the cartesian product U x W: see §B.1.

Theorem 3.6.1. U x W is a vector space, with the obvious operations:
1. Addition is component-wise
(ur, wi) + (U2, w2) = (u; 4, Wi +w2)

2. Scalar multiplication is
c(u,w) = (cu,cw)

The proof is an exercise for you.

Theorem 3.6.2. If the dimension of U is m, and the dimension of W is n, then the
dimension of U X W is m+n.

Proof. We prove this by exhibiting a basis of U x W, given a basis uy, ...u, of
U and a basis wy, ...w, of W. It consists in the elements (u;,0), ... (u,,0) and
(0,w1), ... (0,w,,).

As always we need to show these are linearly independent and span.
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Assume they are not linearly independent. Then there is an equation of linear
dependence:

ai(u,0)+ -+ an(u,,0)+b;(0,w;)+---+b,(0,w,) = (0,0)
Considering only the first coordinate, we get
aju; +---+auu, =0

which by linear independence of the u; says that all the a; are zero. doing the same
thing for the second coordinate, we see that all the b; are zero, so this is not an
equation of linear dependence and we are done.

It is left to you to show that they span. a

Example 3.6.3. R? is the product of R by R, and R” is the product of R by R” for
any positive integers k, m and n such that k+m = n.

Definition 3.6.4. The subspace of U x U of elements (u,u), for all u € U is called
the diagonal. It has the same dimension as U.

Next assume we have a vector space V and two subspaces U and W of V.

Definition 3.6.5. We say that V is the direct sum of U and W if any element v € V
can be written uniquely asu+w, foru € U and w € W. We then write V =U & W.

This definition does not require that U or V be finite dimensional. If they both
are, we have:

Exercise 3.6.6. Check that if V = U @& W, then dimU + dimW = dimV. Indeed,
U NV must reduce to (0).

We generalize this result in Theorem 4.2.11.

Problem 3.6.7. For vector spaces U and W, form the cartesian product V. =U x W.
Then let U; be the subspace of V formed by all elements (u,0), for u € U. Let W,
be the subspace of V formed by all elements (0, w), forw € W.

Then show that V = U; & W;.



Chapter 4
Linear Maps

Abstract We now get to the second key definition of linear algebra: that of a linear
map between vector spaces. These are the ‘allowable maps’ of linear algebra. The
most important linear map, and, as we will see in Chapter 5, essentially the only
example, is given by matrix multiplication: see Example 4.1.10. To a linear map we
can associate two interesting new vector spaces: the nullspace and the range, defined
in §4.2. Then we prove our first major theorem: the Rank-Nullity Theorem 4.2.8.
Then we show that the composition of two linear maps, when it is defined, is linear.
After studying the algebra of linear maps, we study invertible linear maps L: U — V.
They establish a bijection between the vector spaces U and V, and preserve the
structure of vector space, as we show in §4.5.1: we say U and V are isomorphic. By
the Rank-Nullity theorem, two vector spaces are isomorphic if and only if they have
the same dimension.

4.1 Linear Maps

Definition 4.1.1. Let U and V be vector spaces over the field F'. Then a linear map
is a map L that satisfies the following two properties:

LM 1 L(u+v)=L(u)+L(v) for all u,v € U. The addition on the left hand side
of this equation is in U, while the addition on the right hand side in in V.

LM2 L(au)=aL(u) forallu € U and all a € F. The scalar multiplication on the
left is in U, and on the rightis in V.

Exercise 4.1.2. Prove that the property L(0) = 0 follows from the definition. This is
sometimes included in the definition of a linear map, but is not needed.

Exercise 4.1.3. Prove that L(—u) = —L(u).
First let’s get two trivial examples of linear maps out of the way.

Example 4.1.4. If L takes every element of the vector space V to 0, then L is linear.
It is called the zero map.

65
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Example 4.1.5. The map L: V — V such that L(v) = v is linear. It is called the
identity map.

Remark 4.1.6. Note that a linear map can be defined for infinite dimensional vectors
spaces U and V. This is, in fact, one of the reasons for making the definition

Now for a more interesting example.

Definition 4.1.7 (Projection). Let V be a vector space that is written as the direct
sum of subspaces U and W: V =U @ W. See §3.6. So any v € V can be written
uniquely as v=u+w,u € U and w € W. Then u is called the component of v in U,
and w is called the component of v in W. The linear map P; such that Py (v) = u, its
component u in U, is called the projection from V to U along W. Similarly we have
a linear map P»: V — W, sending v to w, the projection from V to W along U. If V
is finite dimensional, then dimV = dimU +dimW.

Let’s show that P is a linear map. For any scalar ¢, cv = cu+cw, where cu € U and
cw € W since they are subspaces. For the same reason, if v =u’ +w/, withu’ € U
and w € W, then

v+vV =u4+wHu +w=u+uv+w+w

so that v+ v’ is mapped tou+u’ € U.

We could think of this map as a linear map from V to U, but via the inclusion
U C Vitis amap from V to V, and that will be our point of view.

In the same way, P is a linear map from V to V. We define the sum of the maps
P, and P, as

(PL+P) (V) =P (V) + P(v).

This is the identity map: (P, +P)(v) =u+w=1v.

Need two pictures here : in R? with two different bases as shown, one the stan-
dard perpendicular basis, the other skew, show the two projections.

Example 4.1.8. The linear map F" — F", that sets to zero any set of n —m coordi-
nates in a projection. For example F* — F* sending (x1,x2,x3,%4) — (x1,0,x3,0)
or the different projection sending (xj,x2,x3,x1) — (0,x2,0,x4).

When the subspace U is either the zero dimensional subspace or the full space
V, P is the zero map or the identity map, respectively.
For more about projections, see §4.6 .

Example 4.1.9 (Coordinate Map). For any vector space V with basis 8 = {vi,...,v,},
there is a linear map V — F" associating to v=a; vy +-- - +a,V, in V its coordinates
(a1,...,ay) in the basis. We write
aj
Vs =

dan

This linear map will be useful in §5.3. To establish the linearity we must show
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o [cv]m =c[V]m.
o [V+wls =[v]n+[ws.

To do this, just write v, cv and w in coordinates.

The following key example gives the link between linear maps and matrices in
the finite dimensional case.

Example 4.1.10 (Matrix to Linear Map). For any m X n matrix A with coefficients
in F, we get a linear map L4 : F"* — F'™ that associates to the n- column vector v the
matrix product Av.
The linearity follows from Theorem 2.2.13 on matrix multiplication that estab-
lishes:
A(B+C)=AB+AC and A(cB) = ¢(AB)

for matrices of the appropriate sizes. Let B and C be the n-column vectors u and v
to get linearity. Then

La(u+v) =A(u+v) =Au+Av=Lys(u) + Ly (V)
as required. The second verification is left to the reader.

Theorem 4.1.11. The set V of all linear maps from a vector space U to a vector
space W is itself a vector space, denoted £ (U,W).

Proof. This is closely related to Example 3.2.7, that we rewrite in part. The vector
space structure on V, and the neutral element are defined as in Example 3.2.7. The
inverse of a linear transformation L in V is the map M such that M (u) = —L(u). You
need to check that M is in V, namely that it is a linear transformation. This follows
because L is a linear transformation:

M(u+v)=—-L(u+v)=—L(u) - L(v) =M(u) + M(v)

and
M(cu) = —L(cu) = —cL(u) = cM(u)

as required. The other parts follow as in Example 3.2.7, and are left to you. a
We will use the following theorem many times to build linear maps.

Theorem 4.1.12. Let V be a F-vector space of dimension n, and W a F-vector space
of some dimension. Let {vi,...,v,} be a basis for V, and {wy,...,w,} any collec-
tion of n elements of W. There there is a unique linear map L: V — W such that
L(V,’) =W, 1 S I S n.

Proof. Since any v € V can be written uniquely as
vVv=avy;+---+a,v,, for suitable q; € F

we define



68 4 Linear Maps

L(v) =aiw+ -+ a,w,.

Thus we have a uniquely defined map L. We need to show that L is linear. First we
pick a second element v/ € V written

vV =bvi+---+b,v,

and show that
L(v+V)=L(v)+L(V).

Indeed
L(v+V') = (a1 +b1)wi +-+ (an+by)W, = L(v) + L(V').
Then for any c € F,
L(cv) = L(cayvy + -+ -+ capvy) = caywy + - - - + capw, = cL(v),
which concludes the proof. a

Exercise 4.1.13. Let L be a linear map between a vector space V of dimension n and
a vector space W of some dimension. Let {vy,...,v,} be any collection of elements
of V, and {wy,...,w,} alinearly independent set of n elements of W. Assume that
L(v;) =wj, 1 < j<n.Prove that the {vy,...,V,} are linearly independent.

Hint: See the proof of the Rank-Nullity Theorem 4.2.8 below.

4.2 The Nullspace and the Range of a Linear Map
In this section we define the two most important subspaces associated to a linear

map L: U — V. They can be defined even when U and V are infinite dimensional.

Definition 4.2.1. The nullspace of L is the subset of u € U such that L(u) = 0. The
nullspace is called the kernel in some books, but we will always use nullspace.

Theorem 4.2.2. The nullspace Ny, of L is a subspace of U.

Proof. We must show that if u and v are in the nullspace, then u+ v and au are in
the nullspace, for any a € F. By definition of a linear map

Llu+v)=L(u)+L(v)=0
so u+ v is in the nullspace as required. Similarly
L(au) =aL(u) =0
so we are done. O

We already stated a special case of this result in Example 3.3.5:
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Example 4.2.3. If L is the linear map of Example 4.1.10 for the m X n matrix A:
L(u) = Au,

then the nullspace of L is the set of solutions of the homogeneous system of equa-
tions Ax = 0.
Since the nullspace is a subspace of U, it has a dimension, called the nullity of L.

Remark 4.2.4. 1f the nullity of L is 0, then L is injective.

Proof. Indeed, if L(u;) = L(uy), then by linearity L(u; —uy) = 0. This says that
u; —uy is in Nz, and since the nullity is 0, it must be 0, so u; = u,. O

More examples here.
Now we turn to the second subspace: as before L: U — V is a linear map.

Definition 4.2.5. The range Ry of L is the set of v € V such that there is au € U
with L(u) = v.

Theorem 4.2.6. The range of L is a subspace of V.

Proof. The proof proceeds in exactly the same way as for the nullspace. Assume
that v; and v, are in the range, so that there are elements u; and u; in U with
L(u;) = v;. Then by linearity,

Lluj+uw)=L(uw)+L(wp) =vi+Vvy
so that v| + v; is in the range, as required. The second part is left to you. a
Definition 4.2.7. The rank of L is the dimension of the range of L.

Examples here.
We now get to one of the most important theorems in linear algebra.

Theorem 4.2.8 (The Rank-Nullity Theorem). If L: U — V is a linear map be-
tween finite dimensional vector spaces, if n is the nullity of L, r its rank, and d is the
dimension of U, then

n+r=d.

Proof. Pick a basis vy, ...v, of the range of L. By definition of the range, we may
find elements uy, ...u, in U such that L(u;) = v;. Then the u; are linearly indepen-
dent (in U). Indeed, suppose not. Then there is an equation of linear dependence:

aju; +aup +---+au, = 0.
Apply L. This gives
aL(uy) +aL(wp) + -+ +a.L(u,) =a;vi +ayvo +- -+ a,v, =0,

an impossibility since the v; are linearly independent.
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Now let wy, ... w, be a basis of the nullspace. We claim that the u; and the w;
form a basis of U.

To prove this, we first prove these vectors span U. Take an arbitrary u € U. Then
L(u) can be written in terms of the basis of the range:

L(u) =a1vi+avo+--- +a,v,

for suitable scalars a;. Then we see that

Lu—au —---—amu,)=0.
Thus u —aju; —--- —a,u, is an element of the nullspace, so it can be written
u—aju —---—au, =bywy+---+ b,w,.

This shows that the u; and the w; span. To show that they form a basis, assume
by contradiction that they satisfy an equation of linear dependence:

aju; +---+a0,+bywy+---+b,w, =0. 4.1)

Apply L to get
aL(u))+---+a,L(u,) =0

since the remaining vectors are in the nullspace. Since the v; = L(u;) are linearly
independent, this forces all the g; to be zero. Then (4.1) becomes

bywi+---+b,w, =0,

which implies all the b; are O since the w; are linearly independent. Thus all the
coefficients of (4.1) are zero, so it is not an equation of linear dependence.
Thus a basis for U has r + n elements, and we are done. O

Corollary 4.2.9. Let L: U — V be a linear map between finite dimensional vector
spaces of the same dimension d. Then if the nullspace has dimension 0, or if the
range is V, then L is bijective.

Proof. We need to show that L is both injective and surjective.

First assume the nullspace of L has dimension 0. Then L is injective by Remark
4.2.4. By the Rank-Nullity Theorem, the range of L has dimension d, so by Corol-
lary 3.5.8 it is all of V, so the map is surjective.

Next assume the range of L is V. Then L is surjective. The nullspace of L has
dimension 0, so it is also injective. a

Example 4.2.10. Let V be a vector space that is written as the direct sum of sub-
spaces U and W, so that dimV = dimU + dimW. See §3.6. Then in Definition 4.1.7
we defined the projection P of V to U along W. By construction the range of P is U
and the nullspace is W, as you should check.

As a corollary of the rank-nullity theorem, we get the following important for-
mula.
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Theorem 4.2.11. Let U and W be subspaces of a finite dimensional vector space V.
Then
dimU +dimW —dimU NW = dim(U +W).

Proof. First recall that in §3.3 we defined the subspaces U +W and U NW of V. In
§3.6 we also defined the direct sum U @ W of two vector spaces. We build a linear
map

L:UdW -V

by
L((u,w)) =u—w.

You should first convince yourself that this is a linear map. Then notice that its
nullspace is U NW. Its range is U + W. In Exercise 3.6.6 we established that
dimU ®W =dimU 4 dimW, so the theorem is a direct corollary of the Rank-Nullity
Theorem. a

Next we prove a proposition that will be useful later.

Proposition 4.2.12. Let L: V — W be a linear transformation with nullspace N of
dimension v, and U a subspace of V of dimension u. The dimension of V is n and
the rank of L is r. Then

dim(L(U)) = dimU —dim (U NN).
Thus the dimension of L(U) is at least min (0,u — V) and at most min (n,u+v) —v.

Proof. We restrict the linear transformation L to U. The nullspace of the restriction
is clearly U NN, so the equality just expresses the Rank-Nullity Theorem for the re-
striction. For the inequalities we use Theorem 4.2.11 applied to U and the nullspace
N of L inside of V. The range of U will be as small as possible if U contains N, or
at least as much of it as it can. That gives the first inequality. The range of U will
be as large as possible by making the intersection of U and N as small as possible.
That gives the second inequality.

Let’s apply this result to some low dimensional examples. You may assume that
F is the real numbers.

Example 4.2.13. Suppose that V is 3-dimensional. So the ambient space is ordinary
space. Suppose that U and W are both surfaces: i.e. they have dimension two. So
dimU +dimW = 4. Now U + W is a subspace of a three dimensional space, so it
has dimension at most three. On the other hand it has dimension at least 2: why? If
U + W has dimension 3, then by the theorem U and W intersect in a line: through
the origin, since the intersection is a subspace. If U + W has dimension 2, then U
and W must be the same subspace of V: why?

Example 4.2.14. Suppose that V' is 4-dimensional. Suppose that U and W are both
surfaces: i.e. they have dimension two. So dimU +dimW =4. Now U +W is a sub-
space of a 4 dimensional space, so this time there is no restriction on its dimension.
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Again it has dimension at least 2. If U + W has dimension 4, then by the theorem
U and W only intersect at the origin. If U + W has dimension 3, they intersect in a
line through the origin. If U + W has dimension 2, then U and W must be the same
subspace of V.

Example 4.2.15. The space M, of square matrices of size n is a vector space of

dimension n. As we noticed in Exercise 3.5.5 if has dimension n2, while the sub-
space U of symmetric matrices has dimension @ and the subspace V of skew-

symmetric matrices has dimension @ Convince yourself that U NV = (0), so

that every square matrix can be written uniquely as the sum of a symmetric matrix
and a skew-symmetric matrix.

4.3 Composition of Linear Maps
Theorem 4.3.1. If L is a linear map from U to V, and M a linear map fromV to W,
then the composition M o L is a linear map from U to W.

Proof. As always, we must show two things. u and v are arbitrary elements in U,
and c is an arbitrary scalar.

(MoL)(u+v)=(MoL)(u)+ (MoL)(v)and (MoL)(cu) =c(MoL)(u).

Since L is linear,
L(u+v)=L(u)+L(v).

By linearity of M
M(L(u) +L(v)) = M(L(u)) +M(L(v))-

By the definition of composition of maps this is (M oL)(u)) + (M oL)(v)), so we
are done. The second equality is even easier:

(MoL)(cu) = M(L(cw)) = M(cL(w)) = cM(L(u)) = c(MoL)(c)
where we first use the linearity of L and then that of M a

We have shown in Theorem 4.1.11 that the linear maps from U to V form a vector
space, which we denote .2 (U, V). We can now work out the interaction between the
vector space operations and composition.

Theorem 4.3.2. Let U, V and W be vectors spaces. Let Ly and Ly be linear maps
from U toV, and M| and M, linear maps fromV to W.

1. Then following two equations are satisfied:

Mio(Li+Ly)=MyoLi+My0Ly and (My+Mp)oLy =M oLy +MoL,.
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The addition on the right hand side of these equations is that in £ (U, W), while
that on the left hand side is in £ (U,V) for the first equation and £ (V,W) for
the second.
2. If cis a scalar,
M1 o (CLl) = (CM]) OL] = C(M] OL]).

Proof. The idea of the proof is simple: to prove that two linear maps are equal, we
simply show that they give the same value when applied to an arbitrary element of
the domain vector space. So let u be an arbitrary element of U. then to establish the
first equation we need to show:

(M1 o (Ll +L2))(u) =MoLy (ll) + M, OLQ(U)

Use the associativity of composition to write the left hand side as M; ((L; + L) (u),
then the meaning of addition in £ (U, W) to get M (L (u) + Ly (u)), then the linear-
ity of M; to get M (L (u)) + M;(Ly(u)). This is the desired result.

The other results are proved the same way. a

Now that we know that M o L is a linear transformation, what can be said about
its rank and its nullity in the finite dimensional case? First some notation. Let n be
the dimension of U, m the dimension of V and [/ the dimension of W.

Definition 4.3.3. We have five important subspaces associated to the composition
of linear maps MoL,where L: U -V and M:V — W.

1. In U, we have the nullspace Ny of L;

2. In V we have the range R; of L, the nullspace Ny of M and their intersection
RN Ny

3. In W we have the range Rys of M.

The composition M o L factors through Ry, so, denoting by M|, the restriction
of M to the subspace Ry, we get:

RumoL = Rug,
which yields, by the Rank-Nullity Theorem applied to Mg, :
dim (Ryor,) = dim (Ry) — dim (Rp. N Nyy). 4.2)
Therefore by the Rank-Nullity Theorem applied to M o L and also to L we get

dim (NMoL) =n—dim (RL) + dim (RL ﬁNM)
= dim (Ny) +dim (R N Ny). (4.3)
Exercise 4.3.4. Convince yourself that both results make sense by drawing a picture

in a low dimensional case, with different values for the dimensions of Ry, Ny, and
R; N Ny.
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Numerical examples here.

We have the following classic theorems relating the ranks of linear maps and
their compositions.

First an easy result.

Theorem 4.3.5. Let L and M be linear maps from U to V with ranges of dimension
r(L) and r(M). Let r(L+ M) be the dimension of the range of L+ M. Then

r(L+M) <r(L)+r(M)

Proof. The range of L+ M is spanned by the ranges of L and M, but these two
spaces could well intersect non-trivially, giving the inequality. a

Exercise 4.3.6. With the notation of the theorem, show r(L— M) > |r(L) — r(M)|.
Hint: replace L by L — M in the theorem.

Examples and exercises here.

Now for the main theorem:

Given linear maps L: U — V and M: V — W, where n is the dimension of U, m
the dimension of V and / the dimension of W.

Theorem 4.3.7 (Sylvester’s Law of Nullity). Given linear maps L: U — V and
M:V — W, where n be the dimension of U, m the dimension of V and l the dimen-
sion of W, then

1. the nullity v satisfies:
V(L) <v(M) <Vv(L)+Vv(M).
2. the rank r satisfies:
H(L)+ (M) —n < (M oL) < min(r(L), r(M)).

Proof. The inequalities concerning nullities are a direct consequence of (4.3), which
also tells us when the extreme cases are realized.

Next we establish the right hand inequality for the rank, which is probably the
most useful of the four inequalities. The range of M o L is contained in the range of
M, so r(MoL) < r(M). On the other hand the nullspace of M o L contains that of L
as you see by applying both sides to an arbitrary element of L. So v(MoL) > v(L).
By (4.2) we get r(MoL) < r(L), so we are done.

Finally we get the left hand inequality for the rank: the left side can be written

r(LY+r(M)—n=r(L)—v(M)
by the Rank-Nullity Theorem, so the inequality follows immediately the inequality
r(MoL) < r(L) that we have already used. O

Corollary 4.3.8. If L and M are linear maps from U to U, a vector space of dimen-
sion n, and one of them has rank n, then the rank of the other is the rank of M o L.
In particular, if L has rank n then the rank of L"'ML is the same as that of M.
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Proof. The first statement follows immediately from the formula for the ranks. For
the second statement we need to know that if L has rank #n, then its inverse map
L~ is a linear transformation. This will be established in Theorem 4.5.1. Then just
apply the first part twice.

We will see the importance of the last statement in Theorems 5.5.1 and 5.5.4.

Exercise 4.3.9 (Frobenius’s Inequality). If L, M and N are linear transformations
that can be composed in the order N o M o L, then show

r(NoM)+r(NoA) <r(M)+r(NoMoL).
Hint: Just use the inequalities of Sylvester’s Law of Nullity.

Exercise 4.3.10. L is a linear map from U to V, and M a linear map from V to W.

1. If L and M are both injective, then so is M o L.
2. If L and M are both surjective, then so is M o L.

4.4 Linear Operators

Composition of linear maps is even more interesting in the special case where V and
W are the same vector space as U.

Definition 4.4.1. A linear map from a vector space to itself is called a linear opera-
tor.

We can form the power of the linear operator L: U — U with itself any number
of times by composition. We write [*forLolL,I?forLoLoL, L' =LoLo---oL,t
times, for any positive integer . We also set L° to be the identity operator.

Exercise 4.4.2. Why is L" o L = L"*™) for all non-negative integers n and m?

A word of warning: if L and M are two linear operators on U it is not always the
case that Lo M = M o L. In fact an important part of what we will do later in this
course is to determine when the two operators can be interchanged. For simplicity,
when dealing with linear operators we often write LM for Lo M.

Thus any polynomial in L:

anl +ap L' '+ a; L' +agl® ,a; € F

is an operator. Here n is a positive integer. We sometimes omit the L° when writing
the polynomial, or write I for L°.

Example 4.4.3. Two operators M and N that are polynomials in the operator L com-
mute: MN = NM.
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We will exploit the idea of taking polynomials of operators systematically in
Chapter 10.

Exercise 4.4.4. Assume L> —I = 0. where 0 is the operator that sends everything to
zero. Then let

1 1

Show that M +N = I, M?> = M, N> = N and MN = NM = 0 simply by doing algebra
in polynomials in L.

Exercise 4.4.5. Let L and M be linear operators on U. Assume they commute: LM =
ML. Then, for example

(L4+M)?> =L*+2LM +M? and (L+M)((L—M) = L> — M.

4.5 Invertible Linear Maps

Our first goal is to show that if a linear map L from a vector space U to a vector
space V has an inverse M, then M is itself a linear map. Recall that M is the inverse
of L if M oL is the identity map on U, and Lo M is the identity map on V.

First note that the dimensions of U and V must be equal, by the Rank-Nullity
Theorem. Indeed L must be both injective and surjective. If dimU > dimV then L
cannot be injective, and if dimU < dimV/, then L cannot be surjective.

Theorem 4.5.1. If L is a linear map from U to V that has an inverse M, then M is a
linear map fromV to U

Proof. As always, we must show that M(v; +v2) = M(v{)+M(v,) for all v; and
vy in V, and that M(cv;) = cM(vy) for all scalars c.

Because L is invertible, there is a unique u; € U such that L(u;) = vy, and
a unique uy € U such that L(up) = v,. Applying M to both equations gives
M(L(u;)) = M(vy), so since MoL =1, we get u; = M(vy) and of course u; =
M(v3). So

M(vi+vy) =M(L(wy)+L(az)) =M(L(u; + 1)) =u; +upy = M(vy) +M(v2)

by the linearity of L. O

Exercise 4.5.2. Provide the second part of the proof of Theorem 4.5.1 by showing
that M(cvy) = cM(vy) for all scalars c.

Definition 4.5.3. A linear map L between two vector spaces U and V that is bijective
(therefore both injective and surjective) is called an isomorphism. The vector spaces
are then said to be isomorphic.

The previous theorem says that the inverse of L is also a linear map, and therefore
also an isomorphism.
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Theorem 4.5.4. Two vector spaces of the same dimension are isomorphic. Vector
spaces of different dimensions are not isomorphic.

Proof. First assume that V and W have the same dimension n. Let {vy,...,v,} be
a basis for V, and {wy,...,w,} a basis for W. By Theorem 4.1.12, we can build a
linear map L from V to W sending v; to w;. Because the w; are linearly independent,
L is injective; because the w; span W, L is surjective, so the first statement is proved.

The converse follows from the Rank-Nullity Theorem, as already noted. a

As usual, in our proof we have not handled the trivial special case of vector
spaces of dimension 0, which is left to the reader.

Exercise 4.5.5. Let L: U — U be a linear operator such that L" = 0 for some positive
r. Then show that L — [ is invertible by computing its inverse using the algebra of
linear operators.

Exercise 4.5.6. Let L: U — U be a linear operator such that
anl" + ap_ L '+ a) L' +apl =0

where both a,, and ag are different from 0. Then show that L is invertible by display-
ing its inverse. As we will see in §10.3 we can alway find a polynomial in L that
vanishes on L, and L is invertible is and only if its constant term is non-zero. The
polynomial of smallest degree on which it vanishes is called the minimal polyno-
mial. We study it in §10.3.

4.6 Projections

Projections are very important examples of linear operators. They are defined in
Definition 4.1.7. They play a central role in the rest of this book. For one example
see the proof of Theorem 10.5.1.

Before considering projections, let’s look at a bigger class of linear operators.
First recall that the Rank-Nullity Theorem says that for any subspace U of V on
which the restriction of the operator L is injective, and if W is the nullspace of L,
then W @ U = V. But it does not say that W + L(U) = V. If this happens to be true,
then we say that the range and the nullspace span V. We have the following result.

Lemma 4.6.1. Consider a linear operator L on'V whose range and nullspace span
V. Then the range of any power LF of L is the range of L, and the nullspace of L¥ is
the nullspace of L

Proof. Let v be in the nullspace of L. This means that Lv is in the nullspace of
L. But by the rank-nullity theorem and the hypothesis, the range and the nullspace
of L have only 0 in common. Thus Lv = 0, so the nullspace of L and of I? are
identical. Clearly the range of L? is contained in the range of L, but by the rank-
nullity theorem and the first part of the proof, they have the same dimension, so they
too are the same. We can continue in this way for any power of k. a
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This is an extreme case of Definition 4.3.3 applied to L composed with L, as you
should verify.

Now we turn to projections, which satisfy the hypothesis of the lemma.

Theorem 4.6.2. Let P: V — V be the projection to the subspace U along the sub-
space W, where V.=U @® W, U is the range of P and W its nullspace. Then

P*=P.

Furthermore any linear operator satisfying this equation is a projection to its range
along its nullspace.

Proof. First assume P is the projection to U along W. To any v € V, which can be
written uniquely asu+w, u € U, w € W, Pv = u by definition. For any u € U, this
unique representation is u + 0. So P>v = Pu = u = Pv as required.

For the converse, just assume we have a linear operator P on V with P> = P.
Obviously you can write any v € V as

Vv=Pv+ (v—Pv). 4.4)
By definition Pv is in the range of P, while v — Pv is in the nullspace of P, since
P(V—PV)=Pv—PV=Pv—Pv=0

by hypothesis. This shows that any v can be written as the sum of an element of the
nullspace and the range of P. So dimV < dim Ny + dimR;. By the rank-nullity the-
orem we have equality, so V is the direct sum of the range U of P and the nullspace
W of P. Thus (4.4) applied to an element in the range of P shows P is the identity
map on U, since v — Pv is then 0. a

We can generalize this:

Corollary 4.6.3. Assume that the vector space V is the direct sum of k subspaces
Uy, ..., Ux. Then for every i we can define the projection P,: V. —V of V to U; along

l. Pob =Py
2. PoP; =0, wheni# j;
3.P+---+P =1

Conversely if Py, ..., Py are a family of linear operators on V such that the three
conditions above are met, then letting U; = P;(V), V is the direct sum of the U,.

Proof. First the direct statement. Any v € V can be written uniquely as
v=u+---+uw, wcl.

Then P;(v) = u;. The conclusions either follow from the theorem or are obvious.
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For the converse, pick any v € V. By hypothesis 3 it can be written
v=P(V)+- -+ P(v).

To show that the sum is direct, we must show this representation as a sum of ele-
ments from the U; is unique. Write one such representation as

V=g 4.5)

with u; € U;. So there is a collection of w; € V such that

u; = P;(w;) (4.6)
since U; is the range of P;. Then
u; = P, (w;) by (4.6)
= Po P(w;) by hypothesis 1
=Y PoPj(w)) by hypothesis 2
J
=Y P(u)) by (4.6)
J
=P () u)) by linearity
J
= Fy(v) by (4.5)
which shows that the u; are uniquely determined. a

Graph here: 3 dimensional, with projections to the skew coordinate axes.

Example 4.6.4. First a simple example of a linear map L from V to itself where
the nullspace and the range do not span the entire space, unlike the situation for
projections. V is two-dimensional with basis u and v. The linear operator L operates
by L(u) = 0 and L(v) = u. Notice that L? is the identity map.

Next assume V is three-dimensional, with basis u, v, w. The operator L acts by
L(u) =0, L(v) = w, L(w) = v. Then the nullspace and the range of L span V, and
yet the operator is not a projection.






Chapter 5
Representing Linear Maps by Matrices

Abstract In the second chapter of this book, we saw how matrices are used to
represent systems of linear equations. In this chapter we see how they are used
to represent linear maps between finite dimensional vector spaces. The important
computation in the proof of Theorem 5.1.1: (5.3) shows that any linear map is given
by matrix multiplication. We first do this for vector spaces with given bases, namely
F™ and F™, using their standard bases, and then in §5.3 we repeat the construction
for general vector spaces, showing explicitly how the construction depends on the
choice of bases. As part of our construction, we show that the set of linear maps
between a vector space of dimension n and one of dimension m is itself a vector
space in a natural way, and it has dimension mn. Next we discuss an equivalence
relation on linear maps (§5.4) and then a much more important equivalence relation
called similarity on linear operators in §5.5. Then we define the row rank and the
column rank of a matrix, in terms of the rank of a linear map. We prove the important
theorem that the row rank and the column rank are equal. We also give the classical
definition of the rank of a matrix as the size of its biggest invertible submatrix. Next
we apply the notion of rank to the matrix of coefficients to reformulate the theory of
linear equations already studied in Chapter 2. After a section describing the relation
between real and complex linear maps, we conclude with an example: nilpotent
operators and their matrices.

5.1 The Matrix of a Linear Map

We start with a linear transformation L: V — W, where V and W are vector spaces
of dimension n and m respectively. Assume V and W are equipped respectively with
bases

B = {el,...,en} and € = {fl,...,fm}.

To every linear map L: V — W with these bases, we associate a unique m X
n matrix A, as follows. The j-th coordinate vector e; is mapped by L to a linear

81
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combination of the basis vectors of W, that we write

’L(ej) :aljfl +a2jf2+~~+amjfm 5.1

for each j, 1 < j < n. This defines the scalars g;;, 1 <i<mand 1< j<n. Welet
A be the m x n matrix with entries (a;;). The matrix A is uniquely determined by L
and the two bases.

Theorem 4.1.12 of Chapter 4 shows that to specify a linear map uniquely we only
need to know what it does on a basis. So given a linear map L: V — W, use the basis
B of V. An arbitrary vector x in V can be written uniquely as

X =x1€; +x0€ + -+ Xx,€,. 5.2)
By the linearity of L, the image of (5.2) under L is
L(x) =xiL(e;) +x2L(e2) + - +xnL(ey).
Now we use (5.1) to get:

L(x) =x1L(e;)+xaL(ex) +---+x,L(e,)
=xi(anfi +anfo+- - +amfyn) +x2(ainfi +anfs + -+ apofy)
+ -t xp(ainfi +Fazfo + -+ amnfn)
= (xjan +xai2+ - +xpa1n)f1 + (x1a21 +x2020 + - - - + x002,)F2
o (1@t X224 - A Xl )
=yift + 22+ + yubn, (5.3)

where we have defined:
Yi = ajx) +apxy+ -+ aipxy. (5.4)

Since A is the m x n matrix with entries (g;;), (5.4) is the matrix product of the i-th
row of A with the column vector x:

yi:aix, 1<i<m.

So the computation (5.3) establishes the important:

Theorem 5.1.1. Let L be the linear map from 'V to W defined by (5.1). Then L maps
the vector X with coordinates (x1,x2,...,X,) in the B basis to the vector y with
coordinates (y1,y2,...,ym) in the € basis, where

y = AX.

Definition 5.1.2. If V is a vector space of dimension n with basis 6 and W is a
vector space of dimension m with basis €, 1 <i <m, and L a linear map between V
and W defined by (5.1), then the m x n matrix A is the matrix associated to L.
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5.2 The Linear Map of a Matrix

Conversely, given a m X n matrix A with coefficients in F, we showed in Example
4.1.10 how to build a linear map L: F" — F™ using A: just map the n-tuple v € F"
to the matrix product Av, where v is a column vector. We call this linear map Ly
when we need to make the dependence on A explicit, and we call it the linear map
associated to A. Since we can write

Av =via; +way+---+v,a,,

where a; is the i-th column of A, L4 takes the i-th coordinate vector of F”" to the
vector a;. This is the inverse of the map constructed in Theorem 5.1.1.

Recall that M, ,, is the vector space of all m x n matrices (see Chapter 3, Exam-
ple 3.2.4) and Z(F",F™) is the vector space of linear maps from F” to F™: see
Theorem 4.1.11 of Chapter 4. We know that M,, , has dimension mn.

Above we have constructed a bijection:

T My — L(F" F™). 5.5)
Even more is true.

Theorem 5.2.1. The map % : My, , — L (F",F™) of (5.5) is a linear map of vector
spaces.

Proof. Let A and B be two m X n matrices, and ¢ a scalar. We need to show two
things. They both follow from Theorem 2.2.13.

1. F(cA)=cF(A).
Applying the definition of .%, this gives L.4 = cLa, which is clear, since (cA)v =
c(Av) forall v e F".
2. F(A+B)=ZF(A)+ Z(B).
Again applying the definition of .%, this gives Ly p = L4 + Lg. This follows from
(A+B)v=Av+Bv.
O

Therefore .7 is a bijective linear map, so by Definition 4.5.3 is an isomorphism.
So the dimension of Z(F", F™) is that of M,

Theorem 5.2.2. The dimension of £ (F",F™) is mn.

Theorem 5.2.3. If L is the linear map from F" to F™ with associated matrix A, and
M the linear map from F™ to F°® with matrix B, then the matrix associated to the
composite linear map M o L is the matrix product BA.

We first check that the matrix sizes work out. A has size m X n, and B has size s X m.
Thus the product BA can be formed, and has size s x n, the appropriate size for the
matrix associated to a linear map from F” to F*.
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Proof. We do this without computation. Let x be an n-vector. Then
(MoL)(x) =M(L(x)) = B(Ax) = (BA)x. (5.6)

We use the associativity of composition of maps (Theorem B.1.5) in the second step,
and the associativity of matrix multiplication in the fourth step (Theorem 2.2.10). In
the third step we use Theorem 5.1.1 applied first to L to get M(L(x)) = M(Ax), and
then to M evaluated at y = Ax to get M(y) = By = BAX. O

5.3 Change of Basis

In the previous sections we only consider linear maps from F” to F™, or, which
amounts to the same thing, we assumed that the domain V and the target W were
equipped with bases, which allow us to identity them with F" and F™ respectively.
In this section we reword the results of §5.1 in a new notation that gives the flexibility
to change bases.

First we develop the notation. Let L be a linear map between V and W of dimen-
sion n, with bases, respectively 8B = {vi,...,v,} and € = {wy,...,w,,}. Using the
notation of Example 4.1.9, we write the vector of coordinates of v in the basis ‘B
of V as [v]ss, and the vector of coordinates of w € W in the € basis as [W]¢. Then
Theorem 5.1.1 says that the matrix A associated to L in these basis satisfies

Wle =Alv]xs.

To emphasize the dependence of A on the two bases, we write A = [L]?. In the

notation [L]?, the basis B of the domain is written as the superscript, while the
basis € of the target space is written as the subscript.

Remark 5.3.1. There is no generally accepted notation for the n x m matrix [L}?

associated to a linear transformation. The notation we use here is adapted from [12],
Chapter 3.4. See in particular Theorem 11.

In our new notation Theorem 5.1.1 says
L(V]e = [LIE [V]os 5.7

where

meaning that the i-th column of [L]? is [L(Vi)]g-

Example 5.3.2. For the identity map / on a vector space V with basis ‘B, we get the
identity matrix /:
e =1 (5.8)
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We record the following important special case of our computation (5.7).

Corollary 5.3.3 (Change of Basis). Let V be an n-dimensional vector space with
two bases B = {vy,...,v,} and € ={wy,...,w, }. Then

Ve = g Vs - (5.9)

Proof. In the computation above let W be the same space as V, let L be the identity
map. Therefore B and € are two bases of V. a

The matrix [I]? is the change of basis matrix from the B basis to the € basis. Its j-
th column is formed by the coefficients of v; expressed in the € basis, namely [v;]¢.
The matrix [I]? is invertible with inverse [1]% as we see by exchanging the roles of
the two bases. For more details see Corollary 5.3.7.

Example 5.3.4. A linear map is often given by equations such as (5.3). For example
consider the linear map L from a 2-dimensional space to a 3-dimensional space that
maps the bases as follows:

L(vy) =3w; 42w, + w3
L(vp) = —w; + 4w + 5w;3

The matrix A = [L]? is

3-1

2 4

15

so that the vector x;v| 4+ x2 v gets mapped to the vector with coordinates:
3-1 Y 3)61 — X2
2 4 <x1> = | 2x; +4x,
15 2 X1+ 5x

as required.

We now rephrase Theorem 5.2.1 in this new notation .

Theorem 5.3.5. Let V be a vector space of dimension n with basis 5 and W a vector
space of dimension m with basis €. Let L and M be linear maps from'V to W. Then

[L+M)g =L + M]3

and
[cL]g =c[L]E -

So [o]? 1 L(V,W) — M(m,n) is a linear map from the vector space of all linear
maps £ (V,W) to m x n matrices. Furthermore it is an isomorphism.
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Next we turn to the multiplicative properties of the associated matrix. Here is the
key result, which rephrases Theorem 5.2.3. It will allow us to write down the most
general change of basis formula.

Theorem 5.3.6. Let V, W and U be vector spaces of dimensions n, m and r. Let B,
¢, D be bases for V, W, U respectively. Let

L:V—sWandM: W —U

be linear maps. Then
MG [L]E =MoL, (5.10)
where the left hand side is the matrix product of a matrix of size r X m by a matrix

of size m X n.

Warning: the theorem only applies when the basis € of the vector space W in
the middle is the same for both associated matrices.

Proof. We identity V, W and U with F™, F"* and F" respectively, once and for all,
using the given bases, and we take the associated matrices in these bases. Then we
write down (5.6) in our new notation. This is (5.10). a

Corollary 5.3.7. Let V be a vector space and 8 and € two bases. Denote by I both
the identity linear transformation and the identity matrix. Then

B nC ¢ B
Ue Up =1=g ¢ -
In particular [I}? is invertible.

Proof. JustletV =U =W,L=M =1, and © =5 in the theorem. Use (5.8), and
we are done. O

Example 5.3.8. Return to the original setup of a linear map L: V — W, where
dimV = n with basis ‘B and dimW = m with basis €. Let I, be the identity linear
transformation on V, which now has a second basis © = {zi,...,z,}. We consider
I, as a linear transformation from V with the basis © to V with the basis 23.

Then by Theorem 5.3.6,

LI = [LoL]g = [LIg )3 -

This says explicitly how the matrix representing L changes when you change the
basis of the domain: you multiply on the right by the change of basis matrix in the
domain. Thus we multiply a m X n matrix on the right by a n X n matrix.

Exercise 5.3.9. In the same way, give W a second basis ¢ = {u1 ,..., 0"}, and let
I, be the identity linear transformation on W. Then show that

L)F = L) [LIF
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Finally, using the notation and the conclusion of Example 5.3.8 and Exercise
5.3.9, we get:

Theorem 5.3.10. o NP
L)§ = Unle LIE (1]

Notice that the right hand side is the product of a m X m matrix by a m X n matrix
and a n X n matrix, which makes sense. By Corollary 5.3.7 the two change of basis
matrices are invertible.

Numerical examples here.

In Theorem 5.5.1 we handle the most important case, where T is a linear trans-
formation V — V.

5.4 Equivalent Linear Maps

Suppose that L: V — W is a linear map of a n dimensional vector space V to a m
dimensional vector space W. We allow ourselves to make an arbitrary change of
basis in V, and an independent change of basis in W in order to simplify the matrix
A of L in these bases. By Theorem 5.3.10 and Corollary 5.3.7 we see that we are
allowed to multiply A by an arbitrary invertible n X n matrix D on the right and an
arbitrary invertible m x m matrix C on the left. This section shows how to get the
maximum simplification without computation, using the ideas in the proof of the
Rank-Nullity Theorem.

If the rank of L is r, we can find linearly independent elements vy,vs,..., Vv,
whose images under L are linearly independent elements w; = L(v;) that form a
basis for the image of L. Then we can find elements v,y,...,v, in the nullspace
of L so that vi,v»,...,V, is a basis of V. Finally complete the w; to a basis of W
arbitrarily. It is clear that with this choice of bases, the matrix of L has r ones along
the diagonal, and zeroes everywhere else. So we have proved:

Theorem 5.4.1. There is a basis B = {vy,...,v,} of V and a basis € ={wy,..., W, }
of W so that

10...00... 0
01...00...0

2 =100...10...0 :<Olr 0%,) -
OO 00 0 m—rr Ym—rn—r
00...00...0

where on the right we have written the block decomposition of the matrix into one
identity matrix and three 0 matrices.
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Definition 5.4.2. Given two m X n matrices A and B, we say that A is row-column
equivalent to B if there are invertible matrices C of size m and D of size n such that
B = CAD. We write A =~ B if this is the case.

Theorem 5.4.3. Row-column equivalence (=) is an equivalence relation on m X n
matrices.

Theorem 5.4.4. Two m X n matrices are row-column equivalent if and only if they
are the matrices associated to the same linear operator L in different bases for the
domain and the codomain.

Proof. Theorem 5.4.1 can be reformulated to say that any two m X n matrices as-
sociated to the same linear operator L in different bases for the domain and the
codomain are row-column equivalent. On the other hand, any invertible matrix is a
change of basis matrix, which gives the other inclusion. a

This shows that there are very few equivalence classes for row-column equiva-
lence: they are characterized by the matrices (5.11), and therefore by the rank of
the matrix. Note that we did not use the Rank-Nullity Theorem in the proof. How-
ever, the proof of Theorem 5.4.1 is essentially equivalent to that of the Rank-Nullity
Theorem, so not much is gained.

Remark 5.4.5. There is a more interesting equivalence relation on m X n matrices
that we will study later, once we give both spaces inner products, and have defined
the notion of an orthogonal matrix (over R) and unitary matrix (over C). Here we
will just deal with the real case. Then for any m X n matrix A, there is an orthogonal
m x m matrix U and an orthogonal n X n matrix W so that B=UAW is am X n
matrix whose only non zero elements are 0; = b;;, which can be arranged in weakly
decreasing order:
01 >20,2:2>20,20

where p = min{m,n}. This is called the Singular Value Decomposition of A, or
SVD, since the o; are called the singular values. We will study it in 13.10 In partic-
ular we will show that the singular values partition m X n matrices into equivalence
classes.

A similar, even more interesting decomposition holds for complex matrices.

For a good example of this material see Example 6.4.8 about the map for a vector
space to its dual.

5.5 Equivalent Linear Operators

We now restrict to the case where L is a linear operator, a map from a vector space
V to itself. In this case we require that the same basis be used on the domain and the
ranée of L. In particular, if B is a basis of V, we only consider associated matrices

L]
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Given another basis © of V we want to compare [L]g and [L]g This is a special
case of Theorem 5.3.10:

Theorem 5.5.1. Let L: V — V be a linear operator, and let B and ® be bases of V.
Then there is an invertible matrix N such that

L3 =N""[LIZN

Proof. Indeed take N = [In]g , which has inverse [In]g by Corollary 5.3.7. Then the
right hand side is

by Theorem 5.3.10, O

Now we introduce some new terminology that will help us compare square ma-
trices:

Definition 5.5.2. Given two n X n matrices A and B, we say that A is similar to B if
there is an invertible n x n matrix N such that B= N—'AN. We write A ~ B if this is
the case.

Theorem 5.5.3. Similarity (~) is an equivalence relation on n X n matrices.

Proof. By the definition of equivalence relation - see Chapter 1 - we need to estab-
lish the following three points:

1. A ~ A: Use the identity matrix for N.

2. if A ~ B, then B ~ A: If A ~ B, there is an invertible N such that B = N"'AN.
Then, multiplying both sides of the equation on the right by N~! and on the left
by N, and letting D = N~!, we see that A = D !BD, so B is similar to A.

3. if A~ B and B ~ D, then A ~ D: The hypotheses mean that there are invertible
matrices Cy and C; such that B=C| 1AC1 and D=C; 1BC2, S0, substituting from
the first equation into the second, we get

D=Cy'C7'ACICy = (C1G) 1 A(C1Gy),

s0 A is similar to D using the matrix CC;.
O

Since similarity is an equivalence relation on n X n matrices, it partitions these
matrices into equivalence classes.

Theorem 5.5.1 says is that two matrices that represent the same linear operator
F: V — V in different bases of V are similar. We have an easy converse:

Theorem 5.5.4. Assume that two n x n matrices A and B are similar, so B=N"'AN,
for an invertible matrix N. Then they represent the same linear operator L.

Proof. Choose an n dimensional vector space V, a basis B = {vy,...,v,} for V. Let
L be the linear map represented by A in the ‘B basis, so that B = [L]%. Construct a
second basis © = {wy,...,w,} of V:
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W; =nyjVi+najvo+ - +ny;Vy, (5.12)

using the entries of the matrix N = (n;;). This is possible because the matrix N is

invertible, so we do get a basis. Then by definition N = [In]g.

Then by Corollary 5.3.7
B 1B D —
B=[lg [Llgs [lJs =N ‘AN
as required. a

Any n X n matrix A can be viewed as the matrix [L]g of a linear operator L in
the basis B of the n-dimensional vector space V. Matrices in the same similarity
class correspond to the same linear operator L, but expressed in different bases. One
of the goals of the remainder of this course is to determine the common features
of the matrices in a given similarity class. For example we will show that similar
matrices have the same characteristic polynomial: see Chapter 12. We will also see
that two matrices that have the same characteristic polynomial need not be similar:
see Theorem 12.7.2. The simplest example is given by the matrices

a0 and (¢ 1
0« 0«
for any complex number c.

Since our main goal is to study linear transformations L, not matrices, which
are computational tools for understanding linear transformations, we will want to
choose a basis in which the matrix of L is as simple as possible.

Exercise 5.5.5. Show that row equivalence (see Theorem 2.5.3) is an equivalence
relation on n X m matrices.

We will study an equivalence relation on symmetric matrices called congruence
in Definition 7.1.10.

5.6 The Rank of a Matrix

Recall that the rank of a linear transformation is the dimension of its range. We can
now define the rank of a matrix. First we define the column rank and the row rank,
and then we show they are equal: this is the rank of the matrix.

Definition 5.6.1. Let A be a m X n matrix.

1. The columns a;, 1 < j < n generate a subspace C4 in F™, whose dimension c is
the column rank of A.

2. Correspondingly, the rows a’, 1 < i < m, of A generate a subspace R4 in F",
whose dimension r is called the row rank of A.
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The dimension ¢ of C4 is at most m, since it is a subspace of F”, and at most 7,
since it is generated by n elements. Similarly, the dimension r of R4 is at most n,
since it is a subspace of F”, and at most m, since it is generated by m elements.

Theorem 5.6.2. If L, is the linear map associated to A, then the rank of Ly is the
column rank of A.

Proof. Since any vector in F" can be written a;e; + ae; + - - - + aye, for suitable
scalars a; and the standard unit coordinates vectors in F", any vector in the range
can be written

alL(el) + azL(ez) +--4 anL(en).

On the other hand, matrix multiplication tells us that L(e;) is the j-th column of A.
So the range of L4 is spanned by the columns of A, so the rank of L, is the column
rank of A. O

Examples here.

Theorem 5.6.3. Let A be an n X n matrix. Then A is an invertible matrix if and only
if the linear map Ly is invertible.

Proof. By definition A is invertible if and only if there is a n X n matrix B such that
AB = BA = 1. Then Theorem 5.2.3 says that Ly oLgp = I and Lg o L4 = I, which says
that L4 and Lp are inverse linear maps. O

Corollary 5.6.4. Let A be an n X n matrix with columns ay, ..., a,. Then A is invert-
ible if and only if its columns are linearly independent.

Proof. The key point is that
Ls(x) =Ax =xja; + - +x,a,.

So if the a; are not linearly independent, we can find an element x in the nullspace
of Ly, a contradiction. Conversely if the a; are linearly independent, then the range
of L4 has dimension 7, so it is surjective and therefore an isomorphism by Corollary
4.2.9, for example. O

We can rework the proof of the corollary slightly. In Theorem 5.6.2 we show that
the column rank of A is the rank of L4. By the Rank-Nullity Theorem we know that
if L4 is a linear map between vector spaces of size n, then it is invertible if and only
if its rank is n. Then A is invertible by Theorem 5.6.3. So the corollary also follows
from Theorem 5.6.2.

Theorem 5.6.5. The row rank and the column rank of any matrix A are equal. We
call this simply the rank of A.

Proof. We can extract a basis of R4 from the rows a' of A by Proposition 3.4.14.
So by reordering the rows of the equations, we may assume that the first » rows
of A form a basis of R4. We only do this for convenience of notation only, as we
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show in the exercise below. Let R be the r x n matrix formed by these rows. Then
by definition of a basis, any row a’ of A can be written as a linear combination of
the first r rows:

a'=pja +bhpa’+---+bya’,1<i<m. (5.13)

Let B = (b;;) the m x r matrix formed by the scalars in (5.13). Note that for i = 1
to r we have b;; = 1 and all the other entries in the first » rows are zero. Then as we
noted in Proposition 2.2.7, (5.13) can be expressed by the matrix product: A = BR.
The rows of A are linear combinations of the rows of R. On the other hand the same
product says that the columns of A are linear combinations of the columns of B.
Since B has r columns, the column rank of A is at most 7, so ¢ < r.

Now we just repeat the argument on the transpose A’ of A. Thus r < ¢, since the
column rank of A’ is the row rank of A, etc. The two inequalities together give the
conclusion. a

We can also get this result as a corollary of Theorem 5.4.4. Here is the proof.

Proof. The row and column ranks are obvious equal for the matrix in (5.11). On the
other hand both the row rank and the column rank of a matrix A are properties of
the linear transformation L. Indeed, the row rank is the dimension of the domain
minus the dimension of the kernel of L4, while the column rank is the dimension
of the image of L4. Since the bases of the domain and image of L can be chosen
so that the matrix of L is these basis is the one in (5.11), the result is true for any
matrix. a

Exercise 5.6.6. Here is the equivalent of (5.13) if a collection of rows numbered ji,
J2, - .., jr form a basis for the row space of A. Then 5.13 becomes

a' =b;;al +bja2 + 4 bjal 1 <i<m. (5.14)

Let R be the r X n matrix whose i-th row, 1 < i < ris a/i. Let C be the m X r matrix
whose i-th column, 1 </ < ris the j;-th column of the matrix B defined by the (b; jk)
in (5.14). Then A = CR. Now conclude as before.

Exercise 5.6.7. Write down an m X n matrix, with m > n which has several different
collections of n rows that are linearly independent.

This exercise is important because it shows that even though it is convenient
to give preference to the rows and columns with smaller indices, as we did in the
proof of Theorem 5.6.5, with a little bit of extra indexing work it is possible to
understand the situation without resorting to this preference. Row reduction is a key
example where preference is given to the first row and first column of a matrix. The
notation for submatrices of a matrix in (2.13) is a good example of the extra indexing
work required. This indexing work can be represented by matrix multiplication by
elementary matrices.

Exercise 5.6.8. Write down an 4 x 2 matrix (a;;) whose bottom two rows are lin-
early independent. Find a product of elementary matrix that makes those rows the
two top rows. What happens to the columns of the original matrix?
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5.7 More on Linear Equations

Using the notion of rank of a matrix, we can revisit systems of linear equations and
improve our results from §2.7. We first examine the homogeneous system Ax = 0,
where A is as always a m x n matrix. The solutions of this system are simply the
nullspace of the linear transformation L, generated by the matrix A according to
Example 4.1.10.

As noted in Theorem 2.7.1, the homogeneous system Ax = 0 can be written

xia; +xa+ - +xa, =0,

where the columns a; of A are vectors in F"'. So a nontrivial (i.e., a non-zero)
solution (xj,...,x,) gives an equation of linear dependence between the vectors
a; in F™. This leads us to:

Theorem 5.7.1. If A is a m X n matrix and Ny C F" the subspace of solutions to the
equation Ax = 0, then:

1. If n > m, Ny is positive dimensional, so there are nontrivial solutions.
2. If m = n, then Ny is zero dimensional (so the only solution is 0) if and only if the
columns a; form a basis of F™, so that A has rank n and is nonsingular.

Proof. By dimension considerations, if n > m a nontrivial solution always exists:
since F'™" has dimension m, for n > m a collection of n vectors cannot be linearly
independent.

The second part just expresses the fact that m vectors in a m-dimensional space
form a basis if and only if they are linearly independent. a

Now suppose that A has been row reduced. Discard the rows of the row reduced
matrix that consist entirely of zeroes to get a r X n matrix R. By Theorem 2.5.11,
the solutions of the system Ax = 0 are the same as those of the system Rx = 0. If
there are no equations, the entire domain of A are solutions, so the dimension of the
space of solutions is n. The next result is important and easy to remember: because
the rows of R are linearly independent each equation in R imposes an independent
condition of the solutions, making the dimension of the space of solutions go down
by 1. So using Definition 2.6.1 we have n — r free variables corresponding to the
free columns. The following proposition finishes the proof.

Proposition 5.7.2. We get a n — r dimensional space of solutions to the system of
equations Rx = 0 with basis v/, 1 < j < n —r, obtained by letting the j-th free
variable entry in v/ take the value 1, letting all the other free variable entries in v/
take the value 0, and solving for the bound variables.

Proof. Tt is clear that the solutions v/ are linearly independent: imitate the proof in
Example 3.4.4. So the only difficulty is showing that they span. Take any solution w.
By subtracting from it an appropriate linear combination of the solutions v/, we get
a solution where all the free variable entries are 0. Then looking at the last equation
and working up, we see that all the bound variables are 0, so we are done. O
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Corollary 5.7.3. The space of solutions of Ax = 0 has dimension n—r.

This is just the Rank-Nullity Theorem.
In particular, no matter which method we use to row reduce, we will end up with
the same number r of non-zero rows, since r is the dimension of the row space of A.

Definition 5.7.4. The augmented matrix associated to the system is the m x (n+1)
matrix C whose first n columns are those of A, and whose last column is b.

Theorem 5.7.5. The system has a solution if and only if the rank of C is the same as
that of A.

The proof is left to you. Just phrase Theorem 2.7.2 in terms of rank. Note also that
when the system is homogeneous, the rank of C is clearly that of A.
Next we look at the inhomogeneous equation

Ax=Db

where A be a m X n matrix, and b a m-column vector. We started studying this
equation in §2.7

Theorem 2.7.2 says that the inhomogeneous equation Ax = b can be solved if and
only if any equation of linear dependence satisfied by all the rows, namely y’A = 0,
implies the same linear relation between the right hand terms: y'b = 0.

Example 5.7.6. Now a 3 x 3 example. We want to solve the system:

xl—x2:b1
)CQ—X3=b2
X3 —x1 =b;3
So
1 —-10
A= 0 1 -1
-1 0 1

Now A has rank 2, so up to a scalar, there is only one non-zero vector y such that
y'A = 0. To find y add the three equations. We get

0=>b1+by+bs.

This says that the scalar product of (1,1,1) with b is 0. So by the theorem the system
has a solution for all b such that by + b, + b3 = 0.

Let’s work it out. Write b3 = —b| — b,. Then the third equation is a linear com-
bination of the first two, so can be omitted. It is sufficient to solve the system:

X1 — X2 =b1

Xo—x3=by
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x3 can be arbitrary, and then x, = x3 + b, and

X1 =x2+by=x3+b1+b
so the system can be solved for any choice of x3.

Remark 5.7.7. Here is what happens when one does Gaussian elimination on the
inhomogeneous system, using the augmented matrix 5.7.4. Reduce the coefficient
matrix A to row echelon form C, getting an equivalent system

Cx=d

The matrix C may have rows of zeroes - necessarily the last rows. Assume it has p
rows of zeroes. Then for the new system to have a solution, the last p components
of d must be 0. The rank of C is m — p: just imitate the proof of Proposition 5.7.2.
This can be at most n, since the row rank is the column rank. Then by the Rank-
Nullity Theorem, any vector vecd whose last p components are O is in the image
of C, and in that case the system has a solution. The matrix C has m — p columns
of index (i), 1 <i <m— p, where p(i) is a strictly increasing function of i, such
that the entry c; ,(;) 1s the first non-zero coordinate of row C; of C. The remaining
columns correspond to the free variables x;. Thus there are n — (m — p) of them. For
any choice of the free variables the system admits a unique solution in the remaining
(m — p) variables.

Example 5.7.8. Now we redo Example 5.7.6 via Gaussian elimination to illustrate
the remark above. Here n = m = 3. The augmented matrix is

1 -1 0 by
01 —-1b
-1 0 1 b3

We reduce A to row echelon form C:

1-10 by
01 —1 b
00 O by+by+b;3

sop=1.u(1) =1, u(2) =2, so x3 is the only free variable. The only condition on
bisthat by +by + b3 =0.

5.8 Real and Complex Linear Maps

In Example 3.2.8, we noticed that C can be considered as a two dimensional vector
space over R, with the basis 1 and i. More generally C" can be considered as the
real vector space R?", Indeed, if ey, ..., e, is a basis for C", then ey, ieq, ..., €,, ie,
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is a basis for the space as a real vector space. So we have: if V is a complex vector
space of dimension n, considered as a R-vector space it has dimension 2n.

Now we want to consider linear transformations. We start with the simplest case:
a C-linear transformation from C to C. It is, of course just given by multiplication
by a complex number a + ib, where a and b are real. We can think of this as a R-
linear map from R? to R?: what is its matrix? Since it sends the complex number
x+iyto

(a+ib)(x+iy) = ax — by +ibx +iay,

in terms of the basis {1,i} of C as a R vector space, the linear map Ly is

(J;) — <Z _ab> (;C) (5.15)

which gives us the 2 x 2 matrix representing multiplication by a +ib as a R-linear
map.

Exercise 5.8.1. Show that if a +ib # 0, the map L has trivial nullspace by studying
the 2 x 2 system of linear equations you get. Why is this obvious given that the map
comes from multiplication by a complex number?

We could of course do the same thing for any C-linear map from C” to C™ with
a m x n matrix A of complex numbers, getting a R linear map from R?" to R?>"
which is left to you to write down in the obvious bases. This process could be called
decomplexifying a complex linear map.

Now we want to go the other way around. We start with a R-linear map L rep-
resented by the real m X n matrix A. Because real numbers are contained in the
complex numbers, we can view A as representing a C-linear transformation from
C" to C™. We call this map L¢, the complexification of L. Any vector in C" can be
written as a+ib. Then L¢(a+ib) = L(a) +iL(b), as is easily checked since the
matrix representing L is real.

Given a R-linear map from R" to R™, which is just given by multiplication by
a m x n real matrix A, we get a C-linear map from C” to C" again just given by
multiplication by A. We can now decomplexify the complexification. In the special
case m = n = 1, by (5.15) applied when b = 0, the decomplexified 2 x 2 matrix of
Lc in the usual basis is just the diagonal matrix al.

We will use complexification in later chapter, sometimes without mention, be-
cause it is generally easier to study linear transformations over C than over R, pri-
marily because the field C is algebraically closed, meaning that every polynomial
factors as a product of linear polynomials.

For that reason it is useful to determine that complexification is uniquely defined.
In other words, given a real m X n matrix A, these is a unique m x n complex matrix B
such that for a+ib as above, Ba = Aa. This forces B to be real, and then uniqueness
follows from the uniqueness of the matrix representing a linear transformation.
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In §9.2 we will study Hermitian matrices: square complex matrices A of size n:
they are the matrices such that a;; = @;; for all i and j. Here we use them as an
example of the interaction between real and complex structures on vector spaces.

We study the equations defining Hermitian matrices H inside the complex vector
space M, (C) of all square complex matrices. First the diagonal elements of matrices
in H are real. More generally the equations defining H in M,,(C) are not linear over
C, but only linear over R. So we can ask for the real dimensions of M,(C) and its
R-subspace H..

Theorem 5.8.2. M,,(C) has real dimension 2n?, and H has real dimension n®.

Proof. The result for M, (C) is easy. If we write every entry of the n x n complex
matrix A as a;; = r;j +ic;; with both r;; and c¢;; real, we can use the r;; and ¢;; as a
basis for M, (C).

For H we get one real linear condition imposed on each diagonal term: ¢;; = 0.
For each term below the diagonal we get two conditions: r;; = rj; and ¢;; = —cj;.
Since all these conditions are independent, the R-dimension dimg of H is

dimg H = 2n° —n—nn—-1)= n’.

a

The folllowing decomposition of a complex matrix into Hermitian parts will be
useful later on.

Theorem 5.8.3. Any square complex matrix can be written uniquely as A = B+iC,
where both B and C are Hermitian.

Proof. To start, note that the dimensions are correct. Then note that we can get any
complex number on the diagonal. Off the diagonal we simply need to solve the
equations for the ij and ji term separately. If write a;; = a;; +iaj}, bij = bj; +1ibj;
and ¢;j = ¢! i+ icg} then:

bfj —cg; = agj;

b+ =

bij +cij = dj:
R
For each ij we get a system of 4 linear inhomogenous equations in the 4 real vari-

ables b;, b, cj;, ci; with constants (a;;,a;},d’;, ;). In matrix notation we have:

ij» Dij» Cijs ij>ij i 4ji
/ /
1 0 0-1 bij a;j
/! /!
0110 b’/ o aij
J = /
1001 Cf,’ a/j/i
0110/ \ "

This can by easily solved by Gaussian elimination, so there is a unique solution. [
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Exercise 5.8.4. A matrix is skew-Hermitian if a;; = —a;; for all i and j. Show that
the real dimension of the skew-Hermitian matrices is again n?, and that we can write
any complex matrix uniquely as a Hermitian matrix plus a skew-Hermitian matrix.

Hint: you can either just imitate the previous proof, or derive the result by just
considering what king of matrix iA is, if A is Hermitian.

5.9 Nilpotent Operators

Recall that a linear map from a vector space to itself is called a linear operator:
Definition 4.4.1.

In this section we study special operators that can be completely analyzed with-
out too much difficulty. They give interesting examples of matrices representing
operators. First some definitions.

Let L: V — V be any linear operator. Let v € V be a non-zero vector. Let p be
the smallest integer such that the vectors {V,LV,LZV, ...,LPv} are linearly depen-
dent. For dimension reasons 1 < p < dimV. The minimality of p implies that the
coefficient of L”v in the equation of linear dependence is non—zero. So we may write

LPv=agv+aiLv+---+LP" v
Under these hypotheses we say that v is a cyclic vector of period p.

Lemma 5.9.1. The vectors {v,Lv,L?v,...,LP~'v} form a basis of a subspace W of
V of dimension p, invariant under L. W is a cyclic subspace for L. Then W has a
cyclic vector for L.

The only statement left to prove is the invariance under L: if w is in W, then Lw is
inW.

Proof. Write w in terms of the given basis:
W= bp—le71V+ <+ b1 Lv+bov
with coefficients b;. Apply the operator L to the equation. Then
Lw=bp |LPV+--+b L*V+boLv.

Write out LPv using (5.9) to see that Lw is in W, which proves the invariance. O

In the basis of W given above, the matrix of L is
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000 ... 00 ag

100 ... 00 a

010...00 a
00

as (5.16)

000 ... 10ap»
000 ... 0 lapq
as you can easy see, by interpreting the columns of this matrix as the coefficients of
Lz, for the appropriate z. In §10.4 we will see that this matrix is called the companion

matrix of the polynomial ag +ayt +--- 41771,
In this section we are only interested in the special case where all the a; are zero.

Definition 5.9.2. Let L: V — V be any linear operator. Let v be a non-zero vector
such that there is a non-negative integer p such that L”(v) = 0 and L?~(v) # 0.

Proposition 5.9.3. Under these hypotheses v has period p for L.

Thus the vectors v, Lv, L2v, ..., L»~ Dy are linearly independent, so they span a
subspace W of dimension p. The operator L restricts to an operator on W.

Proof. We need to show that the p vectors given above are linearly independent. If
not, there is an equation of linear dependence:

aov+a1Lv+a2sz+---+ap71L(”*1)V =0

Apply L7~ to this equation to get agL?~")v = 0. This forces ag = 0. Then apply
LP~2 to get a; = 0. Continuing in this way, all the a; must be 0 so there is no equation
of linear dependence. a

This result is most useful in the context of nilpotent operators, already mentioned
in Example 2.3.12.

Definition 5.9.4 (Nilpotent Operators). Let L be a non-zero linear operator such
that there is a power of L that is the zero—operator. Such an L is nilpotent. Let p be
the smallest integer such that L? = 0, but L(?~1) =£ 0. This r is the index of nullity of
L.

If L is nilpotent, then every non-zero vector in V has a finite period. Furthermore
there is a vector v with period the index of nullity of L.

What else can we say about nilpotent operators? Pick a vector v of maximum
period p, which is the index of nullity of L. If p is the dimension of V, then the
vectors v, Lv, [*v, ... s LP=Vy form a basis for V, which is a cyclic space for L. The
matrix of L in this basis is the p x p matrix:
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00...00
10...00
Ny=1|::i (.17)
00...00
00...10

with ones on the subdiagonal (the entries (i + 1,i), and zeroes everywhere else. Not
surprisingly this is the matrix (5.16) with all the a; set to 0. We call this matrix the
standard nilpotent matrix of size p.

We continue this analysis to give a similar description of all nilpotent operators.

Theorem 5.9.5. Let L: V — V be a nilpotent operator on the vector space V of di-
mension n. Then V. = ®V;, where V; is a p;-dimensional L-invariant cyclic subspace
of size p;, so that if L; is the restriction of L to V;, then there is a vector v; € V; so
that a basis for V; is

{Vi,L,'V,',Ll-zVi,...,LlPi_lVi}7 (518)

and the p; X p; matrix A; for L; in this basis is the standard nilpotent block Np,.

Therefore in that basis for each of the terms in the direct sum, you get a lower
triangular matrix with all terms zero except some of the terms on the subdiagonal.
For example you get, if the first nilpotent block is 3 x 3, and the second 2 x 2

00000
10000
01000{. (5.19)
00000
00010

Therefore the matrix of L in these bases is block diagonal with matrices N, along
the diagonal.

Exercise 5.9.6. What is the index of nullity of L in terms of the block sizes py, ...,
Di?

Proof (Theorem). We will prove this by induction on the dimension n of V. The
result is trivial for n = 1. L has a non-trivial nullspace: just take any element w whose
period is m — 1, where m is the nullity of L. Then v = L”~'w is in the nullspace.
Therefore by the Rank-Nullity Theorem, the dimension of the image W = LV is at
most n— 1. L acts on W: since any element w € W can be written w = Lv,v €V, let
Lw = L?v. In particular L is nilpotent on W with index of nullity 7 — 1. By induction
we can write W as a direct sum of L-invariant subspaces W;, 1 <i < k, each of which
is cyclic, generated by a w; of period p; — 1, for some p; > 2. Let v; € V be a vector
such that w; = Lv;. Then the subspace V; C V generated by

{V,’,LV,’7 ‘e ,Lin,'}

is cyclic of dimension p; + 1, and v; has period p; + 1.
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Next we show that the subspace Vj of V generated by V1, V5, ...V, is a direct sum
of these subspaces. This is the main step of the proof. How do we show this? We
have to show that any element u € V can be written uniquely as a sum of elements
from the V;. By subtracting one representation from another, it is enough to show
that if

O0=u +uy+---+u,foru €V;

then for all 7, u; = 0. Apply L to this equation to get
0="Lu;+Lup+---+ Lug.

Since this sum in W is direct, each term must be in the nullspace of L, so the equation
reduces to
0=c1LP'v| +cLP2vy + -+ + i LPkvy,

which can be written
0= Cle]71W1 +62Lp271W2 + - +Ckka71Wk.

By using the fact that W is a direct sum, each one of the terms must be 0. Since we
know that the period of w; is p; — 1, this can only happen if all the ¢; are 0. This
shows that the sum is direct in V;.

To finish the proof we deal with the case where V} is not all of V. Complete the
basis of Vj to a basis of V. All these new basis elements have period one, since
they do not contribute to W. For each basis element, we get an additional direct sum
component of dimension 1. O

Thus we have found a simple matrix representing any nilpotent transformation.
This is an important step in establishing the Jordan Canonical Form in §10.6.

5.10 The Rank via Submatrices

Here is another way of defining the rank of a m X n matrix, using the notion of a
square submatrix of A defined in §2.4. This is actually the classic definition of the
rank. This material will not be used in the rest of the book.

Theorem 2.8.11 tells us that

Theorem 5.10.1. The rank of any matrix A is the maximum over square submatrices
B of A of the rank of B. It is also the size of the biggest nonsingular submatrix of A.

Recall that nonsingular means invertible, which implies square.

Proof. We first show that the rank of any square submatrix of A is at most the rank
r of A. Suppose not. Then we can find s > r columns of the submatrix that are lin-
early independent. Then the corresponding columns of A are linearly independent,
a contradiction.
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To conclude the proof, we need to find a square submatrix of A of rank r. We
essentially have done this in proving that row rank is column rank. Fix r linearly
independent rows of A. The matrix formed by these rows has rank r. Therefore it
has r linearly independent columns. The square submatrix formed by these r rows
and r columns clearly has rank r. It is therefore nonsingular. a

Here is a useful theorem concerning the rank.

Theorem 5.10.2. Assume that the matrix A has a square submatrix B of size r and
of rank r. Let C be any square submatrix of size r+ 1 of A containing B. Assume any
such C has rank r. Then A has rank r.

Proof. As before we may assume that the submatrix B is in the upper left hand
corner of A. This is simply for convenience of notation. We consider the square
submatrix of A of size r 4 1 that can be written in block matrix form as

B d
qu:<g aq>
p 4pq

for r < p,q < n. dy is the column vector [ayg,...,d,]| and g, is the row vector

(apt,...,ap). Because B has maximum rank r, any r-vector, in particular g, can be
written as a linear combination of the rows of B. Thus there are constants cy, ..., ¢,
such that

b+ eb =g,

Let ¢ be the r-row vector with entries (ci,c2,...,c,). We multiply B, on the left
by the invertible matrix £ also written in block form, with the blocks of the same

size as those of Bp,:
_ Ir><r 0r><1
E= (—c‘ 1

Using Example 2.9.9, by block multiplication we get

EB. — B—0,c Irxrdq+0rxlapq _ B dq
ba —c'B+g, —c'dy+apg 0, —cdj+apy
Now ¢’d, is the matrix product of the row vector ¢’ by the column vector g, so it is
a number, as required. Since E is invertible, EB),, has the same rank as B,. This is

only true if —c'd, + a,, = 0. Since this is true for any g between r+ 1 and n, this
implies that the p-th row of A is the linear combination

a’ =cja' +ca’+ - +ca’

of the first r rows of A.
We can argue in the same way for every row a’ of A, r < s < n, which implies
that A has rank r. O

Exercise 5.10.3. Show that the proof involves checking the rank of (n — r)? subma-
trices of A of size (r+1).
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Example 5.10.4. Consider Example 2.4.1, namely the matrix

123
789
456

The submatrix of size 2 formed by the first two rows and the first two columns is

(+)

The two rows are not proportional, so this submatrix has rank 2. So the rows (1,2)
and (7,8) form a basis for F2, so we can write the first two entries of the third row
of A as a linear combination of them. Indeed
4,5 ! 1,2 ! 7,8
(4,5) = 5(1,2)+5(7.8).
So subtracting half of the first row and half of the second row from the third row,
we get the matrix
123
000
789

This matrix obviously has rank 2, confirming the theorem.

A 4 x 4 example with rank 2 needed here.

Now we can repeat this for a symmetric matrix. We prove an interesting variant
of Theorem 5.10.1. Recall that we say that a square matrix of size n is non-singular
if its rank 7 is equal to n, and is singular otherwise.

Theorem 5.10.5. If a symmetric matrix has rank r, it has a non-singular principal
submatrix of size r. In other words, the rank of a symmetric matrix is the maximum
size of a non-singular principal submatrix of A.

So to compute the rank of a symmetric matrix one only needs to look at the
principal submatrices: see (2.14). This result can be false for matrices that are not
symmetric. For example the matrix

01
10

has rank 1, but its principal submatrices all have rank 0. On the other hand a sym-
metric matrix of rank r could well have a submatrix that is not principal of rank r.

For example
-1 1
1 -1
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Theorem 5.10.5 is a corollary of the following theorem, which is an improvement
of Theorem 5.10.2. This theorem is useful because of the special role that principal
submatrices play in the theory of symmetric bilinear forms.

Theorem 5.10.6. Assume that the symmetric matrix A has a non-singular principal
submatrix B of size r. Assume that every principal submatrix C of A containing B,
of size r+ 1 or r+ 2, is singular. Then A has rank r.

Remark 5.10.7. So we only have to check principal submatrices containing B: all
the ones of size r + 1 and r+ 2. So this means checking

- (n;r) _ (n—r+21)(n—r)

submatrices, while in Theorem 5.10.2, for a square matrix of size n and rank r you
must check (n— r)? submatrices. So the saving is roughly a factor of 2, and is exactly
what the symmetry of the matrix leads you to expect.

Proof. We first look at principal submatrices of size r+ 1, proceeding exactly as in
the proof of Theorem 5.10.2. So we assume B is in the upper left hand corner of A,
for convenience. We consider the principal submatrix of A of size r 4 1 that can be

written in block matrix form as
B d
pp !
dp app

for r < p <n.d, is the column vector [ay,,...,ar,]. Because B has maximum rank
r, any r-vector, in particular d’), can be written as a linear combination of the rows
of B. Thus there are constants ¢y, ..., ¢, such that

cib' 4+ o b =d).

Let E be the invertible square matrix of size r + 1, write in the same block form as
B:
_ Ir><r 0r><1
E= (—c‘ 1

B 0,1
r __ rX

Now we can assume that A is congruent to a matrix

B 0y
OSX}" D

where s = n — r and D is a symmetric matrix with zeroes along the diagonal.
Now out hypothesis concerning principal submatrices of size 7+ 2 containing B
says that any submatrix

and form
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B 0r><2
5.20
<02xr qu> ( )

has rank less than r+2, where D, is the matrix

0 ap
aqp 0
where p # g. Of course by symmetry ap, = agp,. The only way this can have rank

less than r+2isif ap, =0
Doing this for any choice » < p < g < n shows that A is congruent to the matrix

B Or><s
OS Xr OS Xs
which obviously has rank r, so we are done. a

To finish the proof of Theorem 5.10.5, assume that the symmetric matrix A has a
non-singular principal submatrix B of size r, and none of larger size. We show that
all the submatrices of A containing B of size r+ 1 are singular by using Theorem
5.10.6, and then conclude by Theorem 5.10.2. Thus we need to show that all the
submatrices B, are singular, using the notation of Theorem 5.10.2. B, is a subma-
trix of the submatrix of size r 4+ 2 where we adjoin to B the rows and columns of
index p and g. The proof of Theorem 5.10.6 shows not only that this submatrix is
singular, but that is only has rank r: see (5.20) and what follows. Then its submatrix
B4 can have rank at most r, and we are done. O






Chapter 6
Duality

Abstract The chapter studies on linear functionals and duality. In an introductory
section we develop the terminology and notation of bilinear forms, which provide a
useful interpretation of functionals and duality. This material will be used in the fur-
ther discussion of bilinear forms in Chapter 7. These two chapters are independent
from the rest of the book. They give a different point of view and are a generalization
of material covered in Chapter 8.

6.1 The Dual Space

The field F is an F-vector space of dimension 1, so we make the following defini-
tion.

Definition 6.1.1. A linear functional on a F-vector space V is a linear map from V
to F.

Assume V has dimension n. We have the linear functional 0 that is identically O.
Any other linear functional takes on non-zero values, so that by the Rank-Nullity
Theorem its rank is 1 and its nullity is n — 1.

Example 6.1.2. The most important example of a linear functional is definite inte-
gration. Fix a closed interval I = [a,b] of real numbers, and let the vector space be
the set V of continuous functions on /. This is indeed a vector space as you should
check, but it is infinite dimensional. Then the map

760 [ s

is a linear functional on V. Determine what properties of integration you need to
establish this. In §6.2 we will apply this to a finite-dimensional subspace of V.

Example 6.1.3. The trace of a square matrix of size n, already defined in Exercise
2.8.18:

107
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tr(A) =ay+axn+---+au

is a linear functional on the vector space M, of such matrices. Prove this.

A special case of Theorem 4.1.11 says that the set of linear functionals on V
is a F-vector space. We call it V* rather than the more cumbersome .Z(V,F). By
Theorem 5.2.2 the dimension of V* is n. V* is called the dual space of V.

We construct a basis for V* using a basis B = {vy,...,v,} of V.

Definition 6.1.4. For each i, 1 <i < n, let f; be the unique linear functional such
that
fi(Vj):Oifi#j, al‘ldf,'(V,'):l. (61)

The linear functional f; is dual to the basis element v;. These n functionals are also
called the coordinate functions in the basis 5.

The condition expressed in (6.1) comes up so often that we will write it using the
Kronecker delta (Definition B.1.6): f;(v;) = §;;. The existence and uniqueness of
the f; follows immediately from Theorem 4.1.12 applied to V and F' as the space we
are mapping to.

Example 6.1.5. When V is F", we can use as basis the standard unit coordinates
vectors e; of Example 3.4.4, in which case the dual linear functional f; take the
vector (x1,X2,...,X,) to its i-th coordinate x;.

Definition 6.1.6. The linear map Dy : V — V* is defined by Dgs (v;) =f;, 1 <i<n.

By Theorem 4.1.12 again this is enough to define a linear map. We write Dy,
because if the basis changes, the map changes. For example assume V is one-
dimensional. Let v be a basis of V and f its dual, so that f(v) = 1. Then the functional
f/k is the dual of kv for any scalar k. Compare the linear mapping Dy : v +— f to the
map Dyy: kv f/k. Since Dy (v) = f/k?, they are the same if and only if k*> = 1.
We will generalize this computation in Example 6.4.8.

Theorem 6.1.7. The f;, 1 < i <n, form a basis B* of V*, called the dual basis of
the basis B of V.

Proof. First we show they are linearly independent. If there were an equation of
linear dependence, we would have

cifi+efy+---+c,f, =0,

where not all of the ¢; are equal to 0. Now evaluate at each v;: the equation becomes
cifi(v;) = 0. But f;(v;) = 1, so ¢; = 0. Therefore all the coefficients vanish and we
do not have an equation of linear dependence. For dimension reasons the f; clearly
span. O

Theorem 6.1.8. An arbitrary linear functional f is written in terms of the basis v;
and the dual basis f; as
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f= i f(V,')f,’. (62)

V= Zn: fi(v)v;. (6.3)

Proof. Evaluate the functionals on either side of (6.2) on every basis vector v; to
get, since the f; are the dual basis:

f(v;) = ) E(vi)fi(v;) =£(v;)E;(v;) =£(v;)

™=

1

so these two functionals agree on a basis, so they agree everywhere. The last result
is proved in the same way, this time applying the functional f; to both sides of (6.3).
O

Example 6.1.9. If V is F" with its natural basis, so an element v in V has coordinates
(ay,az,...,a,), then V* is again F”" in the dual basis. Writing a f in the dual basis
with coordinates (by,b3,...,b,), then the evaluation of the linear functional f on v
is:

f(v) =a1bi +arby +--- + anby.
Note that this is the matrix product of the the row vector b with the column vector
a, a useful remark, as we shall soon see.

6.2 Application: Lagrange Interpolation

Let P, be the vector space of polynomials F[¢] of degree at most n over F, which
can be either R or C. This is an n+ 1 dimensional vector space. One possible basis
B of B, consists of the polynomials {1,z,7%,...,"}.

Consider the graph of the polynomial f(t) € P, in F?: this means the collection
of points (¢, f(¢)). Take n+ 1 distinct points #;, 0 < i < n, in F and the corresponding
n+ 1 points (¢, f(¢;)) on the graph. The map f(z) — (f(9), ..., f(#,)) is a linear map
from P, to F™*1. Its matrix, for the basis B is

ltg... 15
Lty ...of

V=|.. e (6.4)
Lt,... 1,

Indeed, writing the polynomial f as f(¢) = ao +at + -+ + a,t" and writing y for
(f(t,...,f(tn)), the linear map is given by
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Va—y. 6.5)

The matrix of coefficients V of this system is called the Vandermonde matrix at the
points {f,#,...,t,}. Any polynomial f(¢) that satisfies the equations (6.5) interpo-
lates the n+ 1 points (#;,y;), 0 <i < n.Ifthe (n+ 1) x (n+ 1) matrix V is invertible,
then there is a unique interpolating polynomial f. It is easy to see this is true if the
points ¢; are distinct. Indeed, a polynomial of degree < n has at most n roots, except
for the polynomial 0. Thus the nullspace of the linear map is trivial, and we are done.
Later we will prove that V is invertible directly by showing that its determinant is
non-zero in Example 11.5.5.
Here we will show this by using linear functionals and the dual basis.

Definition 6.2.1. For each fy € F' we get a linear functional e,, on P, given by

€1 - f(t) — f(t0)7
for every f € P,. The functional e;, called the evaluation functional at #.

To check that e, is a linear functional, we must show

e, (f(x) +8(x)) = e (f) e (g), and e, (cf(x)) = e, (f(x))-

Both statements are obvious. Notice that we are in the general framework of Exam-
ple 3.2.7.

Here we are only interested in the n+ 1 points ¢;, and we will only consider the
evaluation functionals e;;, that we write for simplicity as e;.

Theorem 6.2.2. For any collection of n+ 1 distinct points t;, the evaluation func-
tions e; form a basis of the dual space P,

Proof. Consider the polynomials

(t—=10)...(t—tj—1)(t—tjs1)...(t —15)
(tj—t0) .. (tj = tj-1)(tj —tj41) .. (tj —tn)

fi(t) =

(6.6)

The numerator is chosen so that f;(#;) = 0 when i # j, and the denominator chosen
so fj(tj) = 1. Clearly f;(t) is a polynomial of degree n, so it is in P,. By Theorem
6.1.7, f;(t) form a basis for P,. Indeed the e;(f;) = J;;. Thus the {eo(f),...,e,(f)}
form the basis of P} dual to the basis { fo(¢), ..., fu(t)} of P,. O

As a corollary of Theorem 6.1.8, we can write an arbitrary polynomial f(¢) € P,
in terms of the polynomials f;(z) of (6.6) as

£(1) = i)exfm(r) - i}f(n)f,-(r).

Applying this to the polynomials ¢/, we get

1= 1/o(0) + A1)+ 0 fa(0)
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We can write these equations in matrix form as

111\ [fl)
ot ...t fi(0) t
1ty .ot \fult) "

Notice that the matrix of coefficients is the transpose of the Vandermonde matrix
V. Since the two column vectors form bases of the same vector space B,, V' is a
change of basis matrix, and therefore invertible. This also allows us to bypass the
Vandermonde determinant computation in Example 11.5.5.

We have established that there is a unique polynomial of degree less than or equal
to n whose graph passes through the n 41 points. This is known as interpolating the
n+ 1 points by a function of a specific type, here polynomials of degree at most 7.

Thus we have proved the desired theorem, which gives us a formula for the
unique interpolating polynomial.

Theorem 6.2.3 (The Lagrange interpolation formula). The unique solution for
the problem of interpolating the n+ 1 points (t;,y;), where the t; are distinct, by a
polynomial of degree at most n is

@) =yofo(t) +yifi(t) + - +yafult),
for the functions fi(t) of (6.6).

Now we return to Example 6.1.2. The vector space P, is a finite dimensional sub-
space of the space of continuous function on any finite interval /. As we have already
noticed the definite integral of any f in P, over the interval is a linear functional. We
leave it to you to prove it.

Exercise 6.2.4. Prove that integration is a linear functional. Write down carefully
what needs to be established.

So the integral of f can be written as a linear combination of the evaluation functions
e;, for any set of n+ 1 distinct points #.

Theorem 6.2.5 (Quadrature Formula). There are scalars c;, 0 < i < n such that
for any polynomial f(t) € P, we have

/f(f)df = coeo(f) +crer(f) + - +cuen(f) = cof(to) +c1f(t1) + - +cnf(tn)-

1

It is amusing to see how integration can be reduced to evaluation at points. In
particular, consider the polynomials f;(z) of (6.6). Then

/, Fi(t)dx = cifi(t).
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For the powers ¢ we get
/tidt =coth Feith +-- Fenth.
I

Exercise 6.2.6. How can you reconcile this computation with what you know about
the integral of #'?

6.3 Bilinear Forms: the General Case

Let V be a vector space of dimension n, and W a vector space of dimension m, over
the base field F.

Definition 6.3.1. A bilinear formon'V x W is a map b(v,w): V x W — F such that

1. For each fixed a € V the function g,(w): W — F, defined by g,(w) = b(a,w) is
a linear functional on W

2. For each fixed b € W the function fy,(v): V — F, defined by f,(v) = b(v,b) is a
linear functional on V;

These conditions say that b is a linear map in each variable separately.
Our goal is to understand all bilinear forms. First an example, which, as we will
see soon, contains all possible cases.

Example 6.3.2. Take a matrix A of size m x n. Let V = F", with coordinates x;, and
W = F™ with coordinates y;. We get a scalar valued function b: V x W — F by
setting:

b(x,y) = y'Ax.

For each fixed a € F", the function g,(y) = y’Aa is a linear functional. Similarly the
function fy (x) = b(v,b) = b’Ax is a linear functional. So b(x,y) is a bilinear form.

Theorem 6.3.3. A bilinear form b(v,w) on'V x W gives rise to two linear maps D
and D;:

Di:weW—f,cV";
Dy:veVig, e WH

for the functions fy, and gy of Definition 6.3.1.

Proof. We only consider the case of Dy, since that of D, is nearly identical. First by
hypothesis fy is a linear functional. The map D; is linear because of the linearly of
b(v,w) in its first variable: first,

b(vi +v2, W) = b(v, W) +b(va, W)

so fy, v, (W) = fy, (w) +1£,,(w), and then b(cv,w) = cb(v,w) for any scalar c, so
Jev(w) = cfy(w). O
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Our goal is to show that any bilinear form can be written using a matrix as in
Example 6.3.2, once bases for V and W have been chosen. Thus we imitate what we
did when we described linear maps by matrices in Theorem 5.1.1.

Theorem 6.3.4. Let b(X,y) be a bilinear form on F" x F™. Use x;j for the coordi-
nates on F", and y; for the coordinates on F™. Let v; be the j-th unit coordinate
vector on F"* and w; be the i-th unit coordinate vector on F™. Define the scalars a;;
by

ajj = b(v;,wi)

and let A be the m x n matrix (aj;). Then the bilinear form b(x,y) is written y' AX,
and the matrix A is uniquely determined by b(X,y).

Proof. We reduce to Theorem 5.1.1. Consider the linear map D that sends a vector
X € F" to the linear functional b(x,e) € W*, which has dimension m by Theorem
6.1.7. This is the functional that to every y € W associates the scalar b(x,y). We
apply Theorem 5.1.1 to the linear map D;: by choosing bases for V and for W*, there
is a unique m X n matrix A matrix representing D5 in these bases. So the functional
b(x,e) in W* is the matrix product Ax, which is a m-vector. By Example 6.1.9 the
value of this functional on y € W is y’Ax. The uniqueness of A follows easily by
letting y run through the standard basis of F”, and x run through the standard basis
of F". ad

Corollary 6.3.5. Consider instead the linear map D1: F™ — F" which to a vector
y associates the linear map b(e,y) in the dual of F". The associated matrix is A’,
the transpose of the matrix for D;.

Here is a corollary of Theorem 6.3.4 that reflects the uniqueness of A:

Corollary 6.3.6. Let E;; the the m x n matrix with 1 in position (i,i), and 0 every-
where else. Then the E;j, 1 <i<m, 1 < j <n, form a basis of the matrices of
bilinear forms on V. x W, such that

wgy {1 s =iandi=j
’ 0 otherwise.

See §8.8 for some related results.

Of special interest to us is the case W = V*, that we study next. Indeedtoav eV
and af € V* we can associate the scalar f(v), the evaluation of f on v. This is bilinear
by definition. All bilinear forms on V x V* can be interpreted in this way.

6.4 Annihilators

Definition 6.4.1. Let S be a subset of the vector space V. Then the annihilator S* of
S is the set of f € V* that vanish on S.
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Exercise 6.4.2. The annihilator S of any subset S C V is a vector subspace of V*.
Furthermore if W is the subspace of V spanned by S, then W¢ = §¢.

Example 6.4.3. The annihilator of 0 is V*; the annihilator of V is 0 C V*. Let W be
a subspace of V of dimension n — 1, where V has dimension n. Then W is called a
hyperplane of V. W has a basis {vy,...,v,_1 } which can be extended by one vector
Vv, to a basis *B of V. Using the dual basis B* of V*, we see that the annihilator W*
of W is spanned by f,,, the functional dual to v,, so it is one-dimensional.

More generally we have:

Theorem 6.4.4. I[f W is a subspace of dimension s of the n-dimensional vector space
V, then its annihilator W* C V* has dimension n —s.

Proof. Use the same method as in the hyperplane example. a

Definition 6.4.5. If W C V has dimension s, let W¢ C V denote any complement of
W, namely any subspace of dimension n — s such that W NW¢ = (0).

We can find a basis B of V where vy, ..., vy span W and vy, ..., v, span W€,
Because W€ depends on the basis B, we could write Wg;.

Theorem 6.4.6. Under the isomorphism Dsy, W€ is mapped to W%, and W is
mapped to (W¢)*

Proof. Using the basis 8 defined above, it is clear that the dual basis elements
foi1,...,f, span W9 and fy,. .. f; span (W¢)* O

This theorem can be used to reprove an important result, already proved using row
reduction in Theorem 5.6.5.

Theorem 6.4.7. The row rank and the column rank of a matrix are equal.

Proof. Let A be am x n matrix. The rows of A span a subspace W of F" of dimension
s, the row rank of A. Let r be the column rank of A. This F" will play the role of V
above, so we will call it V.

Use the standard basis for V and use the dual basis for V*. Then by Example 6.1.9
an element f of V* is in W¢ if and only if its coordinate vector X = (x1,x2,...,X,)
satisfies the equations

a'x = 0, for all the rows a’' of A.

This is equivalent to saying that x is in the nullspace N of the linear map L4 : F" —
F™ associated to the matrix A. So Theorem 6.4.4 tells us that dimN = n —s. Com-
bining with the Rank-Nullity Theorem, which says dimN +r = n, we get r = s: the
row rank of A is equal to its column rank. a
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Example 6.4.8. Here is how the isomorphism Ds : V — V* depends on the choice
of basis in V, using the change of basis results of §5.3.

As usual we have a vector space V of dimension n with a basis B = {vy,...,v,},
and its dual space V* with dual basis B* = {f},...,f,}. Then by construction the
dual map Dgs : V — V* has the identity matrix as associated matrix Meg. (Dgs ). Now
take a second basis € = {wjy,...,w,} for V with its dual basis €* = {gy,...,g,}

The bases 98 and € are related by the change of basis formula 5.9

vi=aw +agw+ 4 a,w', 1< j<n, (6.7)

so the change of basis matrix [IV]? is A = (a;;). Here Iy is the identity mapping on
V. Apply the functional g to (6.7) to get

g(vj) = aj (6.8)
Since the f; are the dual basis to the v}, this implies that
g = apfy +apfh + - -+ agf,.

Comparing this formula to (6.7) shows that [Iv]g* = A’, because the order of the
indices has been reversed. Finally by construction [D%]g* =1, and [D¢l = 1.
This is simply because we have taken the dual bases. Now we write the dual map
D¢ of V. — V*, but express it in the B basis.

By Theorem 5.3.6 the matrix of D¢ expressed in the bases B for the domain, and
$B* for the target is

[1]%. 0 [De)%. o [IV]2 = ATIA = A'A.

This is the identity matrix, and therefore the same as M. (D) if and only if
A'A = I. Such matrices are called orthogonal matrices. We will study them and
give examples in §8.3.

Remark 6.4.9. The isomorphism Dss depends on the basis B and maps W¢ to W¢
by Theorem 6.4.6. This is why we can only make the weak statement that W &
W¢ =V in Theorem 6.4.4. Given a subspace W of dimension m inside a space V of
dimension n, there are infinitely many subspaces W’ of dimension n — m such that
W@ W' =V.By Example 6.4.8, each such W' is a Wy, for a suitable basis B.

6.5 The Double Dual

Given a n-dimensional vector space V, we have constructed its dual space V*, which
also has dimension n. The isomorphism between V and V* depends on the choice
of a basis for V as we showed in Example 6.4.8.
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Next we can take the dual of V*, the double dual of V, written V**. Since V*
has dimension n, V** again has dimension #n. It also has an isomorphism with V
that does not depend on a choice of bases, something V* does not have. We now
construct this isomorphism.

Definition 6.5.1. Pick av € V. The map ey: V* — F given by:
ey(f) =f(v), forany f € V*

is called evaluation at v. The map ey is easily seen to be a linear functional on V*,
so ey € V**,

Exercise 6.5.2. Prove ey € V**. You must show ey (f; +f,) = ey(f;) + ey (f2) and
ey(cf) = cey(f) for any scalar c.

Theorem 6.5.3. The map D,: V — V** given by v — ey is an isomorphism of V
with V**. It is called the natural correspondence between V and V**.

Proof. We first show D; is a linear map. The main point is that for two elements v
and wofV,
Cytw = €y +ey.

To show this we evaluate ey on any f € V*:
eyrw(f) =f(v+w) =f(v) +f(w) = ey (f) + ey (f)

just using the linearity of f. Thus D, (v+w) = D»(v) 4+ Dz(w). The remaining point
D, (cv) = ¢D,(v) is left to you.

To show D; is an isomorphism, all we have to do is show D> is injective by the
Rank-Nullity theorem. Suppose D; is not injective: then there is a v such that ey
evaluates to 0 on all f € V*, so f(v) = 0. But that is absurd: all functionals cannot
vanish at a point. For example extend v to a basis of V and let f be the element in
the dual basis that is dual to v, so f(v) = 1. m]

Thus we can identify V and V** using the isomorphism D,. This has a nice
consequence:

Corollary 6.5.4. Given an arbitrary basis B* of V*, there exists a basis B of V for
which it is the dual.

Proof. Just take the dual basis *B** of V**, and then use the isomorphism D; to get
a basis B of V of which B* is the dual. a

Remark 6.5.5. When we write f(v) we can either think of f as a functional acting
onv €V orv as a functional in V** acting on f € V*. This suggests that we use a
more symmetric notation, say (f,v). Indeed, as we will define in Chapter 7, this is a
bilinear form on the two spaces, because, as we have already checked:

o (fi+£,v)=(f,v)+ (f2,v) and (f,v; +v1) = (f,v;) + (f, v2).
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o (cf,v) =c(f,v) and (f,cv) = c(f,v).

The annihilator of a subspace W of V is the subspace of functionals f such that
(f,w) = 0 for all w € W. The annihilator of a subspace W of dimension r has di-
mension n — r. We can also consider the annihilator (W*)* of a subspace W* of V*:
(W*)4 is a subspace of V**, but using the natural identification of V** with V, we
can view it as a subspace of V. The dimension result still holds.

6.6 Duality

We extend the results on linear functionals from §6.4 by applying the duality con-
struction of §B.4.

Suppose we have a vector space V of dimension n, a vector space W of dimension
m, and a linear map L between them:

L:V =W

To each linear functional g € W*, which is a linear map W — F, we can associate
the composite linear map:
goL:V—>W —F.

Exercise 6.6.1. Check that go L is a linear functional on V.
Definition 6.6.2. The linear map L*: W* — V* given by

L':geW'r——f=goLeV".
is called the dual or the transpose of L.

Theorem 6.6.3. The annihilator R(L)® C W* of the range R(L) C W of L is the
nullspace N(L*) of L* in W*. Similarly the annihilator R(L*)* C V of the range
R(L*) C V* is the nullspace N(L) of L in V. Furthermore L and L* have the same
rank.

Proof. Let r be the rank of L so that the range R(L) C W of L has dimension r and
the nullspace N(L) of L has dimension n — r (by the Rank-Nullity theorem). The
nullspace N(L*) of L* is the collection of linear functionals g € W* such that L*(g)
is the 0 functional on V, meaning that L*(g)(v) = go L(v) = 0 for all v € V. This
just says that g annihilates L(v). So N(L*) = R(L)“.

Next, dimR(L*) = m — dimN(L*) by Rank-Nullity again. By Theorem 6.4.4
R(L)“ has dimension m — r, therefore dimR(L*) = r, so L and L* have the same
rank.

Finally a functional f € R(L*) is written f = go L. Obviously any v in the nullspace
of L is in the nullspace of the composite go L, so it is annihilated by R(L*). Thus
N(L) C R(L*)“, which has dimension r, as we just established. By Theorem 6.4.4
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again, applied in V, this annihilator has dimension n —r, so dim N < n—r. The Rank-

Nulllity theorem applied to L then tells us we have equality, so N(L) = R(L*)“.
This last result can be established in a way parallel to the first argument of the

proof by identifying V** with V, W** with W, and L** with L under the previous

identifications. o
Now assume we are given a basis B = {vj,...,v,} of V and a basis € =
{wi,...,w,} of W. What is the relationship between the m x n matrix [L}? as-

sociated to L and the n x m matrix [L*]g* of L*, in the dual bases discussed in §6.4?
This is settled by the following theorem. It is a special case of Corollary 6.3.5,
but we repeat the proof for convenience.

Theorem 6.6.4. One matrix is the transpose of the other:
*E* B\
L] = ([L]¢ )"

Proof. Let (x1,x2,...,X,) be the coordinates of a vector v in the ‘B basis of V. Then
if A in the m x n matrix of L, AX is the vector of coordinates of L(v) in the € basis.
Now apply a functional g € W* with coordinates (yi,...,y) in the dual basis. Then
by Example 6.1.9 it evaluates to

Y (Ax) =x'A'y

If B is the n x m matrix of L* in the bases € and B, then applied to g € W*, you
get the functional By € V*. By Example 6.1.9, evaluating this functional on v gives
x'By. Since this is true for all y and x , B = A’ as we saw in Theorem 6.3.4. a

Exercise 6.6.5. Explain how the computation done in Example 6.4.8 is a special
case of the theorem.

Exercise 6.6.6. Choose bases for V and W according to Theorem 5.4.1, and work
out what we have done in this section completely for this case.

Now suppose we have a third vector space U of dimension p and a linear map
M : U — V. To each linear functional g € W*, which is a linear map W — F, we can
associate the composite map:

goL: VW —F.
Then we can compose the linear maps L: V —W and M: U — V to get Lo M.

Theorem 6.6.7. The transpose of the composite (Lo M) is the composite of the
transposes, but in the opposite order:

(LoM)* =M*oL".

Note that this makes sense at the level of the matrix representatives, since (AB)" =
B'A".
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Proof. On one hand we have the composite map LoM : U — W, so that its transpose
(LoM)*: W* - U* mapsg € W*togo(LoM) € U*.

On the other hand the transpose L*: W* — V* maps g to f = go L and M* maps
feV*toec U* wheree=foM.

Putting this together we get, doing the maps one at a time,

grre=foM = (goL)oM =go(LoM) = (LoM)'g

as claimed. Notice that other than Definition 6.6.2 all we used is the associativity of
composition of maps in the very last step. a






Chapter 7
Bilinear Forms

Abstract Bilinear forms are a new kind of mapping on a vector space. We study
them the same way we studied linear maps by representing them by matrices. The
main goal is to classify bilinear forms in terms of a basis of the vector space. The
result is simpler than the result we will derive for linear transformations later in this
book in Chapter 10, since any bilinear form can be diagonalized by an appropri-
ate choice of basis, while is not the case for linear transformations: see the Jordan
canonical form in §10.6.

7.1 Bilinear Forms

Now we specialize the results of §6.3 to the case W = V. We simplify the notation
b(v,w) for the bilinear form to (v, w). We will mainly be interested in bilinear forms
that satisfy an additional property.

Definition 7.1.1. A bilinear form (v,w) on V X V is symmetric if it satisfies
(v,w) = (w,v) for all vand win V.

If (v,w) is symmetric then the two linear maps D; and D, of Theorem 6.3.3 are
identical. We will just call it D.

If the matrix A is symmetric in Example 6.3.2, then (e, e) is a symmetric bilinear
form, since if A’ = A,

(v,w) =y Ax = y'A'x = (y'A")x = x'Ay = (w, V).

Example 7.1.2. Let A be the square matrix of size 2:

21
A= (34):
then

121
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21\ (x1 2x1 +x2
t _ _ —
yAx = (yl yz) <3 4) (x2> = (yl yz) (3)61 +4xy =2x1y1 +x2y1 +3x1y2 +4x2y2.

Check that this bilinear form is not symmetric.

Example 7.1.3. If we make the matrix A symmetric by averaging its off-diagonal
terms, we get the symmetrio bilinear form:

22\ (x
Y AX = (y1 y2) (2 4) ()é) = 2x1y1 + 2x2y1 + 2x1y2 +4x2)2

Notice that the coefficients of the crossterms x,y; and x{y, are the same, as they
always will be if A is symmetric.

Using Theorem 6.3.4, we see that a bilinear form on V x V is symmetric if and
only if the matrix A representing it is symmetric. We use, of course, the same basis
B on both copies of V. We say that the bilinear form b is represented by the matrix
A in the basis *B.

Definition 7.1.4. The symmetric bilinear form (v, w) is non-degenerate if the only
v € V for which
(v,w)=0forallweV,

isv=0.

Definition 7.1.5. We say that v is perpendicular, or orthogonal, to w if
(v,w)=0.

We write v L w if this is the case. For any subset S of V, we let St be the set of
elements of V perpendicular to all the elements of S. We call S* the orthogonal
complement of S. This notion of course depends on the choice of the bilinear form.

Exercise 7.1.6. Prove S~ is a subspace of V. Let U be the subspace of V generated
by the elements of S. Show that S+ = U~.

Definition 7.1.7. The radical of (v, w) is the orthogonal complement V* of the full
space V. We use the notation v for dimV .

The radical is (0) if and only if the bilinear form is non-degenerate, by Definition
7.1.4. We can describe the radical in terms of the linear map D: V — V* given by
D(v) = (v,9).

Theorem 7.1.8. The linear map D is an isomorphism if and only if (v,w) is non-
degenerate. The nullspace of D is the radical V*. The rank of D is n —dimV ', and
is called the rank of (v,w).

Proof. An element v is in the nullspace of D if and only if the linear functional fy
is identically 0, meaning that for all w € V, (v,w) = 0. Thus the nullspace of D is
the radical of V. Because V and V* have the same dimension, D is an isomorphism
if and only if the nullspace is reduced to (0). The last statement is just the Rank-
Nullity Theorem applied to D. a
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By Theorem 6.3.4 a symmetric bilinear form form gives rise to a symmetric
matrix. In fact it gives rise to many symmetric matrices, depending on the basis
used for V. We want to know how the matrix varies in terms of the basis.

Theorem 7.1.9. If the symmetric quadratic form (v, W) is written y'AX in the basis
B = {v! ... ,v"}, then it is written y' C'ACX in the basis € = {w',..., w"}, where C
is the change of basis matrix C from the *B basis to the € basis.

Proof. By Corollary 5.3.3
Ve = [1E V). (7.1)

Here C = [1]?. Because x = Cy, and therefore y'C' = x', the symmetric matrix A
representing the bilinear form (v,w) in the basis B is replaced by the symmetric
matrix C'AC representing the form in the basis €. Corollary 5.3.7 shows C is invert-
ible. To show that C'AC is symmetric, just take its transpose. a

This yields a equivalence relation on symmetric matrices of size n, known as
congruence:

Definition 7.1.10. The symmetric matrix A of size n is congruent to a symmetric
matrix B of the same size if there is an invertible matrix C such that B = C'AC.

Example 7.1.11. Let A be the symmetric matrix
20
03
11
02
10} /20)\ /11 22
— C'AC — —
B=cac= (1 2) (O 3) (02) o (2 14>

is congruent to A.

and C the invertible matrix

Then the matrix

Proposition 7.1.12. Congruence is an equivalence relation on symmetric matrices.

Proof. Use the identity (C")~! = (C~!)’: the inverse of the transpose is the transpose
of the inverse. See Exercise 2.3.9. The rest of the proof is nearly identical to that of
Theorem 5.5.3, and is left to the reader. O

Congruence partitions symmetric matrices into congruence classes of congruent
matrices. Our goal is to find the simplest matrix is each congruence class: we will
see that there is a diagonal matrix.

Do not confuse congruence with similarity (Definition 5.5.2). Once we have es-
tablished the Spectral Theorem 13.3.1, we will see the connection between these
equivalence relations.
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In Theorem 7.1.8 we defined the rank of a symmetric bilinear form as the rank
of the linear map D: V — V* it induces. We could also define it as the rank of any
matrix A that represents it. This implies:

Theorem 7.1.13. The rank of a symmetric matrix is an invariant of its congruence
class: in other words, if two matrices are congruent, they have the same rank.

Proof. There is nothing to do, since all matrices representing the same linear form
have the same rank.. We can confirm this by computation. Let B = C'AC be a matrix
congruent to A, so C is invertible by definition. The theorem follows from Corollary
4.3.8 applied to the matrix (C')~'B = AC. Because C and (C')~! are invertible, the
corollary says that A and B have the same rank. a

Example 7.1.14 (Hankel Forms). We can produce a symmetric matrix A of size n
from 2n — 1 numbers so, ..., 2,2, by letting a;; = s;1 ;_». Written out, this gives a
symmetric matrix

S0 S1 S22 ... Sp—1

S1 S2 S§3 ... S,
A= . . . . (7.2)

Sn—1 Sn Snp+1 --- $2pn—2

called a Hankel form.

Notice that each square submatrix of a Hankel form is again a Hankel form.
Hankel forms were investigated by the German mathematician Frobenius in the late
nineteenth century: a good reference for his work is Gantmacher [8], V. 1, X.10.
Frobenius showed how to compute the rank of a Hankel form in most circumstances.

Exercise 7.1.15. Given any symmetric matrix A, and any square matrix B of the
same size, we have seen that the matrix B’AB is symmetric. What can you say about
the rank of B’AB, if you know the rank of A and of B?

Hint: use Frobenius’s Inequality, Exercise 4.3.9, which builds on Sylvester’s Law
of Nullity, Theorem 4.3.7.

Now we carry this analysis one step further.
Theorem 7.1.16. The set of all bilinear forms on 'V is a vector space.

Proof. Use Example 3.2.7. We add two bilinear maps f(v,w) and g(v,w) by setting
f + g to be the map such that

(f+8)(v,w) = f(v,w) +g(v,w)

and for any scalar ¢, (cf)(v,w) = ¢(f(v,w)). You should check that these maps are
bilinear. This is the vector space structure. a

Recall that £ (V,V*) is the vector space of linear maps from V to its dual space
V*, according to Theorem 4.1.11. The dual space V* of V is discussed in §6.4.
Next we define a linear map M from the vector space B of bilinear forms on V to
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Z(V,V*). This is the map we have been implicitly discussing above: to the bilinear
form (v, w) of a point in B we associate the linear map from V to V* that maps v € V
to its gy € V*, where gy(w) = (v, w).

Theorem 7.1.17. The linear map M: B — £ (V,V*) is an isomorphism.

Proof. 1t is easy to see that M is linear: this is left to you. We construct an inverse
to M. So we start with a linear map g: V — V* that maps any v € V to a linear
functional gy € V*. This functional gy can be evaluated at any w € V, giving gy(W).
This gives the bilinear form (v, w) with values gy(w). This is the inverse of M, so it
is automatically linear and we are done. a

Remark 7.1.18. The proof is written without resorting to a basis for V and V*. In
coordinates the proof becomes easier. You should write it down.

7.2 Quadratic Forms

To each symmetric bilinear form (w,v) on V x V we associate the scalar valued
function on V' given by

q(v) = (V,v).
This function is called the quadratic form on V associated to (e, ) . We have:
Lemma 7.2.1. The quadratic form q(v) associated to (v,w) satisfies:

1. The polarization identities

(v,w) = n (7.3)
and
) = AV W) =000) = g() >
2. an identity only involving q:
() +q(w) = LEW A o) .5

3. For any scalar c, q(cx) = ¢*q(cx).

Proof. For 1) just expand the right hand side using the bilinearity and symmetry of
(v,w). For example, for (7.3) use the bilinearity and the symmetry of (v,w) to get

gv+w)=(v+w,v+w)
= (v,v)+ (v,w) + (W,v) + (W, w)
= (V,V) + Z(V,W) + (W7W)
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and similarly
q(V - W) = (V,V) - 2(V7W) + (W,W)

Then subtract, and divide by 4.
For 2) subtract (7.4) from (7.3) and rearrange. For 3) by linearity in each factor,
again:
g(ev) = (ev,ev) = c(v,ev) = A (v,v) = 2q(v).

O

The third property is the reason why these functions are called quadratic: they are
homogeneous functions of degree 2. The second property is verified for all homo-
geneous polynomials of degree 2, as you should check.

Equip V with the basis B = {vy,...,v,}. If the symmetric bilinear form has the
symmetric matrix A in this basis, then the associated quadratic form is written:

n n

q(v) =VAv= Z ( Z aijxixj)7 (7.6)

i=1 " j=1

where the x; are the coefficients of v with respect to the basis. Thus g(v) is a poly-
nomial of degree 2 in the coefficients x;.

By the polarization identities, we can reconstruct all the entries of a matrix A
associated to the symmetric bilinear form from the values of its quadratic form q.
Indeed,
q(vVi+v;) —q(vi—v;)

1 .
Thus if we know the quadratic form, we know the associated biinear form. Quadratic
forms are sometimes easier to deal with, since they only depend on one set of vari-
ables.

We often write quadratic forms as functions of the coefficients in the chosen
basis. For example:

aij = (Vi,vj) =

Example 7.2.2. Let q(x1,x2,x3) = x% + 2x1X) — X1X3 — x% + xpx3 + 4x§. The associ-
ated matrix A is

11 —1)2
1 -1 1/2
—1/21/2 4

as you should check by carrying out the matrix multiplication x” Ax.

Remark 7.2.3. In this example, note that the off-diagonal terms in the matrix are half
the coefficients in the quadratic polynomial. This is because we have not written
separate coefficients for x;x; and x;x; in the polynomial, as we have in the sum in
(7.6). If we write the summation differently, by starting the inner summation at i,

we would have:
n

Z b,‘jx,‘xj> .

For i 75 j, b,’j = 2Clij, while b,’,’ = daj;.
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Exercise 7.2.4. In Example 7.1.3 a basis has already been chosen, and the associ-
ated quadratic form is Zx% +4x1x + 4x%. Reconstruct the symmetric bilinear form
from this quadratic form using a polarization identity. Note that the quadratic form
associated to the non-symmetric bilinear form in Example 7.1.2 is the same.

7.3 Decomposition of a Symmetric Bilinear Form

Recall that the annihilator U¢ of a subspace U of V is the subspace of elements of
V* that vanish on U: see §6.4 for details. On the other hand by Definition 7.1.5 U
is the subspace of elements w € V such that (u,w) =0 for all u € U. U+ depends
on the chosen bilinear form.

Theorem 7.3.1. Let V be a vector space with a non-degenerate symmetric bilinear
form (v,w), and U a subspace of V. Then the space U+ C V associated to (v,w) is
isomorphic to the annihilator U C V* of U via the linear map D: V — V* defined
by D(v) = (v0).

Proof. By Theorem 7.1.8 D is an isomorphism if and only if the form (v, w) is non-
degenerate. Since U+ = {ve V| (u,v)Vu € U} and U* = {f € V* | f(u) = OVu €
U} and the isomorphism D maps v to the functional (v,e) it is clear that U* is
isomorphic to U“ under D. a

Notice the connection with Theorem 6.4.6.
Recall that the rank of a symmetric bilinear form is the rank of the linear map D,
or the rank of any matrix A representing it: see Theorem 7.1.13.

Theorem 7.3.2. If the radical of (v,w) on'V has dimension v, then the rank of (v,w)
is n— V. In particular if the bilinear form (v,w) is non-degenerate, it has rank n.

Proof. Since the rank does not depend of the choice of basis by Theorem 7.1.13,
pick any basis B = {v!,...,v"} of V, in which the first v basis elements form a
basis of the radical. Then in this basis the matrix A looks like, in block notation:

00

0B
where B is a symmetric matrix of size n — v. The matrix B represents a non-
degenerate bilinear form by construction. This reduction shows that it is enough

to prove that the bilinear form (v, w) has rank n when it is non-degenerate.
The non-degeneracy assumption means that there is no non-zero v € V such that

(v,w) =0 forall w € V. Writing v in coordinates for an arbitrary basis as (xp,...,x,)
and w as (y1,...,yn), this means that there is no non-zero x such that
yAx =0, forally € F". 7.7

If there happens to be a non-zero x with Ax = 0 then (7.7) fails. So the nullspace
of the linear map x — AX is trivial, so that A has rank » as desired. O
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Remark 7.3.3. Let W be the subspace of V of dimension n — v spanned by the vec-

tors {vV*1 ... v"} constructed in the proof. Then clearly

V=Viow. (7.8)
so by Theorem 7.3.2 the rank of the (v, w) restricted to W is n — v.

More generally we have a theorem that does not depend on Theorem 7.3.2. The
method of proof is similar.

Theorem 7.3.4. Let W be any subspace of V on which the restriction of the bilinear
form (v,w) has rank equal to dimW. Then V. =W QW+,

Proof. Let m denote the dimension of W. Pick an arbitrary vector v € V. We must
show that it can be written uniquely as v =w+u, with w € W, and u € W_ It is
enough to show that v —w is orthogonal to W, i.e. that

(v—w,w;)=0,1<i<m, forabasis wi, ..., wy, of W. (7.9)

Complete this basis of W to a basis of V. Write the unknown vector w as x;wi +- - -+
Xm Wi, in this basis. We must solve the inhomogeneous system of m linear equations
in the m variables x;,

x1 (W1, wi) +x2(Wa, W) + -+ X (Wi, W) = (V, W), 1 < i< m.

Writing a;; as usual for (w;, w;), but this time just for 1 <, j < m, and b for the
known vector ((V, W,’)), 1 <i < m, on the right hand side, we have the linear system
1n matrix notation

Ax =bh.

The square matrix A of this system has maximal rank by hypothesis, so the system
can be solved uniquely for any b. a

The key example to which we will apply this theorem in the next section is any
subspace W of dimension 1 generated by a vector w with (w, w) # 0. Here is another
example that follows immediately from Remark 7.3.3.

Corollary 7.3.5. Let V- denote the radical of V. Then if W is any subspace of V
such thatV =V*+ & W, then (v,w) restricted to W has maximum rank.

Therefore by Theorem 7.3.4, the orthogonal complement W of W satisfies V =
WaeWL. Clearly Wt =V,

Remark 7.3.6. The results of this section can be proved using Theorem 5.10.5. In-
deed, since a symmetric matrix represents a symmetric bilinear form in a basis
B = {vy,...,Vn}, the fact that the quadratic form has a rank r equal to the rank of a
principal submatrix of size r shows that the symmetric quadratic form restricted to
the basis vectors corresponding to the principal submatrix has maximal rank. From
this you can easily show that the radical has dimension n — r, etc.
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Definition 7.3.7 (Orthogonal Projection). Assume that the symmetric bilinear
form has maximal rank on W, so that V = W & W+. Then the projection (see Defi-
nition 4.1.7) P from V to W along W is defined by the unique solution to (7.9). It
is called the orthogonal projection of V to W.

This follows from Theorem 7.3.4. By Theorem 4.6.2, P> = P.

Remark 7.3.8. To define an ordinary projection, we need two subspaces U and W
such that V =W @ U, where W is the space you are projecting to: see §4.6. Different
choices of U give rise to different projections to W. In the current situation the
subspace U is uniquely determined by W and the symmetric bilinear form. So W+
is its nullspace of the projection, and plays the role of U. The projection exists if the
symmetric bilinear form » has maximal rank on W.

7.4 Diagonalization of Symmetric Bilinear Forms

Using the results of §7.2 and 7.3, we prove Theorem 7.4.1, one of the most important
theorems in linear algebra. The following proof is not constructive, but it is very
simple. Later we give a constructive proof using the Lagrange Algorithm 7.5.3.

Theorem 7.4.1. Any symmetric matrix is congruent to a diagonal matrix.

Proof. Assume that the symmetric matrix A has size n, and acts on a vector space V
of dimension n with a given basis. This allows us to construct a symmetric bilinear
form (v, w) in the usual way.

If the radical V1L of (v,w) has dimension n, the matrix A is the zero matrix, so
we are done.

So we may assume the V- has dimension v < n. Let W be a subspace of V of
dimension 7 — v such that V = V+ @W. Then by Corollary 7.3.5, (v,w) restricted
to W has maximum rank. Then we can find a vector w; € W such that (wy,w;) # 0.
Indeed if this were not true, the polarization identities would show us that (u, w) is
identically 0 on W. This cannot be the case, since that would imply that W is part
of the radical. So let W; be the orthogonal complement of w; in W. By the same
argument as before, we can find a wy in W; with (w2, w;) # 0. Continuing in this
way, we have found a collection of mutually perpendicular wy, wy, ..., W,_,, all
non-zero. In this basis the matrix of the symmetric bilinear form is written

0...00.. 0
(7.10)

0...0

where all the diagonal elements dy, d, ..., d,—y are non zero. O
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The proof is not constructive, because there it does not give an algorithm for
finding w, w», etc.

7.5 Lagrange’s Diagonalization Algorithm

We now give a constructive, algorithmic proof of Theorem 7.4.1. We simplify sym-
metric matrices A by conjugation using equivalent row and column operations. Here
is what equivalent means: on the left-hand side multiply A by a product of elemen-
tary matrices, which we call E. Thus we can row-reduce as in Gaussian elimination.
On the right-hand side multiply A by the transpose E’. Since A is symmetric, so is
EAE', which is what we want. As we saw in Proposition 2.10.1, this means that we
are column reducing A Finally if E = E,E,_; ...E}, then

EAE'=E,E,_,...E\AE,...E,_E,

soif weset A = E1AE]. ..., Ay = ExAx_1 E}, at each step we set a symmetric matrix
Ay. So the goal is to find a suitable collection of E,, that achieve diagonallization.
This is the content of Algorithm 7.5.3 below. We will use the elementary matrices
T,s, and E,(c). We will also use a new elementary matrix

Sap 1= Eba(l)Eb(_z)Ea (1)

Conjugation by this matrix is useful when the diagonal elements of A in rows r and
s are both 0, and the element in position (7,s) (and therefore (s, r)) is non-zero. Note
Sap 18 symmetric.

First some examples.

Example 7.5.1. Start with the symmetric matrix

123
A=|235
359

To diagonalize, we first use E>;(—2) which adds to the second row the first row
multiplied by —2 to get

1 00 123 1-20 10 3
Al =Epy (=2)AEy (=2)'=|-210 235 01 0]=(0-1-1

001 359 001 3—-19
We follow with E3;(—3):

1 00 10 3 10-3 10 0
A2:E31(72)A1E31(73)t: 010 0-1-1 01 0 |=(0-1-1

=301 3—-19 00 1 0-10
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Finally conjugate by E3(—1) :

100\ /10 0\ /100 100
A3 =En(—1AEn(—1)=[0 1 0| [o—-1—-1][0o1-1)=[0-10
o-11/\o-10/ \oo 1 001

Check all these computations and notice how the matrix stays symmetric at each
step.

Example 7.5.2. This example illustrates diagonalization using the new kind of ele-

mentary matrix. Let
02 11
A—(20> and E—(1 1)

. (20
EAE _<0_2

as you should check. E is the product of three elementary matrices:

(i —11) - G ?) ((1) _02> <(l) }) =E(1)E2(—2)E2(1)

in terms of the elementary matrices, as you should also check.

Then

Here is the algorithm for diagonalizing symmetric matrices. We will use the el-
ementary matrices from Definition 2.8.1, and a generalization of the matrix E from
Example 7.5.2. This is called Lagrange’s method.

Algorithm 7.5.3 (Diagonalization algorithm for symmetric matrices) The sym-
metric matrix A = (a;;) is of size n. This algorithm diagonalizes A by repeatedly
replacing it by a congruent matrix EAE', where E is invertible. For convenience set
Jo = io. Fix an integer iy > iy in the jo-th row. We assume that we have the follow-
ing situation. Normally we would start at iy = 1 and i1 = 2, but this description is
written in a way that it also describes all the intermediate steps.

e A has zeroes in all its off-diagonal elements of its first i — 1 rows (and columns
since it is symmetric). Thus if i # j, a;; = 0 for i < io and therefore for j < jo.
o a;j, =0wheniy <i<iy. SinceA is symmetric, a;, j = 0 when jo < j <.

Our goal is to increase the number of zeroes in the region given by the assumption,
by incrementing (i.e., increasing by 1) iy until n is reached, and then incrementing i,
keeping the matrix symmetric at each step. Here are the cases we need to consider:

1. iy =nand a;, j, = 0. We are at the bottom of the column. Just increment iy.
2. iy <nand a;, j, = 0. We are not at the bottom of the column. Just increment i;.
3. aj,,j, 7 0 and a;y ;, # 0. Then let

aij,j . . e
¢ = —12 and use the elementary matrix E;, ;,(—c) to clear the entry in (i1, jo).

iy, jo
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The new symmetric matrix E;, ;) (—c)A(Ej, i,(—c))" still has zeroes in all the en-
tries indicated in the assumption and a new 0 in position (i, jo). So we can
increment i1 if iy < norigif iy =n.

4. aj j, # 0, aj,i, = 0 and there is diagonal entry a;, ;, # 0 with iy > iy. Then
interchange the rows and columns iy and iy using the transposition T, ;,, namely
taking the matrix T; ;, AT}, ;, since a transposition is its own transpose.

5. ajyj, # 0, aj,,i, = 0 and there is no diagonal entry a;, ;, 7 0 with iy > io. This
is the most difficult case, illustrated by Example 7.5.2. We have to diagonalize
using a new matrix E which has a 1 along the diagonal except for e;, ;, = —2.
All the off-diagonal terms of E are 0, except ej,;, = e;,;, = 1. Note that E is
symmetric and invertible. Then EAE has an extra O in position (io,iz), and a
non-zero element in positions (ig,io) and (iz, ).

The algorithm terminates in a finite number of steps, since each step increases the

number of 0 in the entries given by the initial assumption.

This algorithm is the analog of Gaussian elimination for a symmetric matrix.
Note that we can read the rank of A from the congruent diagonal matrix A’ obtained:
it is just the number of non-zero elements on the diagonal.

7.6 Skew Symmetric Linear Forms

It is also useful to consider skew symmetric bilinear forms.

Definition 7.6.1. A bilinear form (v,w) on a vector space V is skew symmetric if
(v,w)=—(w,v) forall vand win V.

We have the analog of Theorem 6.3.4 which says that we can associate to an
skew symmetric (v,w) a skew symmetric matrix A for each basis of V. Notice that
the diagonal entries of A must be 0, since when i = j, (i,j) = —(j,i). Thus the
quadratic form associated to a skew symmetric form is identically 0.

Congruence forms an equivalence relation on skew symmetric matrices, so we
can look for the matrix with the simplest form in each congruence class.

Theorem 7.6.2. A skew symmetric bilinear form can be written in an appropriate
basis as the block diagonal matrix

AL 0 ...0 0
0. 0..0
0..A 0
...... 0
0 v 0

where each A; is the 2 x 2 block
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(50)

Thus the rank of A is 2k, twice the number of blocks A;, and the last n — 2k rows and
columns of A are Q.

The proof imitates that of Theorem 7.4.1. Say a little more.

7.7 Sylvesters Law of Inertia

In this section we improve the Diagonalization Theorem 7.4.1 when the scalars are
the real numbers.

Recall that we write diagonal matrices as D(dj,...,d,), where the d; are the
diagonal elements. So

Example 7.7.1. Let g(x) be the quadratic form associated to the diagonal matrix
D(dy,...,d,). Then
q(x) = dix] +dox + -+ +dyx;,

as you should check.

Exercise 7.7.2. By using the diagonal matrix

c=p(/Idi],...\/1da))

verify that D(d,...,d,) is congruent to the diagonal matrix
B=CD(d,...,d,)C",

where all the diagonal terms of B are either 0, 1 or —1. We get 1 when d; is positive,
—1 when it is negative, and 0 when it is 0.

Sylvester’s Law of Inertia 7.7.6' shows that the following three numbers associ-
ated to a diagonal matrix D are congruence invariants of D, even though the diagonal
entries d; themselves are not.

Definition 7.7.3. Let B be an n x n diagonal real matrix with diagonal entries by, b,
..., b,. Then

e p is the number of positive b;,1 <i < n.
e Vv is the number of zero b;,1 <i<n.
e m is the number of negative b;,1 <i < n.

The triple of integers (p, v, m) is called the inertia of B.

Note that p + v +m = n. The dimension of the radical of B is v, so n — Vv is the
rank of B. Theorem 7.1.13 says V is a congruence invariant of B.

! Published by J. J. Sylvester in 1852 - [29].



134 7 Bilinear Forms

Example 7.7.4. If D is the diagonal matrix D(7, -1, 0, 3, 3, -2), then p =3, v =1,
and m = 2.

Definition 7.7.5. The signature of a diagonal matrix B is the number p —m. If p+
m = n, B is non-degenerate (sometimes called non-singular). If p+m < n, B is
called degenerate or singular.

Theorem 7.7.6 (Sylvester’s Law of Inertia). Let A be a symmetric n X n matrix.
By Theorem 7.4.1 it is congruent to a diagonal matrix B, which has an inertia. The
inertia is a congruence invariant of A: it is the same for any diagonal matrix con-
gruent to A. Conversely any diagonal matrix with the same inertia as B is congruent
to B.

Proof. Work with areal vector space V of dimension n. Since the radical of V is well
defined independently of the basis, it is enough to prove the theorem for any sub-
space W of V such that V = V- @W. Then by Theorem 7.3.2, we may assume that
v = 0. Assume we have two coordinate systems e and f in which the quadratic form
q is diagonal. Let V,, and V,, be the subspaces of V spanned by the basis elements of
e on which the quadratic from is positive and negative, respectively, and let W, and
W, be the analogous subspaces for the f-basis. Let py, my be the dimensions of V),
and V,, and pw, my the dimensions of W), and W,,,. Clearly py +my = py +my =n.
We will show that py = pw, from which it will follow that my = myy.

We claim that the linear subspaces V), and W;, of V do not intersect except at the
origin. Suppose they did at a point p # 0. Because p € V,,, we have ¢g(p) > 0, but
because p € W,;, g(p) < 0, a contradiction, so the claim is established.

This shows that py < n—my = pw. Indeed, the e-basis vectors spanning V,,
and the f-basis vectors spanning W, can be extended, by the claim, to a basis for V.
Indeed, suppose not: then we would have an equation of linear dependence, which
would express an element of V), as an element of W,,, and this is precisely what we
ruled out.

Exchanging the role of the V’s and W’s, we get pw < py, so they are equal. This
concludes the proof that (p,k,m) are congruence class invariants.

The converse follows easily: using the notation above, construct linear maps be-
tween V), and W), between V; and W;, and between V;, and W, sending basis ele-
ments to basis elements. This is possible since there are the same number of basis
elements in all three cases. This gives the desired change of basis. The theorem is
proved. a

The Law of Inertia allows us to talk about the signature of ¢: it is the signature
of any diagonal matrix representing q.
Here are the main definitions concerning quadratic forms over R.

Definition 7.7.7. The quadratic form ¢(x) with matrix A is definite if g(x) # 0 for
all x # 0.

We can refine this classification as follows.

Definition 7.7.8. The quadratic form g(x) with matrix A is
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Positive definite if Vx # 0, g(x) > 0, or, equivalently, xX’Ax > 0;

Positive semidefinite if Vx, g(x) > 0, or, equivalently, X’ Ax > 0;

Negative definite if ¥x # 0, g(x) < 0, or, equivalently, x’Ax < 0;

Negative semidefinite if Vx, q(x) < 0, or, equivalently, x’Ax < 0;

Indefinite if it does not fall into one of the four previous cases. Then it is not

definite.
10
0-1

associated to the quadratic form ¢ = x} — x3 is indefinite, because

[10] [(1) OJ H — 1. while [01] B OJ m -

We pursue this in Example 7.7.10.

Example 7.7.9. The matrix

Example 7.7.10. This is a continuation of Example 7.7.9. Let V be a two-dimensional
vector space with basis e, e;, and write an element v of V as xje; +x,e>. Assume
that the quadratic form ¢ is represented in the e-basis as g(x1,x2) = xjx2, so its

matrix is /
0 1/2
A= (1/2 0 )

The bilinear form associated to ¢ is

(x1+y1)(x24+y2) = (x1 +y1) (22 +y2) _ X tyin

(x,y) = 1 DI

by (7.3). We construct a diagonalizing basis as in Algorithm 7.5.3: we choose f; =
aje; +azey with g(f;) = ajay # 0. So both a; and a; must be non-zero. We could
normalize f; so that g(f;) = %1, by dividing by y/a? + a3, but we will not bother,
to avoid burdening the computation. Then, following Algorithm 7.5.3, we consider
the linear form (x,vf;) and find an element £, in its nullspace. This means solving
for x in the equation xja; +x2a; = 0. Up to multiplication by a non-zero scalar, we
can take x = (a;,—ay), so that the second basis vector f;, = aje; — aze;. If z; and
7o are the coordinates in the f-basis, the i-th column of the change of basis matrix
satisfying x = Ez is the vector of coefficients of f; in the e-basis, so

E= (“‘ a1 )
ar —ap

E is invertible because its determinant —2a;as # 0 by our choice of f!.
Then the matrix representing our quadratic form in the f-basis is

T (a1 a2 0 1/2 ay aj _ (a1a2 0
B_EAE_(a1 —(12) (1/2 0 a —dap o 0 —ajap ’
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so, as predicted, it is diagonal, but with entries along the diagonal depending on
a1 and ap. This shows there are infinitely many bases for V in which the quadratic
form is diagonal. Even if one normalizes f| and f, to have length one, there is more
than one choice. Our computation shows that in all of them, one of the diagonal
entries is positive and the other is negative. The Law of Inertia 7.7.6 generalizes this
computation.

Corollary 7.7.11. A quadratic form q in R" is:
Positive definite, if its signature is n, which forces the rank to be n;
Positive semidefinite, if its signature is m, m < n, and its rank m;
Negative definite, if its signature is —n, which forces the rank to be n;
Negative semidefinite, if its signature is —m, m < n, and its rank m;
Indefinite, if its signature is less than the rank, so both p and m are positive.

Proof. Call the signature s and the rank r. Then s = p —m, r = p 4+ m. Referring
back to Definition 7.7.8, the proof is immediate.

Here is a second example showing what happens when the quadratic form does
not have maximum rank.

Example 7.7.12. Using the same notation as in the previous example, assume that ¢
can be written in the e-basis as g(xj,x) = x%, SO its matrix is

10
A= (00)
The bilinear form associated to g is (X,y) = x1y1, as per (7.3). Pick any vector
fi = aje; +aze; €V, so that g(f;) # 0. This just says that a; # 0. In this case we

divide by a;, and write f| = e; +ae,. Then, following Algorithm 7.5.3, consider the
linear form (x,a) = x; and find a non-zero element f, in its nullspace. Take f, = ce,,

for ¢ # 0 Let
la
2= (¢)

be the change of basis matrix from the e-basis to the f-basis. D is invertible because
its determinant ¢ # 0 by choice of f| and f,. Then we have

(1) =p () wa (1) =07 (2).

Then the matrix of our quadratic form in the f-basis is

w0 (32) (30) (29) - (50)

s0, as predicted, it is diagonal. In this example, because we normalized the length
of the first new basis vector f1, then entries of the new diagonal matrix are the same
as the ones we started with.
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The form in Example 7.7.4 has signature 1. It is degenerate and indefinite.

Example 7.7.13. We compute the signature of the n x n symmetric matrix M, with
all diagonal terms equal to n — 1 and all off diagonal terms equal to —1:

n—1 -1 ... —1
M, — -1 n—1... —1
S
We will show that the signature and the rank are n — 1, so that the form is positive

semidefinite. We do this by first computing the signature for n = 2 and then setting
up a proof by induction. Letting n = 2, we get

1 -1
M2<_] 1).

By using symmetric Gaussian elimination we can transform this to the diagonal
matrix (1,0),s0 p =1, k=1 and m = 0. We are done. Next

2 —1-1
My=|-12 -1
—1-12

By symmetric Gaussian elimination again, this transforms our matrix into the con-
gruent matrix: We get
0

3
2

0
3
2

[S][oN]

1
0

3
0—3
and the 2 x 2 matrix in the bottom right is just M, multiplied by % The 1 in upper
left-hand corner just adds 1 to the signature we found in the case n = 2, so the
signature is (2, 0). This suggests the general strategy: we prove by induction that the

signature of M,, is n — 1 and the rank n — 1. By row reduction, first dividing the top
row by n — 1, and then clearing the first column, you get

1 .0
-2
o 22 | __m

n n(n—2)
O - m ... n—l
The bottom right matrix of size (n — 1) x (n— 1) is - times the matrix M,_;. By
induction we know that the signature and the rank of M,,_; are both n —2 and we are
done. Note that we are using Sylvester’s law of inertia 7.7.6 to say that this matrix
is congruent to M,,.

Some authors call a matrix A degenerate, when two of its eigenvalues are the
same (as is the case in the example above). This is a relatively rare phenomenon, as
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explained in [16], p.112-113. This use of the word degenerate conflicts with standard
usage for quadratic forms: see Definition 7.7.5.

Exercise 7.7.14. Show that the matrix of the quadratic form

q(x1,x2,x3) :x%—i—xlxg +x1x3 —i—x%—l—xg)g —&—x% (7.11)
is
111
* 1
A=[113 (7.12)
i 1
272

since x'Ax = g(x). Show this matrix is positive-definite, so its signature is 3, by the
same method as the previous example.

Corollary 7.7.15. There are as many congruence classes of quadratic forms on an
n-dimensional real vector space as there are different signatures.

Problem 7.7.16. Count the number of signatures when n = 2, 3, 4.

We will develop more tests for positive definiteness, negative definiteness and
the like in §13.5 , but first we must prove the most important theorem connected to
real symmetric matrices: the Spectral Theorem. We do this in a later chapter.

7.8 Hermitian Forms

Bilinear forms are extremely useful over R, as we have just seen, but over C it is
better to use Hermitian forms. First some definitions. V is a complex vector space,
and unless otherwise mentioned, the vectors u, v and w are in V

Definition 7.8.1. A complex valued function f(v) on V is conjugate linear if

L f(v+w) = f(v)+f(w)

2. f(cv) =<f(v), where ¢ is the complex conjugate of the complex number c.

This motivates the next definition.

Definition 7.8.2. A form (v,w) on V is sesquilinear if

(u+v,w) = (u,w)+ (v,w);

(u,v+w) = (u,v)+ (u,w);
(cv,w) = c(v,w);
(v,ew) =2(v,w).

Thus the form is linear in its first variable and conjugate linear in the second
variable. One could have done this the other way around, and indeed physicists do:



7.8 Hermitian Forms 139

for them a sequilinear form is conjugate linear in the first variable, and linear in
the second. Most mathematicians do it as described here. The word ’sesquilinear*
means one and a half times linear, which is about right.

Finally we get to the definition we are really interested in:

Definition 7.8.3. A form (v,w) is Hermitian if it is sesquilinear and is also conju-
gate symmetric:

(v,w) = (w,v). (7.13)

Exercise 7.8.4. Show that if a form (v, w) is linear in its first variable and satisfies
(7.13), then it is conjugate linear in the second variable.

Following Theorem 6.3.4, we may associate a n X n matrix A to a Hermitian
form in n variables, and the analog of the matrix of a symmetric bilinear form being
symmetric is that the matrix of a Hermitian form equal to its conjugate transpose:
A = A*. We say that such a matrix is Hermitian.

Exercise 7.8.5. Prove this last statement.

Next we decompose the Hermitian form which we now write i(v, w), since other
forms will be introduced, into its real and imaginary parts.

h(v,w) =s(v,w)+ia(v,w) (7.14)

where s(v,w) and a(v,w) are real-valued form. Write Vg for the vector space V
considered as an R vector space. See §5.8 for details. Recall that a form a(v,w) is
antisymmetric if a(v,w) = —a(w,v).

Theorem 7.8.6. If h(v,w) be a Hermitian form, decomposed as in (7.14), then

1. s(v,w) and a(v,w) are bilinear forms on Vg.

2. s(v,w) is symmetric and a(v, W) is antisymmetric.

3. s(v,w) =a(iv,w) = —a(v,iw) and a(v,w)= —s(iv,w) = s(v,iw).
4. s(iv,iw) = s(v,w) and a(iv,iw) = a(v,w).

Proof. 1. is trivial: in (7.14) just replace v by cv, where c is a real number, and then
w by cw. This plus the additively of & gives the result.
2. comes from interchanging v and w in (7.14). Because the Hermitian is conjugate
symmetric, we get
h(w,v) =s(w,v) —ia(w,v)

which is precisely what we need.
3. is obtained by replacing v by iv in (7.14). Because 4 is C-linear in the first vari-
able, we get
ih(v,w) = h(iv,w) = s(iv,w) +ia(iv,w)

Equating this to (7.14) multiplied by i, we get

is(v,w) —a(v,w) =s(iv,w) +ia(iv,w).
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Equating the real and imaginary parts, we get s(iv,w) = —a(v,w) and s(v,w) =
a(iv,w).

Similarly, replace w by iw in (7.14), and use the fact that % is conjugate linear
in the second variable. So i(v,iw) = —ik(v,w) = —is(v,w) +a(v,w) and this is
also s(v,iw) +ia(v,iw), so:

—is(v,w) +a(v,w) = s(v,iw) +ia(v,iw).

Equating real and imaginary parts, we get s(v,iw) = a(v,w) and s(v,w) =
—a(v,iw), as required.
4. works in exactly the same way, but this time using A(iv,iw) = i(v, w). The details
are left to you.
O

Unfortunately, if 4 is conjugate linear in the first variable, and linear in the second
variable, the formulas in 3. change.

Just as we associated a quadratic form to a symmetric bilinear form, we can
associate the form

q(v) = h(v,v)

to a Hermitian form.
Let’s establish the properties of ¢(v).

Theorem 7.8.7. Writing the Hermitian form h(v,w) in terms of its real and imagi-
nary parts s(v,w) and a(v,w) as in (7.14), we get

1.
q(v) is real valued and q(cv) = ||c||*q(v).
2.
S(v, W) = q(v+w) —g(V) —a(w)
3.

q(v+iw) —g(v) — g(iw)

a(v,w) = 5

Proof. Since the defining property of a Hermitian form says that i(v,v) = h(v,v),
all the values of ¢(v) are real.
For any complex number c, we have

q(cv) =b(cv,ev) = ceb(v,v) = ||c||2q(v),
so the first item is established.

qgu+v)=h(u+v,u+v)=h(a,u)+h(u,v)+h(v,a)+ha(v,v)

=g(u)+h(u,v)+h(u,v) +¢q(v), (7.15)

SO
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h(u,v) +h(u,v) = g(u+v) —g(u) —g(v).
If we replace /(u,v) in this expression by (7.14), we get
c(v, W) +id(v,w) +c(v,w) —id(v,w) = g(u+v) —g(u) —g(v)
or
2¢(v,w) = q(u+v) —g(u) —q(v).

which gives the second item.
Finally replace v in (7.15) by iv to get

qg(u+iv) = g(u) + h(u,iv) + h(u,iv) + g(iv)
= g(u) —ih(u,v) —ih(u,v) +q(iv) (7.16)
or
—i(h(u,v) +ih(u,v) = g(u+iv) —g(u) —q(iv)
As before substitute out £ using (7.14) to get
2d(v,w) = g(u+iv) —g(u) —¢(iv)
proving the last item. a

Definition 7.8.8. A form ¢(v) is a Hermitian quadratic form if it takes real values
and satisfies g(cv) = ||c||>q(v).

Just as in the symmetric bilinear case (see Lemma 7.2.1) we can recover the
Hermitian form from its Hermitian quadratic from ‘polarization identities’.

Theorem 7.8.9. Let ¢(v) be a Hermitian quadratic form. Then there is a unique
Hermitian form h(v,w) for which q(v) is the Hermitian quadratic form.

Proof. Indeed, it is given as h(v,w) = s(v,w) + is(v,w), which can both be ex-
pressed in terms of g(V) . O

7.9 Diagonalization of Hermitian Forms

We can derive properties of Hermitian forms exactly as we did for symmetric bilin-
ear forms over R: we can reduce them to diagonal form, prove Syslvester’s law of
inertia and then define the various categories of Hermitian forms: positive definite
being the most important.

Examples here.






Chapter 8
Inner Product Spaces

Abstract The informed reader will be surprised that the notion of scalar product of
vectors is only introduced now. There are several reasons for the delay. The first is
that introducing a scalar product is adding an additional piece of data to the structure
of a vector space, so it is useful to understand first what that can be done without
it. The second reason is that a scalar product, which can be defined on a complex
vector space, is not the most useful concept there. On a complex vector space the
most useful concept is that of a Hermitian product. In this chapter we only consider
positive definite scalar products in the real case, and positive definite Hermitian
products in the complex case. We refer to both as inner products. In the first four
sections we develop the theory of the inner product, and its applications to real
vector spaces; in §8.6 we define the Hermitian product in much the same way, and
derive the parallel applications in complex vector spaces. Then we go back to results
that can be treated simultaneously for real and complex vector spaces. We improve
the statements concerning a linear map and its transpose when the vectors spaces
have an inner product or a Hermitian product. Finally we show how to put an inner
product on the space of all matrices, and the space of all symmetric matrices.

8.1 Scalar Products

A scalar product is just a symmetric bilinear form on a vector space. It is given a
new name because we think of the scalar product as being permanently associated
to the vector space. The scalar product we consider here will be positive definite,
which is the standard case considered in calculus and geometry. There are interest-
ing examples of other kinds of scalar products, especially in physics. The following
definition is most useful when the scalars are the real numbers. Although the def-
inition makes sense for the complex numbers, it is less useful than the Hermitian
product, as we will see.

We also give a new definition because we use a different notation for the scalar
product.

143
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Definition 8.1.1. Let V be a vector space over F. A scalar product on V' associates a
scalar to any pair v, w of elements of V. It is written (v, w). It satisfies the following
three properties for all u, vand win V:

SP1 Commutativity: (v,w) = (w,v);
SP2 Additivity: (u,v+w) = (u,v) + (
SP 3 For all scalars a, {(av,w) = a({v,w

X, W);
)-
Exercise 8.1.2. Prove that the definition implies
(u+v,w) = (u,w)+ (v,w) and (v,aw) = a(v,w), for all scalars a,

and therefore (0, w) = 0.

Exercise 8.1.3. Convince yourself that a scalar product is nothing more than a sym-
metric bilinear form.

Example 8.1.4. The prototypical example is F" with scalar product

(x,¥) = x1y1 + 2252 + -+ X0 Y- (8.1)
This is called the standard scalar product on F”.
Exercise 8.1.5. Prove that this is a scalar product according to our definition.

A scalar product is non-degenerate if it is non-degenerate as a symmetric bilinear
form: See Definition 7.1.4. Thus the only v € V for which (v,w) =0 for all w € V
is the origin.

Exercise 8.1.6. Show that the standard scalar product on R” is non-degenerate.
In the next definition, for the first time we require that the scalars be R.
Definition 8.1.7. A scalar product is positive definite if for all non-zero v € V
(v,v) > 0.
Exercise 8.1.8. Show that a positive definite scalar product is non-degenerate.

Definition 8.1.9. A real vector space with a positive definite scalar product is called
a Euclidean space.

Let V be a n-dimensional real vector space, and vy, ..., v, any basis of V. Then
we can make V into a Euclidean space by taking as the positive definite scalar prod-
uct the one defined by

<V,',Vj> = 5,'1'.

Thus a vector space can be made into a Euclidean space in many different ways,
depending on the choice of basis.
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To conclude this section we prove some results about orthogonality in Euclidean
spaces. They generalize without difficulty to Hermitian spaces, as we will see in
§8.6. Two vectors v and w are orthogonal if (v,w) = 0. We write v L w if this is the
case. So this is the same definition as for symmetric bilinear forms. For a subspace
U of V we define U , the orthogonal complement of U, as the subspace of vectors
that are perpendicular to all vectors in U.

Theorem 8.1.10. V is a Euclidean space. Let vy, Vo, ..., V, be non-zero vectors that
are mutually orthogonal, meaning that

(vi,vj) =0, whenever i # j.

Then the v; are linearly independent. Thus if W is the span of the {vy,...,v,}, they
form a basis of W.

Proof. Assume there is an equation of linear dependence:
a\vi+ayvo+---+a,v, =0.
Take the scalar product of this expression with v;, 1 <i <r, to get
a;i{vi,v;) =0.

Since (v;,v;) # 0 since the scalar product is positive definite, this forces a; = 0 for
all i. Thus there is no equation of linear dependence. a

Definition 8.1.11. The orthogonal projection of v to the line through the origin with
basis the non-zero vector w is the vector

(v, w)

(w,w)

Suppose we try to find a scalar ¢ such that
(v—cw,w)=0 (8.2)
The linearity of the scalar product implies (v,w) = ¢(w,w), so

~ {v,w)
c= W) (8.3)

The denominator is non-zero since we assume the vector w # 0 and the inner product
is positive definite. If you have read Chapter 7, you will notice that (8.2) is a special
case of the orthogonal projection (7.9) defined for a more general bilinear form.

Definition 8.1.12. The scalar c in (8.3) is called the component of v along w. In the
important special case where w is a unit vector, ¢ = (v, w).

This is illustrated by the following graph in the plane generated by v and cw.
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Example 8.1.13. Let e;, | <i < n be the standard basis of R". So ¢; = (1,0,...,0),
etc. Let
v=(v1,v2,...,V)

be any vector in R". Then v; is the component of v along e;, and v;e; is the projection
of v along e;.

Theorem 8.1.14. Consider a Euclidean space V of dimension n, and a non-zero vec-
tor w € V, spanning a subspace W of dimension 1. Then the orthogonal complement
WL of W has dimensionn—1, and V=W @ W=,

Proof. The linear map v — (v,w) has range of dimension 1, since < w,w > 0, so
its nullspace has dimension 7 — 1. It is obviously W+. Since w is not in W, we get
the last statement. O

From this follows:
Corollary 8.1.15. Any Euclidean space has an orthogonal basis.

Proof. Call the Euclidean space V. We prove the result by induction on the dimen-
sion n of V. If the dimension is 1, the result is trivial. Assume the result is true for
dimension n — 1. Consider a Euclidean space V of dimension 7. Pick a non-zero vec-
tor vi € V. By Theorem 8.1.14, the orthogonal complement V; of v; has dimension

n — 1. Therefore by induction V; has an orthogonal basis {vy, ..., v, }. Furthermore
vy and V; span V. Thus {vy,v,...,v,} is an orthogonal basis of V, so we are done.
O

A constructive proof of this result is given by the Gram-Schmidt process that we
will study in §8.3. Finally we get, by an easy extension of the proof of the corollary:

Theorem 8.1.16. Let W be a subspace of the Euclidean space V. ThenV =W W
Thus W+ has dimension diimV — dimW.

Proof. This generalizes Theorem 8.1.14 to the case where W has dimension greater
than one. Only the first statement needs proof, since the second statement follows
from Definition 3.6.5. We prove this by induction on the dimension m of W. The
case m = 1 is Theorem 8.1.14. Assume the result is true for m — 1. Pick a non-zero
v € W. Then its orthogonal Wy in W has dimension m — 1 in W. If n = dimV, then
the orthogonal Vj of v in Vj of V has dimension n — 1. Thus the orthogonal WOL
of Wy in V) has dimension n— 1 — (m — 1) = n — m. By Corollary 8.1.15 pick an
orthogonal basis wy, ..., w,, of Wy so that v, wp, ..., W, is a basis of W. It is then
clear that WOL is the orthogonal of W in V. a

8.2 The Geometry of Euclidean Spaces

Throughout this section V' is a Euclidean space: see Definition 8.1.9. On first read-
ing, you should think of R” with the standard scalar product, even though all the
results are valid even for an infinite dimensional V.
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If W is a subspace of V, it inherits a positive definite scalar product from V.
The norm, also called the length, of the vector v is:

V][ = V(v v). (8.4)

When V is R”, with the standard scalar product, then
[Vl = \/vi+- 4

llev]] = |c|||v]| for all ¢ € R.

Exercise 8.2.1. Show

The vector v is a unit vector if its length is 1. Any non-zero vector v can be
normalized to length 1 by replacing it by

v

VIl

The distance d(v,w) between the two vectors v and w in R” is the norm of the
difference vector:
d(v,w)=|v—w]|. (8.5)

Exercise 8.2.2. Show that d(v,w) =d(w,v).

Theorem 8.2.3 (The Pythagorean Theorem). The vectors v and w are perpendic-
ular if and only if
v +wl? = [|v][* + [w]]*.

Proof. This is easy. We first use the definition of the scalar product
IV AW = (v W, v+ W) = (v,¥) +2(v, W) + (W, W)
= V]I + [Iwl]>
if and only if (v,w) = 0. 0

Example 8.2.4. Apply the theorem to the vectors (1,—1) and (2,2) in R?. Make a
graph.

Theorem 8.2.5 (The Parallelogram Law). For all vand win'V
[V +w? 4 [lv = wi[* = 2| v||* + 2| w]|.

Proof. Just expand the left hand side as in the proof of the Pythagorean Theorem.
O

Example 8.2.6. Apply to the vectors v = (1,1) and w = (1,2). Make a graph.

Theorem 8.2.7 (The Cauchy-Schwarz Inequality). For any two vectors v and w
inV,
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(v, W) < [|v][[wl| (8.6)

with equality only if one vector is 0 or if the vectors are proportional—namely,
W = ¢V for a scalar c.

Proof. First, the result is trivial if either v or w is the zero vector, since then both
sides are 0.

Next assume w has length 1. Then the component ¢ of v along w is (v, w), as per
Definition 8.1.12. The Cauchy-Schwarz inequality becomes

e[ < vl (8.7)
Now v — cw is perpendicular to w, and therefore to cw. Since
V=V—CW-+CW,
the Pythagorean Theorem says
IVIP = [1v = ew]> + llew]]> = [[v - ew]? + |ef.

Since the first term on the right hand side is non-negative, this implies |c|* < ||v||2,
which is equivalent to (8.7), so we are done. We get equality when ||v —cw|| = 0,
namely when v is proportional to w.

Finally, given that the result holds for a w of length 1, it holds for any cw, c € R.
Indeed, just substitute cw for w in (8.6), and note that the positive factor |c| appears
on both side. O

Theorem 8.2.8 (The Triangle Inequality). For allu and vin'V,
Jutv] < [[uf[ +[|v]].

Proof. Square the left hand side:

[u+vl[? = (utv,utv) = [Jul* +2¢u,v) +[|v]>.
Now we use the Cauchy-Schwarz inequality to replace 2(u,v) by the larger term
E ) o 2

([l +2{u, v) + [|v]|= < [[al|”+2{[ul[[[v]] + [|v]]".
We recognize the right-hand side as the square of |Jul| + ||v]|, so we get

[[w+vi[> < ([l +[IvI)*.

Taking the square root of both sides, we are done. a

Exercise 8.2.9. Show that the triangle inequality implies that the length of a side of
a triangle in a real vector space is less than or equal to the sum of the lengths of the
other two sides. This explains the name of the result.
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8.3 Gram-Schmidt Orthogonalization

In this section, V is again a Euclidean space: see Definition 8.1.7. As we saw in
Theorem 8.1.10, it is convenient to have a basis for V where the basis elements are
mutually perpendicular. We say the basis is orthogonal. In this section we give an
algorithm for constructing an orthogonal basis {wj,...,w,} of V, starting from any
basis {vy,...,v,} of V.

First we explain the idea behind the algorithm. Define Vj to be the subspace of V
spanned by the first k vectors in the basis, namely {vi,...,v;}. Then obviously V;
has dimension k, and for any j <k, V; g V. So here is how we build the orthogonal
basis. Start with w; = vy as our first basis element. Then in V, take a non-zero vector
w; orthogonal to V;. Because the dimension of V; is only one more than that of Vi,
the orthogonal complement of V; in V, has dimension 1, so w; and w, form a basis
of V, Next in V3 take a non-zero vector w3 orthogonal to V;, and continue in this
way.

The general case is: in V} take a non-zero vector wy orthogonal to Vj_1. Then wy,
..., Wy form a basis for V}, They form a basis because they are non-zero and mutually
orthogonal by construction. So we have found the desired orthogonal basis of V.

Our goal is to write down this method as a computational algorithm. The main
step is to compute a vector in Vj that is orthogonal to V;._;. We already know how
to do this, since we have already computed an orthogonal basis for V;_: it is suffi-
cient to modify v so that it is orthogonal to wy, ..., wy_;. For this, computing the
component of v along each one of these w; is the appropriate tool. See Definition
8.1.12 and (8.3). So we write

Vi, W
Cjk = <<ka’ W]A>>
Jr Wi

The computation in Vj is given by
k—1 < k—1
Vi, Wj)
Wi =V — Z T W=V — ZCjij.
~ (w;,w;) 4
j=1 Jo g j=1

Just check that when you dot this by any w;, j < k, you get 0. This completes the
construction that we now state.

Theorem 8.3.1 (Gram-Schmidt Orthogonalization Process). If V is a Euclidean

space of dimension n with basis {vy,...,v,}, then'V has a basis of mutually orthog-
onal vectors Wy, ..., W, constructed as follows:
Wi = Vi1,

W2 =V2 —C12Wy;
W3 = V3 —C23W2 — C13W1;

Wy =Vyp —Cn—1nWn-1—Cn—2nWn-2— " —C1nWI.
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Furthermore any set of non-zero mutually orthogonal vectors wy, ..., Wi can be
extended to a basis of mutually orthogonal vectors by the same process.

Proof. As above let Vi be the span of the vectors {vy,...,v¢}. Since {vy,...,V;}
is a basis of Vi, {wy,...,w,} forms another basis, so all the basis vectors w; are
non-zero. As noted above the w; are mutually orthogonal.

The main point is to describe the computational algorithm. We first compute w
using the first equation, then w, using the second equation and the computed value
for wy, and so on. This can be done, since the equation defining w; only involves
the known v;, and the w;, with j < k, which have already been computed.

This concludes the proof of the first part of the Gram-Schmidt Theorem. The last
part is easy. Just complete the set of mutually perpendicular non-zero vectors wy,
... W to a basis of V using Proposition 3.4.14: keep adding linearly independent
elements v, ..., v, to the w; until you get a basis. Then apply the Gram-Schmidt
process to this basis. a

Corollary 8.3.2. Write the equations in Gram-Schmidt as

Vi =Wwi,
V) = W2+ CpWi;

V3 = W3+ C23W2 +C13W1;

Vin =Wp+Cn—1,nWn—1—Cn—2aWp—2+-+C1pWi.

Let X be the matrix whose columns are the coefficients of vy in the standard basis.
Let W be the matrix whose columns are the coefficients of Wy, in the standard basis.
Finally let C be the upper-triangular matrix with 1 down the diagonal, c;;j above the
diagonal (so i < j), and of course 0 below the diagonal. Then our equations express
the matrix product X = WC by the ever useful Proposition 2.2.7.

Example 8.3.3. Assume the three vectors vy, v, v3 are the columns, in order, of the

matrix
113

A=(121
111

It is easy to see that they form a basis for R?. We start the Gram-Schmidt process:
wi = v;. Note that (w;,w;) = 3. Also (wy,v2) =4. So w, = v, —4/3w|, which is
the column vector (—1/3,2/3,—1/3). Check it is orthogonal to w;. Also (wy, wy) =

2. Finally (v3,w;) =5 and (v3,wz) = —2. So
3\ 5 (! 1/3 1
wi=|1]—-3(1])- —2/3|=1( o0

! —1/3 -1

which is orthogonal to w; and w;. Later we will need (w3, w3) = 2.
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Remark 8.3.4. Once one has an orthogonal basis {wy,...,w, } of a vector space, we
get an orthonormal basis by dividing by the length of each basis vector:

1 1
{ Wi,..., Wy}
[l [[wal| ™

It is often useful to do this, when dealing with the QR factorization, for example.

Remark 8.3.5. As we showed in Corollary 8.1.15, an easier proof for the existence
of an orthogonal basis is available, if you only want to show that an orthogonal basis
of Euclidean space exists. All we used is the elementary Theorem 5.7.1 on solutions
of homogeneous linear equations. However this does not give us an algorithm for
constructing a solution, which is the true importance of the Gram-Schmidt process.

Our next topic is the QR factorization, which is a way of expressing the Gram-
Schmidt process as a matrix factorization. For that we will need orthogonal matrices,
that we now define. We will study them in more detail later.

Definition 8.3.6. A matrix Q is orthogonal it is is invertible and if its inverse is its

transpose: Q' =0~ '. So Q'Q =1=QQ'.

In particular the columns q; of Q are mutually perpendicular, and each column has
length 1: ||q;|| = 1. Conversely, if you take an orthogonal basis for V, and normalize
all the basis vector so they have length 1, then the matrix whose columns are the
basis elements, in any order, is an orthogonal matrix.

Example 8.3.7 (Rotation Matrix). The rotation matrix
cos@ —sin6
sinf cos6

is orthogonal, as you can easily check.

Example 8.3.8. A permutation matrix is orthogonal. We will define permutation ma-
trices and prove this result in Theorem 11.2.5.

From the Gram-Schmidt orthogonalization process, we get an interesting factor-
ization theorem for invertible matrices..

Theorem 8.3.9 (OR factorization). Any real invertible matrix A of size n can be
written as the product of an orthogonal matrix Q and an upper triangular matrix R:

A=QR

Proof. This will drop straight out of Gram-Schmidt, especially Corollary 8.3.2. To
keep with the notation there, let the columns of the matrix A be written vy, ..., v,,
and let w; be the basis found using Gram-Schmidt. Let
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— Wi
[will

qi
Then the second Gram-Schmidt equation can be written

W2 = V2 —(V2,q1)q1.

Set
W2
Q=g
[[wa|

The third Gram-Schmidt equation becomes

W3 = V3 — (V3,q2)q2 — (V3,q1)q].

Then set
W3

4 =
[lws]

8 Inner Product Spaces

and continue in this way. Recalling the ever useful (2.7), we see that if we write Q
for the matrix whose columns are qj, ..., q,, and R = (rj), where

<Vk7qj>7 1f]<k’
rig=L lw;ll, ifj=k
0, if j> k.

we have A = QR as claimed. The proof only involved untangling a matrix product.

O

Notice that when j <k, rjx = ﬁ with ¢ as defined above.
J

Example 8.3.10. We now find the OR factorization for Example 8.3.3 First we find
the orthonormal basis, by dividing each w; by its length. We get the matrix

1 ~1 1
Va6 V2
o=+ < o
v
Vi Ve V2
Using the formulas above, we get
4 5
V3 3 V3
R=|0 2/3 —-/2/3
0 0 V2

You should check that A = QR to verify the computation.

In the same way we can prove
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Theorem 8.3.11. Let A be a m x n matrix with linearly independent columns. Then
A can be written as the product of a m X n matrix Q with mutual perpendicular
columns of length 1 and an upper triangular n X n matrix R: A = QR.

Proof. The hypotheses imply m > n and the QR theorem is the case m = n. This
theorem corresponds to the construction of a partial orthonormal basis with n ele-
ments in a Euclidean space V of dimension m. The columns of A need to be linearly

independent because they correspond to the partial basis vy, ... v, of V. a
Example 8.3.12. Suppose
1 0
—-1-2
A= -10
1 2

The columns v; and v, are obviously linearly independent. Set w; = v;

_ (vo,wy)
W) =V) — —W] = V) —Vj].
(Wi, wp)
Then
1 —1

i 22
0=351-11 | ™ R‘(oz)
1ol

Check A = QR, as expected.
Example 8.3.13. The matrix Q from Example 8.3.12 is connected to the 4 x 4 matrix

11 1 1
-1 1 —1
Ho=11 1 1
1—1-11

known as a Hadamard matrix, namely a matrix whose entries are either 1 or —1 and
whose columns are mutually orthogonal. If you divide this matrix by 2 you get an
orthogonal matrix. By choosing the columns in the order we did, we get additional

properties. Let
11
m= (1)

_(Hy H
Hy= (Hz Hz)

and H, is a symmetric matrix, since H; is.

Then in block form

The QR factorization of an arbitrary invertible real matrix as a product of an
orthogonal matrix and an upper-triangular matrix is the basis is used in important
algorithms for finding eigenvalues of matrices, as we will see later.
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8.4 Orthogonal Projection in Euclidean Spaces

This section defines orthogonal projections in Euclidean spaces, and establishes the
most important properties. We have already considered the case of projection to a
line in Definition 8.1.11. We repeat material from §7.3 with improved and simpler
results due to the stronger hypothesis: the scalar product is positive definite.

Start with a n-dimensional Euclidean space V. Take a subspace U C V of di-
mension m > 0. By Theorem 8.1.16 its orthogonal complement U~ has dimension
r=n—mandV =UoW.

Then by Definition 4.1.7 we have a linear map P called projection of V to U
along U'. Because the nullspace of P is U, we call P an orthogonal projection as
in §7.3. In our new notation,

Definition 8.4.1. A linear transformation L: V — V is a orthogonal projection of V
to U = L(V) for the inner product if

(v—L(v),u) =0,Yu e U. (8.8)

This says that the vector from v to its projection Lv is perpendicular to the entire
range of L. Notice that (8.8) generalizes Definition 8.1.11, the case of projection to
a line. By linearity it is enough to check (8.8) for a basis of U.

Let’s work out what a projection P looks like in coordinates. Recall Definition
8.1.12 of the component of a vector along a non-zero vector.

Corollary 8.4.2. Letuy, ..., u,, be an orthogonal basis of the subspace U. Consider
the orthogonal projection P of V to U. Then for any v €'V,

P(V) =ciuy +coup + -+ cpuyy,
where c; is the component of v along u;.

Proof. The vector

V—cCciuy —cup — -+ — CrUy,
is in U+, as an easy computation shows. a
In addition to the orthogonal basis {uj,...,u,} of U, choose an orthogonal basis
{W1,...,Wy_m} of U. The two together form an orthogonal basis of V.

Write any v € V in terms of this orthogonal basis:
v=ciuy+ -+ cplly +diWi+ -+ dp g Wi (8.9)

Then ¢; is the component of v along u;, and d; is the component of v along w;.
As noted, the orthogonal projection P of V to U maps v to ciuj + - - - + ¢y,
while the orthogonal projection Q of V to U maps v to d\W| + - - +dy_uWp_n.
By Definition 4.1.7, P has nullspace U~ and range U. Also P?> = P. Similarly, Q
has nullspace U and range U+. Also Q*> = Q. Note that P+ Q is the identity linear
transformation.
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Finally divide each basis element by its length. Then the matrix of P in the or-
thonormal basis obtained can be written in block form as

In 0
Ay = (0 o) (8.10)

where I, is the m x m identity matrix, and the other matrices are all zero matrices.
In particular it is a symmetric matrix.
Conversely we can establish:

Theorem 8.4.3. Any square matrix P that

e is symmetric (P' = P),
e and satisfies P> = P;

is the matrix of the orthogonal projection to the range U of P with respect to the
standard inner product.

Proof. We establish Definition 8.4.1 just using the two hypotheses. Any u € U can
be written u = P(v') for some v/ € V. Forall vin V and win U , we need to establish
(v—P(v),u) = 0. Substituting out u, we get

(V=Pv,PV) = (v—PV)'PY =V'PY —V' P'PV =V PV —v' P>V = V' PY —v' PV = 0.

In the next-to-the-last step we replaced P'P by P? because P is symmetric, and then
in the last step we used P> = P. a

Now we establish a minimization result, which states the intuitively clear fact that
dropping the perpendicular from a point v to a subspace W gives the point p that is
at the minimum distance of v to W. ‘Dropping the perpendicular’ means taking the
orthogonal projection to the subspace.

Theorem 8.4.4. Let V be a Euclidean space, and U a subspace of smaller dimen-
sion. Let v € V, and let p = P(V) be its orthogonal projection to U. Let u be any
point in U different from p. Then ||[v—p|| < ||[v—u]|.

Proof. Write

v-u=(v—p)+(p—u).
The vector p—u is in U, and by definition of p, v —p € U'. Therefore by the
Pythogorean Theorem 8.2.3,

lv—ul*>=[lv—p|*+|p—ul?,

so we get the strict inequality ||[v —p|| < ||v —u]| unless ||p —u|| = 0, which means
that u = p. a
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8.5 Solving the Inconsistent Inhomogeneous System

Consider the inhomogeneous linear system in a Euclidean space:
Ax=Db

where A is a m X n matrix. We assume that m is larger than 7, and that the rank of A is
n, so that its columns are linearly independent. Therefore the linear map L4 : R" —
R™ =V is injective, so the range of L, is a proper subspace U of dimension n of V
by the Rank-Nullity theorem. Then

Proposition 8.5.1. The square matrix A'A is invertible if and only if A has maximum
rank.

Proof. First assume that A’A is invertible. Then for any non-zero v € R", A’Av # 0.
Assume that v'A’Av = 0. This can be rewritten (Av,Av) = 0. Because the scalar
product is Euclidean, this can only happen if Av = 0, which is impossible since A
has maximal rank, as we just saw.

Now assume A has maximum rank, so for a non-zero v, Av # 0. As before the
inner product of Av with itself can be written v'/A’Av, which is non-zero. This is
impossible unless Av = 0, a contradiction. O

Typically, a right hand vector b € R™ does not lie in the range U of L4, so the
equation Ax = b is not solvable. If this is the case, we say the system is inconsistent:
see Definition 1.1.9. Still, we want to find the best possible approximate solution of
the system of linear equations, in some sense.

Here is the approach of the previous section. Project V = R™ to the range U of
L. The image p of b in U is the point in U that is closest to b, as we showed in
Theorem 8.4.4.

So given any b € R™, we need to compute its orthogonal projection p in the range
U. Then instead of solving Ax = b, which is impossible, we will solve Ax = p.

Theorem 8.5.2. Assuming that A is a m X n matrix, m > n, of rank n, then the or-
thogonal projection p of any point b in V.= R™ to the range U C V of the map
X — AX is given by

p=A(A'A)"'Ab

Proof. The columns ay,...,a, of A form a basis of the range U, since the rank of A
is n, so the projection p of b can be written uniquely as a linear combination

p=x1a; +---+x,a, (8.11)
for real constants x;. Equation (8.11) is the matrix product
p =Ax (8.12)

as you should convince yourself. Our goal is to determine the x;.
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By definition of the orthogonal projection to U, b — p is orthogonal to all the
vectors in U. Since U is spanned by the columns a; of A, this is equivalent to

(aj,b—p)=0, 1<i<n.

This system of equations can be rewritten as the matrix product A’(b —p) = 0.
Replacing p by Ax as in (8.12) we get the key condition:

A'(b—Ax)=0, or A'Ax=A'D. (8.13)

This is a system of n equations in n variables. Because A’A is invertible by hypoth-
esis, we can solve for the unknowns x and get the normal equations:

= (A'A)~'A'D (8.14)

Finally we can find the projection point:
p=Ax=A(A'A)"'A'D. (8.15)
O

So the linear transformation with matrix P = A(A’A)~!A’ takes any b € V to its
projection p € U. Since A is a m X n matrix , P is a m X m matrix. Thus p is a vector
in V that lies in the range U of A.

Remark 8.5.3. The basis of the range of L4 given by the columns of A is not gener-
ally orthonormal. However using the QR factorization of Theorem 8.3.9 we can see
what happens when we choose an orthonormal basis. This is an amusing computa-
tion. Just replace A by QR in (8.15), using the fact that Q'Q = I and R is square to
get

A(A'A) A" = QR(R'Q'QR)"'R'Q" = QR(R'R)"'R'Q' = QRR ™ (R") 'R’
=00’

which is the projection formula we derived in Chapter 8. A word of warning: Q is,
like A, a m X n matrix, with m > n. Q' Q is the identity matrix, but QQ’ is not neces-
sarily diagonal. The matrix A in Example 8.5.5 has orthogonal but not orthonormal
columns. Dividing by their length makes it a Q matrix. Compute that QQ7 is not the
diagonal matrix.

Remark 8.5.4. Let’s confirm Theorem 8.4.3. First notice that P> = P:
P2 =A(A'A)TAA(A'A) AT = A(AA) 1A =P

by cancellation of one of the (A’A)~! by A’A in the middle. Also notice that P is
symmetric by computing its transpose:

P = (A (ATA) AT = A((ATA)) TAT = A(A'A) AT = P,
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We used ((A’A))~! = ((A'A)~")" and of course we used (A’)" = A. So we have
shown (no surprise, since it is a projection matrix): the matrix P satisfies the hy-
potheses of Theorem 8.4.3: it is symmetric and P> = P.

Problem 8.5.5. Compute A’A for the rank 2 matrix

1 -1
1 11 30
Ty —
AA<—101> o (OZ)
11
This is obviously positive definite. In this case it is easy to work out the projection
matrix A(A'A)"1A”:

-1 5/6 2/6 —1/6

13 0\ /111
P={10 — | 2/6 2/6 2/6
11 (0 1/2> <_101) ~1/62/6 5/6

which is of course symmetric, and P> = P as you should check.

In conclusion, given an inconsistent system Ax = b, the technique explained
above shows how to replace it by the solvable system Ax = p that matches it most
closely.

Orthogonal projections will be used when we study the method of least squares.

We proved Theorem 8.5.2 using Theorem 8.4.4 a distance minimizing result
proved just using the Pythagorean Theorem 8.2.3. Here is an alternate approach
for those of you who enjoy optimization techniques using multivariable calculus.

Remark 8.5.6. As before our goal is to minimize the expression
[|Ax —b||

as a function of the n variables x;, using the standard minimization technique from
multivariable calculus. First, to have an easier function to deal with, we take its
square, which we write as a matrix product:

f(x) = (x'A" —=b")(Ax —b) =x'A’Ax —x'A’b — b'Ax +b'D.

Notice that each term is a number: check the size of the matrices and the vectors
involved. Calculus tells us f(x), which is a quadratic polynomial in the x;, has an
extremum (minimum or maximum) only when all the partial derivatives with respect
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to the x; vanish. It is an exercise to see that the vector of partial derivatives, namely
the gradient Vf of f in x is
2A'Ax —2AD,

so setting this to 0 gives the key condition (8.13) back. No surprise. We can finish the
problem by computing the second derivative, called the Hessian. It is the constant
matrix 2A’A. By hypothesis it is invertible, so Proposition 8.5.1 tells us that A’A is
positive definite, which guarantees that the point found is a minimum.

Theorem 8.5.2 shows that it is possible to bypass this calculus approach by using
perpendicularity.

8.6 Hermitian Products

When the scalars are the complex numbers, we modify the notion of the scalar
product to preserve positivity.

Definition 8.6.1. Let V be a vector space over C. A Hermitian product on V asso-
ciates to any pair v, w of elements of V a complex number written (v,w) which
satisfies the following three properties for all u, vand win V:

HP1 (v,w)=(w,v), where (w,v) denotes the complex conjugate of (w,v);
HP2 Additivity: (u,v+w) = (u,v) + (x,w);
HP3 ForacC, (av,w) =a(v,w).

Exercise 8.6.2. For two complex numbers a and b, prove that ab = ab: the complex
conjugate of the product is the product of the complex conjugates.

Exercise 8.6.3. Prove that the definition implies

1. Additivity in the first variable:
(u+v,w) = (u,w) + (v,w);

Hint: justify

(u+v,w) = (w,u+v) = (w,u) +(w,v) = (u,w) + (v,w).
2. Conjugate linearly in the second variable:
(v,aw) =a(v,w) for all a € C;

Hint: justify

(v,aw) = {aw,v) = a{w,v) = a(w,v) = a(v,w). (8.16)

Thus Hermitian products are not linear in their second variable.
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3. Finally show the easy:
(0,w) =0.

Remark 8.6.4. The elementary, but key remark that motivates this definition is that
for any vectorve 'V,

(v,v) = (v,v) by the first property,

so that (v, v) is always real.
The key example of a Hermitian product is

Example 8.6.5. On C", the product given by
(V, W) = VWi +vawg + -+ + VW

is Hermitian.

Definition 8.6.6. A Hermitian product is positive definite if for all non-zero v € V
(v,v) >0.

Exercise 8.6.7. Show that the Hermitian product of Example 8.6.5 is positive defi-

nite.

Definition 8.6.8. Let V be a complex vector space with Hermitian product (v, w).
We say that v is perpendicular, or orthogonal to w if

(v,w) =0.
We write v L w if this is the case. For any subset S of V, we let S+ be the set of
elements of V perpendicular to all the elements of S.

Note the potential confusion with the similar notations of positive definiteness
and orthogonality for scalar products in the real case.

Exercise 8.6.9. Given a complex vector space V of dimension n with a Hermitian
product (v, w), write the form in terms of its real and imaginary parts:

<V7 W> = <V7W>R + i<Va W>(C

What can we say about these parts? The form (v, w)p is real valued and symmetric;
(v,w)c is real valued and alternating, meaning that (w,v)c = —(v,w)¢

8.7 The Geometry of Hermitian Spaces

In this section we modify the results of §8.2 to the case of a complex vector space V
with a positive definite Hermitian product: see Definition 8.6.1. On first reading, you
should think of C" with the positive definite Hermitian product of Example 8.6.5.
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As in the real case, any subspace W of V, inherits a positive definite Hermitian
product from V.
The norm of v is:

V]| = v/ (v, V). (8.17)

where here () denotes the Hermitian product When V is C", with the standard Her-

mitian product, then
VIl = VViVT 4+ V.

As in the real case we have
(v,v) =0if and only if v= 0.

and
llev]] = |c]||v]| for all ¢ € C.

The distance between two vectors is defined in the same way as the real case.
The Cauchy-Schwarz Inequality still holds: for any two vectors vand w in V,

(v, W) < [IvI[[Iwll
and as in the real case it implies the triangle inequality: for allu and vin V,
[lu+v]| < fJuf +[|v].

for which we write the proof to show the difference with scalar products.

Proof (Triangle Inequality). Square the left hand side:
lu-+v]> = (- v,u+v) = [[ul* + (w,v) + (v,u) + |v]]*.

Since

(u,v) + (v,u) = (u,v) + (u,v)

we are adding two complex conjugate numbers, so the sum is real. It is at most
2 |{u,v)|. Use the Cauchy-Schwarz inequality to replace 2 |(u, v)| by the larger term
2[|u[[[v]] to get

2 2 2 2
[[all” +2(u, v) + [|v[|* < [[ul|” +2{[ul[[[v]] +[[v]".
We recognize the right-hand side as the square of |Jul| + ||v]|, so we get
2 2
[[a ([~ < (lal[ +Iv]})*

Taking the square root of both sides, we are done. a

Exercise 8.7.1. For any complex number a written in terms of its real and imaginary
parts as a = b+ ic, show that a +a < 2|al, where |a| of course is Vb? + c2. We used
this simple result in the proof above.

Exactly as in the real case we can prove:
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Theorem 8.7.2 (Gram-Schmidt). If V is a complex vector space of dimension n

with a positive definite Hermitian product, then V has a basis wy, ..., W,, where the
basis vectors are mutually perpendicular: (w;,w;) = 0 whenever i # j.
Furthermore any set of non-zero vectors wi, ..., Wi that are mutually perpen-

dicular can be extended to a basis where all the basis vectors are mutually perpen-
dicular.

From complex Gram-Schmidt orthogonalization, we again get a QR factoriza-
tion. First we define the analog of an orthogonal matrix in the real case.

Definition 8.7.3. A matrix Q is unitary it is is invertible and if its inverse is its
conjugate transpose: Q* = Q™. So 0*Q = I = QQ*.

In particular the columns q; of Q are mutually perpendicular, and each column has
length 1: ||q;|| = 1. Conversely if you have an orthonormal basis for V, each vector
normalized to length 1, then the matrix whose columns are the normalized basis
elements, in any order, is unitary.

Theorem 8.7.4. Any complex invertible matrix A of size n can be written as the
product of a unitary matrix Q and an upper triangular matrix R:

A=QR

As in the real case this follows immediately from Gram-Schmidt orthonormaliza-
tion.
As in the real case we get:

Theorem 8.7.5. Let V be a complex vector space with an positive definite Hermitian
product, and W a subspace of V. Then V is the direct sum of W and its orthogonal
complement W+,

V=waow"

8.8 Scalar Product on Spaces of Matrices

Definition 8.8.1. Let M, denote the vector space of all real n X n matrices.

As we know, M, is a vector space of dimension n?: here is a basis. Let E; ; be the
element of M, with 0 in every position except the (ij)-th position where it has a 1.
The E;;, 1 <1, j < n, form a basis for M,,, confirming that M has dimension n?.

Consider the following scalar product on M,. As we will see, the E;; form an

orthonormal basis for this inner product.

Theorem 8.8.2. For any two matrices A and B in My, let (A,B) = tr (AB"). This is
an inner product on My, for which the E;; form an orthonormal basis.
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Proof. First note that (A, B) is linear in each variable, since the trace is, and that
(A,B) = (B,A). For this last point we need to show that tr (AB") = tr (BA"). But the
two matrices AB" and BA! are just transposes of each other, and transposes have the
same trace, since the trace is just the sum of the diagonal elements. The final point
is just the computation that the E;; form an orthonormal basis. Indeed E;;E! ;= Ei;,
which has trace 1, and E; jE,’d is the O-matrix unless i =k and j =1. O

Since we have a positive definite scalar product, we can form the norm on M,;:

1Al = (A, A) = y/tr (4)

and the distance function
d(A,B) =|[|A—B|.

Exercise 8.8.3. On the space M,,, of real m x n matrices, consider the expression
tr(AB"). Show that it is an inner product. Find an orthonormal basis for this inner
product. Show that tr(A’B) is also an inner product, and find an orthonormal basis.

Inside M,, we look at the symmetric matrices, which form a vector subspace S,
of dimension n(n + 1) /2, as you can determine by counting the diagonal entries (n
of them) and the above diagonal entries ((n> — 1) /2 of them).

We now let A = (a;;) and B = (b;;) be two matrices in S,,. We get an inner product
on S, by restricting the one on M,,.

Definition 8.8.4. The inner product on S, is given by

(A,B) =tr(AB) = i Z ajjbji.

i=1j=1
The norm and the distance function are as before.

Just as in Theorem 8.8.2, we write an orthonormal basis of S, f