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Introduction

In this chapter we give, mostly without proof, some necessary
topological preliminaries. Proofs of these theorems can be found in most

books on differential topology (e.g. M. Hirsch: Differential Topology).

The basic comstruction used is cutting and pasting of manifolds.

Given two smeooth manifolds Ml and MZ with NiQE.BMi as a component

(i =1,2) and h: Ny > N2 a diffeomorphism, we can form M = Mlth =

(M1 + Mﬁ)/(XD s h(x ) (see figure) where + denotes disjoint union.

The following theorem shows this construction can be dome in the

smooth category.

Theorem 0.1,

a) M can be given a smooth structure such that M1 and M2 are
smooth submanifolds,

b) Given two such smooth structures on M, say n& and 'E’ there



exists a diffeomorphism h: (M,a&) > (M,ag) (where M.ﬂg)

iz M with smooth structure o/

j,i = 1,2} such that

i) h 1is arbitrarily close to the id.
ii) h = id outside an arbitrarily small neighborhood of

N

iii) h is isotopic to the id through homeomorphisms
satisfying i) and ii)
iv) In i) - iii) one can assume h|M; = id or thz = id.

t _ ° . . - .
cy If h' = f2 h fl where fi' Ni > Ni (1 =1,2) is a

diffeomorphism which extends to a diffeomorphism: M; > My

) "
(i = 1,2). Then MU, M, ;g_Ml Upr My

Proposition 0.2, Let Ml’ Mﬁ, Nl’ NZ’ h: N, =+ N, be as in the previous

1 2
3 ) "
theorem. If h': N, - N, is isotopic to h then M, U, ¥, zg
Ml Uh' MZ.

We have the following example of pasting:

Let Ml and M2 be connected (oriented) n-manifolds and

fi:Dn¢+ Mi (i=1,2) be embeddings (f1 orientation preserving, f2

orientation reversing). Define

. n . n
Ml i M2 = (M1 - int fl(D }) LJ (M2 - int fz(D }).
F o f-l } Sn‘“‘l
2 71
Ml # M2 is called the connected sum of Ml and MZ' In the case Ml
and M2 are oriented fl must preserve orientation and f2 must

reverse orientation to have a consistent orientation on M.



Theorem 0.3. Any two embeddings of D" into the interior of a com-

nected manifold M are isotopic (possibly after reversing orientations

of one if necessary).

This theorem shows # 1is a well defined operation: i.e. # 1is inde-
pendent of the choice of fi.

Let N be a smooth manifold and define:

Diff (N) = diffeomorphism group of N

identity component of Diff (N)

#

lefo(N)
= diffeomorphisms isotopic to the id
Diff (N)/Diffo(N) = isotopy classes of diffeomorphisms of N

Diff (N) = orientation preserving diffeomorphisms of N.

~

Theorem 0.4, pife (18)/piff (19) = eL(2,z)
R ) \ 2
Diff™(T )/lefo(T )} = SL(2,Z)
A related result is
Theorem 0.5. An oriented simple closed curve in T2 is uniquely

determined (up to isotopy) by its homology class. Any class of the
form p(S1 x {1}) + q({1} x Sl) with ged(p,q) = 1 occurs. Hence up

to automorphisms of Tz there is only one curve.

Dehn Surgery.

Definition 0.6. Given M3 a 3-manifold such that ng_:_ BMS, c a

simple closed curve in Tz, define M3(c) = M3 LJh(D2 X Sl) where h



is a diffeomorphism of T2 onto 3D% xSl which takes ¢ onto a
meridian of D2><Sl. (L.e. a curve in T2 = BDZ xSl which ig null
homotopic in D2><Sl.) M(c) 1is said to be obtained from M by Dehn

surgery.

Propogition 0.7. M3(c) is well defined (up to diffeomorphism).

Proof: We can parametrize 7% such that ¢ = 51 x{1} ¢ stxst = 12,

Then h{t,1) = [2 2}(t,l) = (talb,tcld) = (ta,tc). ¢c =0 since (t,l)

*1

gets mapped to (t,1), Thus h = [” b] which extends over the solid

0 *1

torus, By a previous theorem MB(c) ;E’MB LJid('D2 X 51) and hence is
C .

well defined,

~

More typically Dehn surgery is the following:

M3 is the complement of a tubular neighborhood of a closed curve v

3. ¢ = p (longitude) + q (meridian). This is

in some 3-manifold N
called (p,q)~Dehn surgery on <Yy in N3.‘ Note that in general there
are infinitely many possible choices of longitude in the boundary of

a tubular neighborhood of +vy. Therefore ¢ is‘well defined only

after making such a choice.



I. Definitions and Examples.

In this chapter we define and classify according to their Seifert
invariant, Seifert and Generalized Seifert fibrations. A Seifert fibration
over a orientable surface ean be viawgd also as the orbit space projection
of an Sl—action on a 3mmanifold; .This is discussed In section 2,

We extend the definition of the Euler number of an Sl—bundle to include
Generalized Seifert fibrations., In section 4 the examples of lens spaces
are described and used in Section 5 to describe (with proofs postponed)
the clagsification of Seifert and Generalized Seifert fiberable (as
opposed to fibered) manifolds. The final section 6 describes the basic

algebraic topology of these manifolds,

1, Seifert and Generalized Seifert Fibrations.

Definition 1,1. A G,S5. (Generalized Seifert) fibration is a triple

" (M,F,7) (also denoted M 1 F) where M 1is an oriented 3-manifold, F
is a surface, oriented or unoriented, and m7: M + F such that (M,F,n)
is "almogt" a locally trivial Sl—bundle. To be precise:

For every =x¢ F, there exists a 0? neighborhood of X such that

ﬁ_l( 2) Y 2 3 1

D 5 and

e D2 X Sl - D2 is defined by (rtl,tz)l+ rt?tg

where t, € st = {t ee| |t] =1}, r ¢ [0,1], p,q € Z and the ged(p,q) = 1
Here the values of p and q depend on x. If for every x ¢ F, p # O

then (M,F,n)} 4is called a Seifert fibration,



To understand the local structure of a G.S. fibration we look at

2 2

the above "local model"™ m: D° x S1 + D", If p# 0 we can parametrize

a typical fiber by ﬁ-l(rs) = (rslfptq,t"p), g,t € Sl, r ¢ (0,1]. If we
consider D2 %’Sl as- D2 x T . with ends identified we get the

following picture:

The center of the disc 0 lifts to the core circle of the solid
torus and points in D2 - {0} 1lift to fibers that wrap p times around
the core in the longitudinal direction and -q times in the meridianal
direction.

An alternative description is to consider D2 x I fibered by

1

lines {x} x I. Form a solid torus D2 % § by identifying the ends

of the solid cylinder with a 2wq/p twist,

Definition 1.2. We call a fiber singular or exceptional if the value

of p associated to this fiber is not equal to +l.



Proposition 1.3. If (M,F,m) is a G.S. fibration with F compact, the

number of exceptional fibers is finite. (Note ¥ is compact iff M 1is.)

Proof: For every x € F there exists a neighborhood sz such that
ﬁ-l(sz) eontains at most one exceptional fiber, namely ﬁ_l(x). Since

F is compact we can cover it by finitely many such neighborhoods.

We now consider the case of a G.S. fibering (M,F,n) where F 1is
closed oriented and connected. If we are given such a fibering, we can
remove solid torus neighborhoods of suitable fibérs of M and corre-
sponding disc neighborhoods of F, to leave a genuine Sl-bundle over
a connected orientable éurface with boundary. Any such Sl-bundle is
trivial, thus M 1is the result of Dehn surgery on some fibers of a
trivial bundle F x Sl + F. Ag already remarked, each Dehn surgery is
determined by a suitable coprime integer pair,

To see exactly how this construction can be done, assume we are
given data (g; (al,Bl),...,(un,Bn)) where g > 0, ai’Bi e &, o, > 0,
and gcd(ai,Bi) =1 4= 1,...,n, Let F = oriented surface of genus g

with n punctures: F0 = F - (Df Wo... U Di) (F = closed surface of

genus g). Define

M =F x 8
o 0
1A 11 1.1

BMO = S1 x 8§ U S2 X 87 W ... U Sn X 8

Let R = FO x {1}
0N 1 1 1 .
Qi = R | (Si X §7) = Si x {1} (oriented as a component of -3R)
1 1 1

i
~
ot
et
x
w
n
]
(W
X
75 ]



We have a trivial S?-bundle (MO,FO,W). To construct a G,8. fibration

from this bundle, paste a solid torus ’I‘i = Dz X Sl into the ith

boundary component Si X S1 in such a way that a meridian M, = Si x {1} €
BTi satisfies the homology relatiom M; %oaQ BiH, in the homology

of 29dT..
i

1
If we let Li = {1} x § c BTi and Mi “y aiqi * BiHi then

[37‘
i
yje S5L(2, Z). Therefore we can

a
L, vwalQ, + 'H,
i ulql 81 i for some a

e

solve for H; and Qg in terms of M, and L, to get

In Ti’ Mi “v 0, thus we have

Hi’L aiL.
% in the homology of Ti'

Q; v-BiLy

This gives an alternate description of what o and Bi signify, i.e.
oy is the number of times Hi wraps around Ti and _Bi the number
‘of times Qi wraps around Ti'

We denmote the G.S. fibration constructed above by

M(g;(0gsBy)seresla ;8 )) and call {g;(a;,8,),...,(c_,B )} the Seifert

invariant,



Definition 1.4. We say two G.S. fibrationms (M,F,n), (M',F',n') are

igomorphic iff there exist diffeomorphisms f£: F ~ F' and f: M M', with

orientation preserving such that

~

M»—-f-am'

e

F ——jiﬁ> F' commutes

We shall see that different Seifert invariants can result in
isomorphic G,S, fibrations. The second part of the next theorem gives
necessary and sufficient conditions on the Seifert invariant to yield
isomorphic G.S. fibrations. The first part shows every G.S. fibration

can be obtained by the above method {provided F 1is oriented).

Theorem 1.5, Let‘ M3 F be a G.§. fibration with F closed connected
and oriented. Then |
a) (H’g F) X M(g;(uI,Bl),...,(an,Bn)) for some g,ai,Bi e &
b)Y M(g3(0ysB)--0s(0 48 ) ¥ M(g'5(a],8) .00, (0 ,81))  iff;
i) g=g'
ii) Disregarding any Bi/ai and Bglaé which are integers
(# «), the remaining Bi/{xi {mod 1) are a permutation

of the remaining Bé/a& (mod 1)

n
i=l

iii) ¥

1/O=-1/0=m’ © + g = o for every XE]RU{‘”}-

= [ 1 .
B; /oy 2j=1 Bj/aj where here we use the convention

Equivalently, the following collection of operations canbe done to a
Seifert invariant without changing the corresponding G.5. fibration up

to isomorphism:



1G.

I) Add or delete any Seifert pair (a,B) = (1,0
II) Replace any (0,+1) by (0,+1)
1II) Replace each (ui,Bi) by (ai,Bi‘+ Kiai) provided

)k, = 0.

e

Example. M(0;(2,1),(3,2),(5,-6)) = M(03(2,-1),(3,2),(5,-1))

i

M(O;cl:o)1(2:1)!(332):(5!”6))

L

M(03(1,-2),(2,13,(3,2),(5,4)).

Proof of Theorem 1.5. a) Choose points Ppses+sP € F such that

{N-I(Pl),...,ﬁﬁl(pn)} includes all exceptional fibers. Let DisevesD
be disjoint disc neighborhoods of the p,. Then T, = ﬂ_l(Di) are disjoint
solid torus neighborhoods of the ﬁ-l(pi). Define Mb =M - int(Tl U oeae
and F_=F - :'Lnt(D1 Uees U Dn); (MO,FO,MF )} is a genuine Sl«bundle
and therefore trivial. Hence we can find a szction s Fo > Mo. Define
R = s(Fo)cz Mo’ Qi = R_f\aTi and let Hi be a non-singular fiber in
BTi. Let oy be the multiple of the generator of Hl(Ti) that Hi
represents and -Bi the multiple of the generator of Hl(Ti) that Qi
represents. Then (M,F,7) s M(g;(al,Bl),...,(an,Bn)) where g = genus(F)
thus proving a).

b) By part a), we can assume that given any G.S. fibration

' M(g;(ul,Bl),...,(an,Bn)) that (ai,ﬁi) were obtained by the method
used in the proof of part a). If we had choosen extra points Pys i.e.
points whose fibers are not exceptional, the result would have been to
introduce pairs (1,0} into the Seifert invariant. We also made an

arbitrary choice when defining the section s: F o+ M. With respect to



11,

a suitable trivialization M = F x Sl, the section s 1is given by

s{x) = (x,1), and then any other section &' has the form s': x b (x,0$(x))
where ¢: F_ -~ Sl. We can change s' by an isotopy without changing

the corresponding values of (ui,Bi). Thus we are concerned only with

the homotopy class of ¢. We claims

1
If we denote ¢!3F € [dF ,87] = z" by {(4,,...,9_ ) where
o o 1 n
g; = deg ¢]s£, then (q;,...,q,) occurs for some ¢ iff

AR o.

To prove this recall Hl(X,Ej = [X,Sl] and note the following exact

sequences:

i ) — uYGF) -—-u-—> HP(F ,0F )
[s} (e} (o] (8]

|

HI(FO,BFO) —y HO(BFO) —_— Ho(Fo)

o, is the map 4(21,...,Zn) =Zy ot ees Zn. Therefore (ql,...,qn)

occurs iff it pulls back te Hl(Fo) iff G + ee ¥ q = 0.

' insead of g, Q. 1is

1
replaced by Qj + qu which winds —Bj + qju times around the solid

We see from the claim that in choosing g

torus Tj' Hence we can replace each Bj by Bj - qjaj providéd

z qj = 0,



12,

Note the non-uniqueness of the Seifert invariant is due to the
arbitrary chpice of a section s F,o> Mb. If we calculatg.the Seifert
invariant with respect to a fixed section, two pairs, congisting each of
a G,S. fibration plus a section to the fibration outside a finite collection
of fibers, are isomorphic iff their Seifert invariants are equal (up to

permutation of pairs).

Corollary 1.6. The Seifert invariant of a Seifert fibration has unique

normal form {up to permutation of indices)
M(g;(l’so)'(al'sl)"'"(an’Bn))’ 0 < Bi < Gss i = lyeaa,n.

If (M,F,n) is a G.S, fibration which is not a Seifert fibration, we can

uniquely represent it (up to permutation of indices) as:

M(g;(ﬂ,i)s---,(0,1),(G1381),---,(am,Sm)), 0 < Bi <O,y 1= 1,...,m.

Definition 1,7, e(M~+ F) = —Eai/B_ is called the Euler number of the
i
G.S. fibration M(g;(al,Bl),...,(un,Bn)). e(M > F) ¢ © iff (M,F,m)

is a Seifert fibration.

Note that the Seifert invariant is an invariant of the oriented
manifold M with its fibered structure, it does not depend on the
orientation of the base F. TFor if we reverse the orientation of F, we
must reverse the orientation of the fibers also, to keep the orientation
of M fixed. Thus both Qi and Hi are reversed, and the homology

relation aiQi + BiHi A0 in T:» which determines (ai,Bi), is



13.
unchanged. This can also be interpreted as saying that there exists a
fiber preserving diffcomorphism f£: M -+ M, preserving orientation of M,
such that the induced map F + F reverses orientation,

: . . 2 .
Exercise: Show £f can be chosen even as an involution (f° = id).

Note also that reversing the orientation of M reverses the sign

of either Qi ot Hi’ so Si/ai gets replaced by -Bi/qi. Thus we have

Corollary 1,7, If M = M(g‘("‘1'31)""'(°‘n’5n)) then -M =

M(g;(al,—Bl),...,(an,—Bn)). In particular e(M + F) = —e(-M > F) (-M

means M with reversed orilentation).

We now consider the case where F is non-orientable. Then F =

FI # F2 where Fy is an orientable surface and F2 = ]RP2 or F2 =
IRPz # BBZ. By homogeneity of manifolds, we can assume the singular

fibers of (M,F,m) 1lie only over points of F Therefore, over F

1’ 2
we have a genuine Sl-bundle with oriented total space.

We now introduce Seifert invariants as before:
a) Remove tubular neighborhoods of the singular fibers (and possibly
'some non-gingular fibers). This givegn Mb > F0 # FZ’ a genuine Sl—
"bundle where Fo = Fl - (D% U oees U Dﬁ), Mb = M - (Tl W owes U Tn).
b) Choose a section R C.Mb to the fibration and use this to compute
the Seifert pairs (ai,ﬁi). This gives a Seifert invariant
(g;(al,Bl),...,(an,Bn)) where g < 0 is the genus of F (we use
2

negative genus for nonorientable surfaces, i.,e, F = ]RPZ# ess #f RP,

|gl times). As before we have
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Theorem 1.8, Let M 3 F be a G.5. fibration with F closed connected
and unorientable. Then
a) mIF > M(g;(al,Bl),...,(an,Sn)) for some g,ai,Bi e Z
with g < 0
b) same as the orientable case, i.e. we can change any Bi/ai by
an integer provided we keep -E Bi/ai = e(M > F) fixed. We
can add or delete pairs (mi,Bi) = (1,0).

F' # ]RP2 where F' = F1 or F' = F}_ # IRPZ. Then

Proof: Let F

=i
i}

~
[
I

int(Dz)) Usl (Efz - int(Dz))

! int(Dz)) U {Mb) (Mb = Moebuis band).
5

<}
~
=

i

We need:;

Lemma 1,9, Suppose E T Mb is a fibration with fiber S1 and oriented
total space. Then
i) There is only one such E up to isomorphism namely E = Tiip =
unit tangent bundle.
ii) There is exactly one section up to isotopy of E|3(Mb) which

extends over E.

Given this lemma, there is a canonical way of cutting out ﬁml(Mb) in

2

M and replacing it by D x Sl, to get a G,S. fibration over F', The

proof thus reduces to the case of F orientable.
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Proof of Lemma 1.9, 1) Classifying bundles E Imb with 81 fiber and

orientable total space is equivalent to classifying, up to homotopy,
orientation reversing diffeomorphisms h: S1 > Sl. There is only one
such h., Thus E - Mb is unique, and E‘k Tle since Tle is such a
bundle. 1ii} A section of Tle is a unit vector field on Mb. Call the
section on gMb that is parallel to oMb  the trivial section. We claim
any section r: Mb -+ Tle, is such that r]SMb is isotopic to the trivial
section, To see this, choose a very narrow Mdebius band neighborhood U

- of the core circle. As you traverse the boundary of U, any "rotation"
of the vector field gets canceled as you "come around the second time" and
therefore 1©|38U is isotopic to the trivial section. Since Mb - U =
collar = 3Mb x I, this gives an isotopy of r}dMb to the trivial section

(see below}.

Mb v This is the Moebius band,
~ i [N
tad rd - 7 7
Mb | v This is the trivial section on BM],_
L & < -
Y = =

‘Given any section r of Mb, choose U.

core circle



16.

On the core circle the section looks like;

PRI W il AL O
NV LT
Y

By contimuity of r, on U the section looks like:

fof”“‘—m—"“ﬁ”““ﬂxﬁi as you go around here the rotation is «

\@wgg:*‘Tffﬂ

w&e&?'f‘f"f‘

P A o
RRT 2N

as you go around here the rotation is -u .,

Thus this section is isotopic to the trivial section

collarg‘ et gyl 3

Now using the collar extend this isotopy to give an isotopy of r|sMb to

the trivial section,
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2. Seifert Fibrations as Sl-Actions.

Observe, if (M,F,n) 1is a Seifert fibration with M closed and ori-
antaed and F oriented, by the way M 1is constructed, we can pul an S1
action on M. The orbits of this action are the fibers of =. If
(M,F,m) 1is a G.S. fibration with F oriented, then there is an- S1
action on M such that each fiber of 7 1is either

a) an orbit if the fiber is nonw~singular or gingular with o # 0

b) a component of a fixed point set if it is a singular fiber

with o = 0.

The converse is also true,

Theorem 2,1, The classificationcf G.S. fibrations with F orientable is
equivalent to the classification of effective S1 actions on closed

oriented 3-manifolds.

Before proving this theorem we need some definitions and results
from the theory group actions gn a manifold. A reference for these

results is G, Bredon: Introduction to Compact Transformation Groups.

" Definition., Let M be a smooth manifold and G a compact Lie group.

A smooth G-action on M is a ¢ mép G xM~+M, (g,x) » gx

satisfying
i) 1x = x for every x ¢ M

ii) gl(gzx) = (glgz)X' for every g,,g, €6, for every x¢e M.
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This action is effective if gx = x for every x € M, then g = 1, This

action is fixed point free if for every x € M, there exists g e G

‘such that gx # x.- This action is free if for every X € M and for every
g # 1, gx# x. We define the orbit space M/G = M/{x = gx}, the orbit

Gy = {gxl g € G} and we define the isotwpy subgroup Gx = {g ¢ GI gX = X}

Lemma 2.2, Gx is a c¢losed subgroup of G. G/Gx Y Gx where this

diffeomorphism is G-equivariant and given by gGXH gX.

Example: 1) Let H be a compact Lie group and p: H + GL(n) be a
representation, Then H acts on r? by hex = p(h)x, x ¢ R%, h ¢ H.

2) Suppose Hc G is a closed subgroup and p 1is as above. We
define Gxﬁﬁflm Gan/H where H acts on G x R- by h{g,x) =
(gh™",p(0)x)).

Theorem 2,3, Let G,H be as in example 2). Then Gxgﬂf‘-* G/H given
by [g,vl b gH 1is a vector bundle with fiber R"'. Tt has a natural G

action given by gIEg,v} = [glg,v].

Theorem 2.4. (Slice Theorem) Let G bg a compact Lie group and G xM-+M
a gmooth action of G, Then
1) Gx<€ M isg a smooth submanifold
2) Gx acts on Vx = \)x(G x) by a representation
G Gx - GL(Vx) (\JX(GX) = normal bundle of Gx in M at =x),
called the "slice representation"

3) G o Vx is G-equivariantly diffeomorphic to a neighborhood
X

of Gx€ M by a diffeomorphism which takes the zero section
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G/Gx = {{g,0]} to G=z
4) After cheoosing an invariant EBuclidean metric on Vi we can

assume p_: G -~ O(Vx).

We now return to Theorem 2.1. To prove this theorem, it suffices to show

any effective S1 action on a closed oriented 3-manifold M yields a

G.S. fibration. By part 3 of the Slice theorem, if we know all the

possible slice representations of the isotropy subgroups of Sl, we know

what the orbits look like locally. We must show that locally these

orbits look like a local model as in the definition of a G.S. fibration,
In our case G = S1 and the possible isotropy subgroups are

1
GX = {1}, E/Il, 5.

Case 1. Gx = {1}

Then G Xa V=0Gx V=8 x IRZ gince dim V = 2,
X

Case 2. G = Z/n
ey X

As in case 1, since dim G Xa V=3 and Gx is discrete, we
X

have dim V = 2. For the action of G to be effective p: G_-> O(V)
must be injective. If n > 2 the only possibility for p 1is a generator

of Z/n goes to a rotation by 2mg/n where ged(q,n) =1, If n= 2

~1 0
( 01

. . ) A,
case G XG V 1is non-orientable and thus cannot occur. Thus G XG V=
X

X
(S1 X IRZ},’{ZZ/n) which is again a standard model.

we have the additional possibility, a generator goes to ). In this

Case 3. G = §
e X

In this case dim V = 3. Again, for the action to be effective
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ol S1 + 0(V) must be injective., There is only one such representation,
namely writing 1R3 = ‘.R2 x IR]', S1 rotates RZ and fixes IRl. Thus
G X, Vo= S1 X 4 IR3 f R3 as Sl manifolds, The fixed point set is

X s

thus a closed one dimensional submanifeld of M so a component of the

fixed point set looks like 2 (0,1) fiber in a G.S. fibration,
Thus we have shown that given any orientable closed 3 manifold M
with an effective S1 action and orbit space M/Sl, then the non-fixed

orbits and the fixed point components induce a G.S. fibrationm on M,

Proposition 2.5. Let M be a closed orientable effective S1 manifold

with Seifert invariant (g;(al,Bl),...,(an,Bn)) and Z/ac Sl. Then
M/(Z/a) 1is a {Sl/(Z&/a)) manifold and its Seifert invariant can be
written (g;(ai,Bi),...,(a&,B;)) where B}/aé = aBj/aj. In particular

e(M/(Z/a) » M/SL) = a-e(M » M/SL).

Proof: By checking the local structure, M/(Z/a) is easily seen to

be a 3-manifold. Remove from M tubular neighborhoods of a suitable
collection of orbits. In M - {tubular neighborhoods} choose a section
R which gives the stated Seifert invariant for M. The image of R

in M/(Z/a) 1is still a section and this section gives the desired

Seifert invariant for M/(Z/a).
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3.7 Euler Number,

There are several equivalent ways of defining the Euler number
for a genuine‘Sl-bundle. We list three:
1) An obstruction to finding a cross section.
2) A bundle is classified by an element of EF,BSI} = [F,K(Z,2)]
= HZ(F;E). If F is a closed surface HZ(F;ZZ) = & and
the o € H2(F,Z) classifying the S1 bundle is the Euler number
3) "Fill in the circle fibers" to get a D2 bundle E =+ F with

E =M {(E =M x 1 D2 = (M x Dz)fsl). We have the zero

section F& E.S Thenr e(M > F) = [F]*[F] (self intersection
number).
One can show that each of these ways has an extension to Seifert fibrations
and they all give Fhe same result. Our definition of e(M -+ F) = - X ai/Bi
corresponds to the first definition. In this section we will give a
definition of e(M + F) corresponding to 3), and it will be used in the
proof of a theorem. To 2) we remark without proof that if S%O; is the

rationalized circle, then to any Seifert bundle M + ¥ 1is associated a

genuine fibration over F with fiber S%O)’ classified by an element of

1
(0)

Before stating and proving the main theorem of this section we need

[F,BS, ] = [F,K(9,2)] = HZ(F;Q), and this too is our Euler number.

a proposition and in particular the corollary following.

Proposition 3,1. Let M I F be a G.S. fibration and p: F'» F a

*
covering with degree (p) = d. We can form the pullback bundle p M - F'

where this diagram commutes:
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Then
iy p*M > F' is a G.S. fibration
ii) 1f MIFZ M(gs(ay,B,)seees(a,B )) then oM e Er Y
M(g';d(a;,B;) 50005400 B )) where d(a,B,) = (ai,Bi),.._.‘,(ai,Bi)

(d times) and g' = genus F'.

*

Proof. p M= {(x,y) € M x F'| p(y) = n(x)}. Choose a section R to

M3 F outside of a collection of tubular neighborhoods of suitable fibers.
*

Then {(x,y) € R x F'| n(x) = p(y)} 1is a similar section in p M leading

to the desired Seifert invariant.

Corollary 3,2, Let M 1 F be a G.5. fibration with Seifert invariant

(g;(al,Bl),...,(an,Bn)) with g < 0, i.e. F is unorientable. Let
F B F be the orientation double cover of F. We form the pullback

bundle M L F

« Then:
iy H IF is a G.S. fibration.
1) BEF Zuclgl - 15 (0),8,),(a;,8),00 0500 48 ), (a ,6)).

" In particular e(¥ + F) = 2e(M -+ F).

We now state the main theorem of this section.

™ m |
Theorem 3.3. Let M, ~JS F, and M, ~j§ F2 be two Seifert fibrations.

Agssume there exists a map g: Ml - M2 such that the diagram
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commutes and degree (g) = b, degree (gifiber) = f and thus degree (g) =
Then e(Ml > Fl) =(b/f)e(M2 -+ Fz). (Note: The pair (b,f) is determined

only up to sign, but b/f is well defined.)

We leave as an exercise the

Remark : The theorem is valid also for G.5. fibrations.

In proving this theorem, we shall also show that e{M + F) 1is
equal to the gelf intersection number of the zeroc section of the corre-
sponding "disc bundle,"” which we now define.

Given a Seifert fibration (M,F,u), let C{(m) be the mapping
cylinder, i.e. C(7w) = M x [0,1] U, F where tt Mx {1} - F 1is t(x,1) =
7{x) . u induces a mapping 7: C{(w) ~ F whose fibers are the cones
over the fibers of 7. This i1s a "Seifert disc bundle" over F, and
M = 3(C(m)) 1is the corresponding cirele bundle, We have F<% C{(n) as
the zero section. C(m) is a 4-manifold except at points p € F over

which the singular orbits of M lie,

Definition 3.4. The pair (X,Y) is an R-homology manifold pair of

dimension n iff (X,¥) 1is a relative C.,W, complex and

R i=n

H; (X,X ~ {p};R) = {
0 i#n

for all pe X - Y.
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Claim, (C{m),M) is a @ homology manifold pair.

Exercise. If G 1is a finite group with an orientation preserving action

on a manifold N, then N/G is a @ homology manifold.

Proof of Claim. Using the above exercise, and since being an R-homology

manifold is a local condition, it suffices to show that if p e F in
C(n) is a singular point, then p has a neighborhood homeomorphic to
mﬁ/c for some finite G, Let p be a singular point and U a neigh-
borhood of | P n_l(U) T U "looks like" S1 x R » IRZ/(EIOL) where

Z
Q

(Z/a) acts diagonally on S1 X ]Rz, i.e. by right multiplication on 51
and by some rotation on IRZ. The corresponding neighborhood of n-l(p)

in C(n) is DZ Xz RI0? vy / @/,

Now the standard treatment of R-orientation, fundamental classes
and Poincaré-Lefschetz duality (as for instance in Spamier: Algebraic
Topology) carries through for R-homology manifold pairs (X,Y) with X
compact and Y closed. Therefore (C(7),M) satisfies Poincaré-Lefschetz
duality with @ coefficients. Precisely, the sum of the top dimensional
gimplices in a subdivision of C(%) defines a fundamental class

[c(m)] e Hécc(n).m;q), and the maps

p: al(c(m;e)  » B, (C(M),M0)  and

D: HI(C(m),M;@) + Hy_o{C(M @

defined by D(a) = o M [C(w)] are isomorphisms.

In analogy to the case of a genuine Sl—bundle we now define
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e'(M + F) = D(D-l([F]) ] Dﬁl({F])) where [F] ¢ HZ(C(W);Q) is the
homology class represented by F € C(w). Denoting Dml(F) =1 e HZ(C(ﬂ);Q)

we have e'(M+ F) = (n Un) n [Cc(m)]

n N (N [e(m

n M [F],

The proof of Theorem 3,3 1is divided into two steps. The first step
is to show e'{M1 > Fl) -—-(h/f)e'{M2 + Fz). The second step is to show
e'(M~+ F) = e(M > F).

It may appear that we are implicitly assuming F is orientable
above. However, if we take our coefficients @ in HZ(C(ﬂ);Q) and
HZ(C(R),M;Q) to be the local coefficient system on C(n) which pulls
back from the orientation system on F {but take untwisted coefficients
for H, and Ha), then our definition of e'(M » F), and the subsequent
analysis, applies also for F unorientable. 1In the following proof we
therefore implicitly assume these local coefficients are being used where
necessary. The reader who prefers to avoid local coefficients can instead

deduce the theorem in gemeral from the special case of oriented base

surfaces using corollary 3.2.

Proof of Theorem 3.3. (Step 1} We have

M, —y M,

oo

g
Fl —~—~f} F2 ’

this induces G: C(wl) > C{ﬂz) with G’Ml = g and GlFl = g. Then

degree (G) = degree (g) = bf, Let n; € Hz(C(ﬂi);Q) (i =1,2) be as
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. A 2 . _ a2 . -
above., Then e'(Mi > Fgﬂ ng; N [Fi}. H (C(’ﬂ'i)’Q) = H (Fi,Q) = @, g0

*
G‘n2 is some multiple khl of ﬁl. Thus

*
G n, N [C(‘!Tl)} = kn, 0 [C(ﬂlﬂ = kIFI]

]

®
G, ((Gh,) N [CnD) = 6.klF,] - bk{F,].

On the other hand

I

G*((G*né) N ey = n, O Glcn)]

bf n, N IC{nz)}

bf[FZ]

*
and hence k = £, Therefore G n, = fnys so

e'(Ml_'* F)=m; N IF]
*

= (1/6)6 (n,) N [F,]

*
= (1/£)6,(Gn, N [F])
= (1/8)(n, N G IF D
= (b/£)(n, N [F, D
= (b/D)e'(M, > F,).

(Step 2) We want to show that for any Seifert manifold e(M » F) =

e'(M+ F), First assume F is oriented. Then M is a fixed point free
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Sl—manifold and M = M(g;(al,Bl),...,(an,Bn). Let a be a multiple of
1cm(a1,...,an) and define M' = M/(Z/a). Then M' =
M{g; (1,381/a1),...,(l,aﬁnlah)) = M(g; (1, Z aBi/ai)). Thus M' is a

genuine Slmbundle.

Exercise: For a genuine Sl-bundle e' = e,

With this exercise we have

I!

(1/a)e(M + F) = e(M' + F) (Proposition 3.1)

e'(M' > F) (exercise)

H

{1/a)e'(M > F) (Step 1).

Now if F is not oriented, let M » F be as constructed in Corollary 3.2

Then

e(M > F)

{1/2)e(M » F) {(Corollary 3.2)

(1/2)e'(M > F) (above)

i

e'(M+ F) - {Step 1).
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4, Leng Spaces as Seifert Manifolds,

In this section we define lens spaces and show they are examples
of Seifert fibrations, As we shall see in the next section, this allows

us to give a classification of Seifert structures on a 3-manifold.

Definition 4.1. Let §° = {(2},2,) € €] 2,1% + 12,1% = 1}, Z/p acts

freely on S3

by e“"P(z,,2)) = (e¥"HPz ,e?Py ) wnere ged(p,o) = 1

Define the lens space L{p,q) = 53/(ZZ/p).

L(p,q) has the following properties:
1) S3 + L(p,q) 1is the universal cover.
2) Since the covering transformation group is Z/p
T, (L(p,q)) = Z/p

3) By elementary algebraic topology we get

H) (L(p,q)) = Z/p
Hy(L(p,q}) = 0
Hy(L(p,q)) = Z.
4) L(p,@) = L(p,q") if g = q' (mod p)
5) L(p,q) = L(p,q') if qq' = 1 (mod p)
Proof: ezm"q'/P is a generator of Z/p and in L(p,q) it

Ly | : ! T ] .
takes (ZI’ZZ) . (QZ“IQ /le’ezﬂqu /Pzz) _ (e2ﬁ1q /p21’92ﬁ1/pzz

Thus by exchanging z, and Z, the (p,q) action becomes

the (p,q') action. Therefore L(p,q) = L(p,q').

6) L(p,q) = -L(p,-q)

R

Proof: The map (21,22)3* (21,52) induces L(p,q) * -L{p,~q).
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7) L(p:gwl L{p,q') (homotopy equivalent preserving orientation)

if qgq' is a square mod p.

Proof. See exercise 1.

L{p,q') iff q = (q')i1 {mod p)

Theorem 4.2. L(p,q)
L{p,q) » L(p,q') iff qg' = square (mod p).
Here both the diffeomorphism and the homotopy equivalence are orientation

preserving.

Proof: See J. H. C. Whitehead, "On incidence matrices, nuclei and

homotopy types,” Ann. of Math. vol., 42, 1941,

72 = st x s} acts on 87 by (£,,6,)(2],%,) = (£,2,,6,2,), The above

Z/p action is asubaction of T2 on 83. Thus Tzl(m/p) acts on

SB/(Z/p) AV L(p,q). Tzl(zlp) X Tz. There are many Sl subgroups of
TZ/(ﬂjp) giving effective actions on L{p,q), hence there are many

Seifert and G.S. fibrations on L(p,q).

Theorem 4.3. L(p,q) Y D2 X S1 U D2 X S1 if det[“q r] = -],
———e P s
(e s)
Remark, If we define L{p,q) = L(-p,~q) if p < 0
L(1,0) = §°
1(0,1) = st x §?,

then the theorem remains true with these conventions,

Proof of Theorem 4.3, Let §° = {(zl,zz)] ’21]2 + IZZIZ = 2}. Then

3
87 = Ul v U2

3 2
where U, = {(ZI’ZZ) e S| |22| > 1} and
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U2 = {(Zl,Zz) £ 53| |22[2 < 1}, U g’(D2 % S}')1 where the diffeomorphism
L ' . ~ 2 1

is given by (Z;,Z,) + (Z}, 22/|122H). Similarly U, = (D x §7), by
(21,22) b (Zz,lellzlu). Thus the pasting map 3(D2 X Sl)l = S1 x st o
11,2 1y . . . 01 :

ST x 8§ = 3(D" x 8§ )2 is (21,22) [ (ZZ,Z ) 1.e.glvenby~(1 0). Now if

we factor by the Z/p action we have (D X 8 ) /(E/p) 3 P Sl by
(22,1 ¢ (22 1% ). Here s 1is chosen such that gs = 1 (mod p).

Thus a matrix ( ~4 :) of determinant -1 exists. We also have

2 1

(0? x sh /Zfp) 3 0% x s by [2,,2,1k (2]%,,28). Thus L(p,q) -

1 2’

S /(ZZ/p) = D %x § U D2 xSl where £: S1 x S1 -+ S x S1 and is given

et +ﬂf“

il

by f(Zzszl,Zg) (Z1 2, ). To put f in a more convenient form let

- _ P _ P _ P8 L
£y 22 Zl, t, ZZ' Then Zl 22 ty t2’ Z1 = tyt,. Therefore f: 8 X 3§

S1 % S1 is given by f(tl,t ) = (tl ;,tgtz)

1
S )i

Remark., We can choose Mi’ Li a meridian and longitude in B(D2 X
so M, = {(t,1} ¢ B(D2 X Sl)i}, L, = {(1,t} € B(D2 X Sl)i}. Then under
the pasting map M1f+ {(t-q,tp) € 8(D2 X 51)2}, 80 M1 v -qMZ + pL2. Thus

this homology relation determines which lens space we are in.

We will apply this to find the Seifert invariants of the various G.S.

fibered structures on L{p,q).

we

Theorem 4.4. L(p,q) M(O;(al,Bl),(az,Bz)) if

Oy O
det[ 1 2}
-8y By

i

o
il

By + B,y

= det 1 %2 = q.B) + B o)
-8, 85 P2 ¥ Pt

o2
|
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[}
%y “2]

where det[ s
8, By

4 -
3262 - Bzaz 1.

1

Proof: M(O;(ul,Sl),(mz,Bz)) = ((D2 X Sl) U (annulus x 51)) ¥) (D2 x 8

0% x sb u ? x sh.

We have homology relations M, ~ a,Q; + B;H,; M, v a,Q, + B,H,
' ) 1 4
Ly v 0Q + BIHI L, v azqz * 82H2

a, ol o, ol
1 1] =det[2 2

B Bi B Bé]’ = 1. Ql + Q2 = 3 {section in annulus xsl) 0
1 2

where det[

in homology, thus @, + -Q,. Also H, v H,. Therefore
1 2 2

1
- N
S T [Ql} o Byl
= ] ' = ' '
Ll ™ Bt ™ B

r r ¥

-y By} 8 -By) (M,
] 1 1

~ay Bpjlmep @yl

AR

o8y By a8y B1%1}

2]
L4
LZ

g0 by the remark preceding the theorem, Theorem 4.4 is proved.

~'(°‘1'3':'z +B8100)  agB, +Bjo,

1 3 a b
Example: Let § act on § by t(zl’ZZ) = (t Ziat 22) where

gcd(a,b) = 1, The isotropy subgroups are Z/a and Z/b, By the above

theorem, we get o(s> > 53/51) = M(0; (a,a'),(b,b")) where ab' + ba' = 1l.

Exercise: The correct sign here is ab' + ba' = +1, s0 e(83 + 53/51) =

~(a'/fa) - (b'/b) = -(1/ab).
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5. Clasgification of Seifert Fiberable Manifolds.

With the previous section as preparation, we can now state the

classification, up to (not necessarily fiber preserving) orientation

preserving homeomorphism of Seifert and G.S. fiberable 3-manifolds.

Theorem 5.1.

1)

2)

3)

4)

M(_l;(a,B)) = M(O; (291)9(2"‘1)5("Bla))

i

M(-2;(1,0)) = M(0;(2,1),(2,1),(2,-1),(2,-1)).

The diffeomorphisms in 1) and Seifert fibered structures on
lens spaces give the only examples of a 3-manifold having two

non isomorphic Seifert fibrations.
2g 1 2 n
# (5" x8%) # # -L(a.,B.)
. . i’"i
i=1 i=1

if g>0
lel ; 5,
# (8" x87) # # ~L(a;,B.)
. . i'™i
i=1 i=1

if g < 0.

ne

M(g;(o,l),(cxl,Bl) 'z --,(an,ﬁn))

m

The only Seifert fibered manifold which is not connected

mmmmem'mqum)émﬁ#mﬁ

Proof. For 1) and 3) see exercise 2. 2) and 4) will follow from our

analysis of Wi(M)' See [0-V-Z]  ID-R] In fact much more is true:

Theorem 5.2. (Waldhausen[Wa 1,2]) ZLet Mi’MZ he Seifert fibered and not

in the following list:

i)
ii)

iii)

lens spaces

M(O;(aI,Bl),(az,Bz),(33,83))

M(1;(1,0)) = 73



iv) As in part 1 of:Theorem 5.1.
Then any homomorphism M, >N, is isotopic to a fiber preserving

homeomorphism.
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6. The Fundamental Group of a Seifert Manifold.

Theorem 6.1. Let M = M(g;(ul,el),...,(an,sn)), then:

m (M) = <ai,bi,qj,h| [h,a,] = [b,b,] = [h,qj] =1,

a. B.

3y 1 . = i
qj h~=1, qlqz,...,qm[al,b13,...,[an,bn} 1> if g>0

-1 -1
“1(M) = <aistsh l ai hai =h ", [h:qj-] =1,
o, B,
2 2 .

thJ=1’ qlgco-’qmalgonn,a!gl =1> lf g<0,

j
(i=1,...,|g|; J=1,...,m).
Proof. We prove only the case g > 0. The proof for g < 0 1is analogous

We shall apply Van Kampen's theorem to the representation

1

M= (F ~ sz) *x 87 U T, U ... U Tm Ti = D" x 87,

1

2
HI(F-mD ) = <al’b1""’ag’bg’q1"'"qu

= 1>
ql...qm[al,bl]... [ag,bg} 1

where the ai’bi’qj are represented in schematically'in the figure below.




2 1 - g
w S ) = <al’bl,-uo,ag,bg,q1,c!l,qm'hl 'n C[j 'H [a

Then nI(F - mb
j=1 i=1

[h,a;] = [h,b,) = [hyq;] = 1>

o. B,
Claim. Pasting in Tj adds the relation quh J =1,

Proof, By Van Kampen's theorem pasting in Tj adds a new generator

and two new relations

o, B.

i) quh J =1
1) ]
a: B

ii) quh J = ¢,

The new generator t and relation ii) can be deleted by a Tietze

transformation.

Corollary 6.2. If g >0

H; (M;Z) =<Ai,Bi,Qj,H[ “‘ij + BjH =0, Q + «ve +Q =0>

+

_ 728 - =
= % 9<Qj,Hi 0,40 ByH =0, Q) + «.o ¥ Q= 0>

3
= 7Z ﬁ)cokoaz.... 082

In particular: If e(M-> F) # 0 then HI(M;ZZ) = ZZg @ T with

'Tl = ul,...,&m IE(M -+ F)

If e(M=F) =0 and (M,F,m} 1is a Seifert fibration then
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HI(M;&D has free rank 2g + 1.

Proof: Cok A has order equal to |det AI if det A #£ 0. Here det A =

(-1)" ...ame(M + F) by a simple induction. If det A = 0 then

1

rank A = m 1if no o, is 0.

Corollary 6.3. If g >0 and (M,F,m) 1is a Seifert fibration, the

following is a short exact sequence:
1 +0C~> ﬁl(M) -+ F(g,al,...,am) +~ 1

where C 1is the central cyclic subgroup of 7 generated by h and
o,
P(g;all"'!an) = <a1'b1""’ag’bg’q1"'"qj| Qj I - 1, I Qj I [ai’bi] = 1>
] i
Remark ., F(g;al,...,an) is a spherical, Euclidean, or hyperbolic
crystallographic group according as (2g-2) + X (ai-l)/ui < 4, =, >0
respectively. We will see what this means and its significance for

Seifert manifolds later.

We are now in a position to determine which Seifert manifolds
are homology spheres, Assume M = M(g;(ul,Bl),...,(an,Bn)) is a
homology sphere. We can immediately conclude e(M > F) # ¢ and g = O.
For if e(M+ F) =0 or g > 0, then by Corollary 6.2 Hl(M;ﬂD is
infinite, Also g < 0 cannot occur; for otherwise M would admit a

connected 2-fold cover, implying Hl(M;ZUZ) # {0}, We have
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H
i
o
fu
L ain Y
=
~
1

= 0:1,..Ct-n | z Bi/uil

"~

]glaz cety F BuBy.sia o By e ]

"

n -
By reversing orientation if necessary, we can assume z Bial"'ui"'anzl
i=l
Therefore the ai's must be pairwise coprime, since if dlai and d|aj
then d z Bial...ai...an and Hence d]1.

Moreover Bi is determined modulo O by

-~

Bio’.l- .-ﬂ.i_..-()tn = 1 mod
This completely determines the Seifert manifold since we know e(M + F)
and Bi mod o, for each 1.

Conversely, if we have pairwise coprime ai's we can find Bi

~

satisfying z Bimi...ui...un = 1. This proves;

Theorem 6.4. Given palrwise co-prime Gysenesls there exists a unique
Seifert manifold M = z (al,...,an) with the ai's representing
exceptional fibers and e( 2 (ul,...,an) > 52) = -(1/(&1{..an)

is a homology sphere,

Example. ) (2,3,5). Here e( § (2,3,5) + §%) = = 1/30. Thus

31/2 + 82/3 + 83/5 = 1/30 and we have

) (2,3,5) = M(03(2,1),(3,1),(5,-4))

M(O;(l,-l),(z,l),(3,1),(5,1)).

it



Exercise 1

1)

2)

3)

4)

28.
EXERCISES TO CHAPTER I

(Homotopy classification of Lens spaces)
Show that a degree 1 map L{p,q) » L{p,q') is an orientation
preserving homotopy equivalence.
Show that if ¢: L{p,q) + L(p,q') has degree d, then by
suitable connected summing with the covering projection
83 + L(p,q') you can get a map ¢': L(p,q) + L(p,q’) of
degree d * p. Thus if ¢: L(p,q) + L(p,q’) exists of
degree congruent to 1 mod p, then L(p,q) ~L(p,q")
{preserving orientation).
If ab = 1 mod p then the map (ZI’ZZ) b (Z:,Z;)/”(Z?,Z;)”
of 53 induces a map L{p,q)} =+ L(p,bzq) of degree ab, so by
1) and 2) L(p,q) & L(p,bzq).
Conversely, show ¢ 1is determined up to squares by the
homotopy type of L{p,q) as follows: Let R: HI(X;QIZ)—r
HZ(X:ZZ) be the connecting homomorphism for the coefficient
sequence 0+ Z > € ~ Q/Z + 0. For 8118, € HZ(L(p,q);E)
define R,(gl,gz) =g, Y S-l(gz) € H3(L(P,q);ZZ 8 Q/Z) = Q/Z.
Show 4L(-,-) is wéll defined, and & determines q up to
squares as follows: for any generator g HZ(L(p,q);ZH one

has L(g,g) = qlep for some x prime to p.

Remark. Via Poincaré duality £ becomes the "torsion linking form,"

which is more generally defined for any closed oriented 2n + 1 manifold

as

Tor Hp+1(M;ZZ) x Tor H2n+1”p(M;Z)

Tor

| (I > QZ .

HZn—SM;ZZ) x Tor HP(M;Z)
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The above is essentially the original approach, due to Rueff (Compositio

Math. 6 (1938)), to classify L(p,q)'s up to homotopy.

Exercise 2

Hints

*5)

1)

a)

b)

Use a similar approach to homotopy classify higher dimensional
2n+1 .
lens spaces L (p;ql,...,qn), by replacing { of 4) by an

. -1
n"‘llnear map Qa(gl’---,gn) = gl U LA U gn__l U B (gn).

Prove the following diffeomorphisms of G.S. fibered manifolds
(preserving orientation but, of course, not preserving G.S.
fibration), As stated in Sectfon 5, these examples plus

lens spaces give the only examples of non-equivalent G.S.
fibrations of the same manifold,

a} M(-1;{a,B)) = M(0;(2,1),(2,-1),(-B,a))

il

in

b) M(-Z;(I,O)) M(O;(zsl)3(2’1)!(2)_1)3(2!_1))

k 1 9 n

# S"x 8" # # L{a,,-B;)
i=1 j=1 43
where k = 2g (g > 0) or |g| (g < 0).

n

C) M(g;(g’l)’(aj’sj)’ j = I,...,n)

Tle (the unit tangent bundle of the Mbbius band) has two
natural Seifert fibrations. The one is the projection

Tle + Mb and the other 1is giVenlby the Slwaction on Tle
induced by an effective Sl-action on Mb., This gives two G.S.

fibrations on any manifold of the form Tle W] 2 D2 X SI.
T

TlKi has two Seifert fibrations for the same reason TIMb does.
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Define an operation of "connected sum along (0Q,l}-orbits"
to show how to build up a G.S.-fibration on a connected sum
of simpler non-Seifert G.S.-fibered manifolds. You know ¢)
for g =0 and n =1 by classification of GS-fibrations
on Seifert manifolds. Hence you know it also for g = -1,

n=0, by a). You only need it then for g =1, n = 0. Find
2

[ H

a suyitable 6.S. fibration on ((S1 X §7) = 2D2) U(S2 x I}

S1 X 82 # S1 X SZ.
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IT. Further Examples

In this chapter we give two less basic examples of Seifert manifolds:
Breiskorn complete intersections and the universal abelian cover of

certain Seifert manifolds.

7. Breiskorn Complete Intersections.

. 3,.% '
Let V(a,,ay,ay) = {(z Z,) € C | Z,0+ 2,0+ 27 = 0} where

1522’
al,az,aB_z 2. V has
an isolated singular point at 0, We define the link of the singularity

5 .
as V(al,az,a3) N 8 and denote it by Z(al,az,a3). Z(al,az,aB) has a
natural S1 action given by:

a/a1 a/a2 ‘ a/a3
t(Zl,Zz,Z3) = (t Zl’t Z,,t 23) where a = lcm(al,az,a3).

This 1s an effective fixed point free action on Z(al,az,a3). Therefore
1, . . .
E(al,az,aB) -+ E(al,az,aB)/S is a Seifert fibration.
We can generalize this example by letting A=(a, >~ Lyon.,n=2
1]77] = 1,.0a.,m
be an (n-2) x n dimensional complex matrix and defining:
n 4 )
VA(al,-..,an) = {(ZI,---,ZD) e € ! uilzl + aizzz- P
a'El
+o; 25 =0,1-= 1,000,0-2}

Proposition 7.1, VA is a 2-~dimensional complex variety which is non-

singular except at 0 1iff each maximal (n-2) x (n-2) submatrix of A

is non-singular.
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&,
___._,__. = '] = . 128 I}
Proof: Let £,(Z,..s3Z ) JZ%J-ZJ' and £ = (fy,.000f o), £1 8 > €
(0). We want to show: Df has rank n-2 at each peint of

2

-1
and VA = f

v, - {0} iff each (n-2) x (n-2) submatrix of A is non-singular.

a,-1
a.-1 1

j alzl

Assume there is an (n-2) x (n-2) submatrix of Df that is singular.

Without loss of generality, we can assume the first n-2 columns of A

are linearly dependent. By a change of coordingtes in En-z, f is
a a
) - - - - - n-1 - n
equivalent to <f1’£2""’fn-2) where fl(zl""’zn) = aln-lzn—l + alnzn .
Then {f2 = f3 = .. = fn_2 = Zn_1 = Zn_2 = 0} is at least l-dimensional

(and in particular not zero) and contained in VA' On this set Df has

rank less than n-2, which is a contradiction,
Conversely, if every (n-2) x (n-2) submatrix is non-singular then
Df has rank n-2 if at least n-2 Zi's are non-zerc. On VA - {0}

%k
if Z. =2, =0 then Z
L 1

Kk =0 for the remaining n-2 indices k, which

is a contradiction.

We call a matrix that satisfies the conditions of proposition 7.1

"good," and assume from now on A satisfies these conditions.

- & .
Definition ZA(al,...,an) = VA M Szn 1. € =€ ~ {0} acts on

n

a/a a %
¢ by t(Zl,...,Zn) =t / 121,...,t /anzn) for all t ¢ € .where

*
a= lcm(ai). This action preserves V Therefore S1 €@ acts on

A'
ZA(al,...,an) making EA(al,...,an) > EAQI?...,an)/Sl a Seifert fibration.

Remark. ZA(al,...,an) is (as a Seifert manifold) independent of the
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choice of A with A good, This follows from the fact that {A|A is good}
is connected., We denote ZA(al,...,an) by I(al,...,an). Of course the

complex structure on VA does depend on A.

Theorem 7.2, z(al,...,an) = M(g;sl(ti,Bl),...,sn(tn,Bn)) where

ti = a/%;il (aJ)

5, ={1 a,)/ lem (a,)

oo 3 g
n

g = (1/2)(2 + (n-2(Ma;)/a - ] 55
j=1

e(z(al,...,an) -+ Z(al,...,an)/sl) =—((Ha£Va2).

Note that these four equations determine Bi {mod ti). The last equation

can be written Z sjsj/tj H(ai)/az. Dividing by the right side gives

]
E (a/a.)p. = 1. Since t, = ged (afa.), t, divides afa, if i # j, so
: i"t] i - . i k|
hj j#i
(a/ai)Bi = 1 (mod ti).

Example. Assume the a; are pairwise coprime, Then

t. = a,
1 1

5. =1

(1/2)(2 + (n-2)*1 ~n) =0

[{34]
L]

e = -1/(31...an)-

This is the Seifert homology sphere Z(al,...,an). Thus our notation is

consistent with that of the previocus section,-
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Proof of Theorem 7.2. We require two facts from basic number theory which

we state without proof.
k
i) if zZm, € s', i=1,...,k them 0N Z/n, = Z/gcdfm,)
i=1
ii) gcd(m/mi) =m/1cm(mi)

lcm(m/mi) =m/gcd(mi).

Note if Z = (Zl,...,Zn) €V, and Zi # 0 for all i, then the isotropy

A
subgroup Sé = {1}. This follows from

7]
=
]

Z/(a/al) M }Z/(a/az) N ... N ZZ/(a/an)

U

EZ/gcd(a/ai) = Zﬂ/(a/lcm(ai)) = {1}.

Similarly, if 2z = (Zl,...,Zn) eV

A and Zi = 0, Zj # 0 for all 1 # j

then

1

SZ =

E/(a/al) N .. N E/(a/ai) N ... N ZZ/(a/an)

= 2/ ged (afa.) = Z/(a/ lem (a.)) = Z/t. .
J#i . j# *

We also have, if Z = (zl,...,zn) €V, and Z. = Zj =0 for 1i#j

A
then 2 =0, so 2 ¢ ) (aj,eresa ).

We must next compute the number of orbits with isotropy ZZ/ti or
more precisely, the number S8y of orbits in ‘E(alg...,an) ni{ £, = 0} .
We shall later show that (for fixed i) all these Bi orbits have the
same B's.

Each orbit in z(al,...,an) N {Z1 = Q} contains at least one point
of the ferm (0,r 23,...,Zn) where r, € IR+.

2’ 2
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a) In fact each orbit contains exactly a/(aztl) such points
since :Z/(a/az) maps such a point to a similar peoint, while
Z/ gecd (a/ai) = ’R/tl maps such a point to itself.

i#1l
b) Z(al,...,an) contains exactly ageeedy such points since

a a4 o a
Uipfy” + ui323 + e ¥+ uinzn =0, i=1,...,n-2, determines
a, a a
(0,r22,233,...,zn“) up to a multiple. As we are on SZn-l,

r, is determined and Zj is determined up to aj—th roots of
unity,

¢) a) and b) imply there are (a3..-an)/(a/(a2t1)) = (az...antl)/a = 8

orbits with Zl = (), -

To complete the proof we must verify the statements concerning g
and e, and show the B's for all orbits in X(al,...,an) N {Zi = 0} are
the same for fixed 1.

We have a map &: VA(al""an) - {0} ~ VA(l,...,l) - {0} given by

4 a,
(ZL""’zn)'+ (Z1 ,...,Zn ). If this map induced a map ¢: E(a,...,an) >
E(l,...,l) we could use ¢ and theorem 3.3 to compute e. However
2n-1

¢(52nm1) iE 8 and we must show ¢ can be nevertheless used te induce

ok
such a . We have 1R+C_T-'_ € and

):A(al,...,an‘) f—-?VA(al,---,an) - {0}

N

(VA(al,...,an)‘- {0})/31* .

(3

(Vy(ap,eeesa) = {OD/R, x 8

|1}

Denote ZA(al, v ,an)/Sl

113

(VA(al,..{,an) - {0})/m*

by PA(al,...,an).



ﬁ6l
We have!

Vy(ageensa) = {0} =5 ¥,(1,..0,1) - {0}
l/ER+ ' l/IR+
Lalagsesera) —2—y J,(1,..051)
L/s1 l/sl

pA(al,...,aﬁ) S Py(Lyeeesl)

¢ 1is Slnequivariant if we let Sl ‘act non effectively on 2(1,...,1)

by t(Z ,Zn)ﬂ(tazl,...,tazn), as= 1cm(ai). Thus the degree of

1%
@|(non~singular fiber} is a. The degree of ¥ = degree ¢ = COREEL

Therefore
9 ,
e(J(ayseresa ) > Plag,eeea)) = ((a7.-0a )/a%de(J(1,..0,1) + B(1,...,1))
2
= —(al...an)/a
by Theorem 3.3 and since Z(l,...,l) + P(l,..4,1) 1is the Hopf fibration.
P(al,...,an) + P(l,...,1) 1is a (Hai)/a-fold branched covering, The
branching occurs over Zi = ( over which we have 85 points in P(al,...,an)
(because points in P(al,...,an) are, by definition, the same thing as
orbits in E(a sev+5a_)). The standard "Hurewitz formula" for the FEuler
1 n
characteristic of a branched cover thus gives

x(Pla;,.eera ) = (Na)/a)(x(P(1,...,1)) - n) + Zsi

= (Ma,)/4)(2-n) + }8; .
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Since X = 2 - 2g, this gives the claimed value of g.

The fibers of ¢ are the orbits of the natural H = (ZZ/al X aue XZ/an)
action on VA - {0}. (H acts by multiplication by ai—th roots of unity
in the i-th coordinate). This action on Vy - {0} induces actions of
H also on EA(al,...,an) and PA(al""’an)’ and the fibers of ¢ and
¢ are therefore also the orbits of this action. In particular, for fixed
i, O < i < mn, the orbits in EA(al,...,an) with Zi = 0 correspond to
points in PA(al""’an) with Zi'= 0 which are all related by this
H-action, since PA(I,...,L) has exactly one point with Z, = 0. Thus the
H-action permutes the (ti,Bi)-orbits of EA(al,...,an) transitively,
so the B's are the same for these orbits,

The whole proof can be expressed a bit more concisely in terms of

this H-action, see [N-Rl, but the elementary nature of the computation

is then even more obscured than by the presentation given here,
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8, Universal Abelién Covers.

Lemma 8.1. Ifllm'.g M is a finite covering of a Seifert fibered manifold

M, then M' is Seifert fibered by the components of p-l of fibers of M

Proof., Any finite coverings of one of our "standard models" (Seifert

2 1

fibering of D" x Sl) will be a disjoint union of solid tori D2 x 87,

each with some standard Seifert fibering induced on it,

As an example of Lemma 8.1, assume M = M(O;(ul,Bl),...,(an,Bn))
with e(M > F} # 0. Let M L4 M be the universal abelian cover of M.
Therefore the covering transformation group is HI(M)’ which has order
Oy + v el [e(M + F)]. By the lemma M has an induced Seifert fibering

i

This example and the Breiskorn complete intersections are two
examples of Seifert fibrations arising in a "natural"” way. As the next
theorem shows, even though these two examples arise from very different
situations, surprisingly they are the same.

Theorem 8.2. Let M = M(0;(c ),...,(an,Bn)) with & = e(M>F) # 0.

1’81
Reverse the orientation of M if necessary to make e < 0. Let ﬁ'g M

be the universal abelian cover. Then M = Z(al,...,an)

Proof: We must recall some facts from covering space theory, Let X be

a "nice" space (i.e. X has a universal cover) and assume X is connected
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The normal coverings of X with covering transformation group F arer
classified by homomorphisms ﬂl(X) +~ F. If the covering is Y - X, then
the components of Y are in 1-1 correspondence with the cosets of

Im -nl(x) C F., Namely, given Y - X, the exact homotopy sequence gives:

ﬂl(fiber) = {1} » ﬂl(Y) > ﬂl(X) + No(fiber) = F + HO(Y) + {1}.
Given ﬂl(X) + ¥, one can construct Y as X x F (ﬁ = universal

. ﬂl(X)

cover of X)., Then Y -+ ilﬂl(x) = X, The universal abelian cover is

classified by the homomorphism m, (X) » H;(X).

Returning to the situation of the theorem, we have a commutative

diagram
M —E3 N
T 7
F w3 F

We want to compute the fiber degree £ and the base degree b to apply

Theorem 3.3, Recall
H, (M) = <Ql,...,Qn,H[ @;Q; + BH =10, Q * ..o +Q = 0>
has order al...an]ef so the total degree bf 1is ul...un|e[. Let 0O

be a non-exceptional fiber. The induced coverings pml(O) »+ 0 1is classified

by ‘ﬂl(O) > HI(M)' Thus to compute f and b we must compute

| Im m,(0)] and [HI(M): In 7, (0)
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As we have already seen JIm ﬂ1(0), = |<H>|, Thus

[Hl(M): Inm 7, (0)] |5, 00/ <B>|

]

|<Q1,...,Qn| @ Q; =0, Q + +v0 +Q = 0> |

_|(R/u1 X wes X Z’./uﬂ)/«}1 + oae. + Qn>[

= (Hoai) / lem &

1i

=(H&i)/a, where a lcm(ﬁi)

n

1] = (o)) le] /(o ja) = alel.
Thus we have f = ale| and b =Na,/a.

Using Theorem 3.3, we can calculate

e(M+ F) = b/f e(M + F)
=(((Ho;i)‘/a)/a1e [De(M + F)

= ~(Tag)/a.

. , o, B,
Now let Oi be the i-th exceptional fiber. If det[a]{ B%] = 1, then
iri

the homology class of O, is

= ¥ ]
Oi aiQi + BiH -
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Hence |H,(M): Im m (03] = [B 00/ <0.>]

=1<Q1,...,Qn,al ajqj’ + st =0, j=1,000ym, Q + .00 #Q =0, 0;Q, +BH =
= |<ql,...,qi,...,qnl anj =0, § = Lyeeuylyuenyy Qptoee #Q +0us +Q =
=(l o) lemo, = gi. Thus pwl(oi) consgists of Bi fibers, each of

SRR S
which covers Oi with degree

(Mo el /s, =Wa,)lel/C T o )/ Qem o)
] R A B P

= ai!e| lem .
J#1i

= (ai/ti)a|e[ .
Let Gi be one of the s fibers in M which cover 0, and U be
a neighborhood of Oi and U a neighborhood of Si. Let H and H
denote non-exceptional fibers in M and H, Ei is a (ai/ti)alel—fold
cover of Oi and H 1is an a|e|-fold cover of H, In HI(U)’ aioi " H,
Pyt Hl(ﬁ) > H,(0) is injective, hence aia|e|5i “\ (ai/ti)a|e|ﬁ in
HI(U)' Therefore in Hl(U)’ tiOi v H, and 0, is a (ti’si) fiber

for some Bi.' (Note that the @2's for all 8s of these fibers are equal

0>

o>

since these fibers are transitively permuted by the covering transformations.)

F is a (ng/a—fold branched cover of F, The branching is at n

cints of F i ot i F
P over which we have respectively sl""’sn poiants in F,.

Then

X(F) =((Hai) /a)(X(F) ~ n) + ) 8
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ITI. Crystallographic Groups

In this chapter we define and characterize 2-dimensional crystallo-

graphic groups. In the second section we use this to show that

ﬂl(M(g;(al,Bl),...,(un,Bn)) determines the Seifert invariamnt of

M(g;(al,Bl),...,(an,Bn)). We begin this chapter with a short discussion of

medels for the three basic 2-dimensional geometries, Spherical, Euclidean

and Hyperbelic,

1)

2)

3

Spherical (32):TheSphere 52 ig a conformal model for this

geometry. For geodesics we take great circles. If so desired, to

avoid having two lines intersect in more than one point, this

geometry can be projected onto }RPZ.

Euclidean (EZ): This is the usual geometyry on ZRz.

Byperholic CHZ): There are two commonly used conformal models

for 'Mz: the Poincaré disc model and the upper half-plane model.

a) Poincaré disc model: Here the underlying space is the interior
of the unit disc D2. Geodesics are either circular arcs that
intersect the boundary of D2 at right angles or diameters.
Hyperbolic length is rvelated to Euclidean length by

2. 9 B 2 2 . .
ds ds 2,,]/(1 r ) where ds Fucl is the Euclidean metric.

Poincaré disc model of ]H2 with examples of geodesics.
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Upper~-half plane model: The underlying space of this model

is the upper-half plane in IR2 i.e. {(x,y) f::R2 |x>o0}.

Geodesics are either circular arcs that intersect the x—axis

at right angles or vertical lines. In this model Hyperbolic

2

Eucl/y

distance is related to Euclidean distance by ds? - ds

Note:

+ . . .
Isom Cﬁz) = {conformal orientation preserving homeomorphisms of H

. Upper-half plane model of ﬁg

with examples of geodesics.

2

]

{Moebius transformations}

= psL(2,B) = {C D)faibic,d € R, ad-be = { 134 +1}.

Here (: Z) € PSL(2,R) acts in the upper~half plane model by the Moebius

transformation

z b (az+h)/(cz+d).
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9. Crystallographic Groups

Definition 9.1. A 2-dimensional (Spherical, Euclidean or Hyperbolic)

+
crystallographic group is a discrete subgroup T € Isom (X) (X = SZ;EZ,'HZ)

guch that T acts properly discontinuocusly on X and X/T is compact.
More precisely this is an orientation preserving crystallographic group,

but we drop'the extra adjectives for brevity.

Theorem 9.2. As an abstract group, a crystallographic group T 1is either
finite cyelic (if X = Sz) or is isomorphic to a unique group of the form
o

= h|
F(g,al,...,an) <al,bl,...,ag,bg,ql,...,qn]qj

H

1 j=1,....n,

IR la,,b,] = 1>
1% "% iil S T

with g 2 0 and o > 2, We assume that if g =0 then n = 3. Moreover

this is a spherical, Euclidean or hyperbolic group according as

n o.~1
X=2-2g~ )
i=1 i

satisfies X > 0, X = 0, X < 0., Furthermore all

such groups T(g;al,...,an) occur as crystallographic groups. The above

condition on X gives the following possibilities:

n
Spherical case (X>0). We must have g =0, n = 3 and z

This gives possibilities

(g;ul,az,a3) = (0;2,2,n)

(0:2,3,3)



56,

= (0;2,3,4)

= (0;2,3,5)

Fuclidean Case (X = 0). In this case the only possibilities are

(g;ﬂl-,,,-an) = (1; )
(0;2,4,4)
{0;2,3,6)
(0;3,3,3)

(0;2,2,2,2).

Hyperbolic Case (X < 0). This case consists of all possibilities

not previously listed.

Notation: If g = 0 we abbreviate T(O;al""’dﬁ) to F(al,...,an).
Example. We can easily realize the spherical and Euclidean cases as orienta-
tion preserving isometries of S2 and 'Ez. The spherical crystallographic
groups can he realized as the regular polyhedral groups, i.e. isometries

of regular spherical polyhedra. More precisely we have the following chart:
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Regular Polyhedron Isometyy Group Qrder of Group
n-gonal dihedron* I(z,2,n) &zDzn 2n
tetrahedron '¢z,3,3) = Al» 12
cube r'(2,3,4) = 54 24
dodecahedron I'¢2,3,5) = AS 60

I'¢2,3,4) can also be realized as the isometry group of the octahedron and
I'(2,3,5) can also be realized as the isometry group of the icosohedron.

In the Fuclidean case let 'F(al,az,a3) be the group generated by
reflections in the sides of a triangle with angles F/al, W/az, ﬂ/aB, e, g.
TQ,4,4) is generated by reflections in the sides of a triangle with angles

— + .
w/2, w/4, 7/4, Then F(ul,aﬂ,a3) = (I'(a ,a3)) i.e. r(al,az,aB) is

1°%
the orientation preserving subgroup of T(al,az,u3). ?(2,2,2,2) is the
group generated by reflections im the sides of a rectangle. Then

r(2,2,2,2) = (F(2,2,2,2))+.

Exercise., Show that the spherical and Euclidean groups described above have

the abstract description claimed in Theorem 9.2.

Remark. The above construction of the Euclidean groups extends to give
F(al""’an) as the orientation preserving subgroup of the group
f(&l,-..,&n) generated by reflections in the sides of a spherical, Buclidean

or hyperbolic n-gon with angles W/al,...,ﬂ/an.

* This is the regular spherical polyhedron with two regular n-gonal faces. Each
face is a hemigphere and the vertices are regularly spaces around the
equator.
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Proo£ of Theorem 9.2, Throughout this proof X 1is one of 32,]E2 ,IHZ.

Let T be any discrete group acting properly discontinuously on X with
X/T a compact surface. Here by properly discontinuous ﬁe mean for all
%,y ¢ X one can find neighborhoods Nx’ NY of % and y such that

Nx N gNy = ¢ for all but finitely many g € G, X 'a'X!F is a branched
covering. The branching occurs over points on which T acts with non-
trivial isotropy. Call the branch points xl,...,xn € X/I'. Then

WI is a genuine covering map. Since a finite group

/Tty w D) )
of orientation preserving homecomorphism acting on R must be a rotation
(see [ked) 7w restricted to each component of F‘I(Di) (Di is a small
dise about xi) "looks like" D2 > D2 given 1n complex coordinates

by z 'mw zqi.

From X/F' cut out the discs Di and in X cut out Wml(Di). What
ramains is a genuine cover. We want to replace Di and ﬂ_l(Di) by com-
plexes in such a way that this new space is a cover with covering trans-
formation group ['. We do this by replacing Di by an Eilenberg Maclane
complex Ki = KGE/&i,l) for each i, pasting along a generator Sl - Ki

and correspondingly replacing ﬂwl(Di) by the universal cover ‘Ei of Ki
pasting along the ﬁover of Sl in Ki' Call the result of this pasting

Y > Y'. Clearly Y is a cover of Y' and, since in X we replaced
contractible spaces by contractible spaces, X~ Y. Thus Y is the universal
cover of Y'. I' acts properly discontinuously and freely on Y and by
looking at this action on a fiber not lying above a point of Di Wwe see

I' is the group of covering transformations of Y. Thus Y& ¥/T and

oo HI(Y/F). By Van Kampen's theorem



ﬁl(Y/T) = <al,bl,...,ag,bg,q1,...,q |qj =1,y = 1,....n,

g
ql,... q]’.'l 1—[ {ai’bi] = 1>
i=1
and hence [ has the desired presentation.

4

Remark: 1) In the Euclidean and hyperbolic cases Y is contractible so
Y/T is a K(T,1).
2) Notice we have proved a slightly stronger statement in that we

did not assume T C Isom+(X).

Now we assume I C Isom+(X). X/T'" is as shown where X, and x

i 3

are branch points.




If we cut X/ along the geodesic paths shown, we get a polygon with

a

4g + 2n sides which is a fundamental domain. The sum of the angles of the

n .
" polygon is 27 + Z Zﬂ/ai. A special case of the Gauss-Bonnet formula
i=1
states: if P is an m-sided polygon with angles §

l,...,em, then
K{area of P} = w({2~m) + 1?1 Bi where K = -1,-,1 accordingly as X=]H2 ,
IEZ, SZ. In our case ?(area of P) = (2-(4g+2n))m + 2m(L + igl 1/ai)
n
= 2m(2-2g~ } (o~ /o).

i=1
Therefore X classifies what space [' acts on in the manner stated in

the theorem.

To finish the proof of Theorem 9.2 we must show:

a) Given [ = I'(g;o ,...,un) then I' can be embedded in

1
+
Isom (X) as a crystallographic group;

b) The abstract group I(g30y5+++,0,) uniquely determines g,0;,...

We have already shown by example that if T is spherical o

Fuclidean then T ¢ Isom+(X).- Thus assume X ='H2 and

2-2e - ? (Gi-l)/ai 0, To show T ¢ Iscm+(I¥2) it sufficez to con-
o i=1

2 .
struct a polygon P in ®~ such that P 1is a fundamental domain for

X/T'. Clearly P must be a polygon of the form:



bgtn

29; =2.TT;

[

‘;’imi’qr'y labelled sideg
are oF eguaf IengfL,

We leave the proof of the existence of such a polygon to the reader. However

a reference for such a proof 1is [Gr].

An easier way, due to Scott Wolpert, to show T ¢ Isoﬁ+CH2) is to

congtruct the orbit space directly. This can be done for g > 0 by glueing

together pieces of the form

Vot

¢ is the length of each S1 boundary component., This length 1is fixed but

arbitrary. Again the details of this construction are left to the reader.



Finally: we must prove b). Note in the 8pherical case we have

r¢z,2,n) = D of order 2n

2n
r¢,3,3) = A4 of order 12
'(2,3,4) = 54 of order 24
rez,3,5) = AS of order 60,

It is a simple exercise to show no two of these groups are isomorphic.
Hence this proves b) in the Spherical case.
n
+
Now assume 2 - 2g - X (ai-l)/mi =0 i.e. T ¢ Isom (X) where

i=2

X =IRZ or 'ﬂz. We claim that if {1} # Fc T' is any finite (cyclie)

subgroup then F 1is conjugate to a subgroup of a unique one of the
<qi>. To see this note if F is finite them F thas a unique fixed point
in X. {(For X = R; see [Ker]: for X ='H2 see [Hel:p. 75]). This
fixed point is a branched peoint for X U X/T so it lies over one of

X Say mw(y) = x4 ig a rotation about some point in

1
7 (¥.) i.e. about some point vyy. Then TTFYMI fizes y and hence is
in Py = <ql> which proves the claim. In particular any maximal finite
subgroup 1s conjugate to a unique one cf the <qi>. Thus if we consider
the set of conjugacy classes of all maximal finite subgroups of T, the
number of classes is n and the orders of a representative from each
lconjugacy class will give us the ui's. Finélly if N is the normal sub-

group generated by all elements of finite order then I'/N has presentation

g
TT [ai!bi] = 1>3

F/N = <g ,b seessd »D |
3 & 8 4=

1

which allows us to determine g.



Theorem 9,3, Let T = T(g;ai,...,an) be a crystallographic group (if
g =0 we assume n = 3) and let X be the corresponding geometry,6 i.e.
X 4is either Sz, E@ or IHZ . Thus T ¢ Isom+(X) = G, Then under the

above hypotheses we have:

G/I‘ = M(g;(1,2g-2), (al’alml)""’(an’anul))'
a,-1
Note: e(G/T + F) = 2 - 2g - I ;

i

= 2 wl(/T) (1f X # E).
This number is called X(I') and was first defined by C.T.C. Wall, see [W]

Proof G acts by isometries on X and hence on‘ Tlx the unit tangent
bundle of X. This action on TlX is simply transitive, i.e. given
Vis Vo € TlX there exists a unique g € G such that Bry = vy- Thus if
we fix ¢ _ € X the map ®:G ~ TlX given by &(g) = g "v, is an
isomorphism, Here g "V, is the action of G on TlX induced by the
action of T C Isom+(X) on X. If T zacts on G by left multiplication
and on T1X as just described ® = is T-equivariant. Therefore
G/T = Tlef and we can describe the Seifert fibered structure as the
natural projection T1X/T 3 X/T,

If x ElX/F is the image of y € X, then the fiber over =x of
the Siefert fibration is:

T X/GE/ﬂi) if x=x,; is singular

o N |
T (%) Ty(X)/Ty

T°X octherwise.

Ii
T - T



Thus TlX/P = M(g;(al,Bi),...,(mn,Bn)) for some Bl,...,Bn. Hence we
need only determine the Bi. {(In fact, our determination of the ﬁi will
also give a second proof that the ai are correct.)

Before continuing the proof, we look at an example. Let [' be the
fundamental group of an orientable surface of genus 2, so X/T = FZ’ an

. T
orientable surface of genus 2, The Seifert fibratiom is T1F2 - Fz. It
was classically kmown that Tle = M(2;(1,2)), but let us see how we

would prove this from "first principles." To determine the Seifert

n
invariant we must choose a section in Tle -{U Ti} where the T,
i=1
are disjoint neighborhoods of suitable fibers i.e. disjoint solid tori.
n
This is equivalent teo choosing a unit tangent vector field om Fz-{lJ Di}
i=1

where as the disks Di we take small disks about the critical points of

the vector field. Such a vector field drawn on a fundamental domain looks

as followsg:




After identifying edges there are six critical points. Each critical point

represents a deleted fiber. A solid torus neighborhood ’I'i of such a fiber

is Ti = TlDi, sc points of Ti are unit tangent vectors to the disk D
1

Thus the following picture represents a typical closed curve in Ti = T°D

(A R,

Recall in BTi we have the homology relation aiQi + BiHi-w M.
To find (ai,Bi) we shall represent Qi’ Hi and M 1in the above form.

Hi is a non-exceptional fiber and can be represented as:

|

M can be represented as:



On F2 there are four critical points of type:

I
YV

at such a point Qi iz the curve:

Thus Qi:v Mi - Hi’ 80 (ui,Bi) = (1,1) at such a point. There is one

critical point of type:®

Here Qi‘w Mi + Hi’ S0 (ai,Bi) = {1,-1).
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Finally, there is one critical peoint of type:?

Here (a,B) = (1,-1).

Thus Tle = M(2;4(1,1),2(1,-1)) = M(2;(1,2)).

The argument we have just given is the one which, in a more general
form, was given by Hopf to prove his theorem that the Euler characteristic
of any closed manifold is the sum of the indices of the zeroes of any vector
field with isclated zerces on that manifold.

Returning to the proof of our theorem, we can determine the (ai,Si)
in exactly the same manner. Draw a fundamental domain for X/T' as on

page 60 and a veetar field on that domain.




There are {4g+2n)/2 + 2 critical points:

Y

2g + n of type

2
2

1 of type

1 of type
and for each 1 =1,...,n

i of type

ok K

with

with

with

with

(o, B)

(o, B)

(o, B)

(, B)

fl

(1,1);

It

(1)-1);

4

(1,"1);

it

(ui,wl)-

Here the angle is Zﬂ/ai,. and the fact that (g,B) = (ai,-l) follows

from the following figure, which shows aiQi

i

=M +H,.

- o

Thevefore G/T = M(g;(Zg+n)(1,1),2(1,-1),(31."1);--Gﬁn,*ll)

- M(s;(1,23*2),(a1,al-l),...,(an,anml)).
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.10, Seifert Groups

The aim of this section is to show that the Seifert invariant of
M = M(g;(al,Bl),...,(an,Bn)) is determined by ﬂl(M). Along the way we
define the notiom of a Seifert group and classify these groups. Again for
this éection we assume If g =0 then n 2 3. We‘denote

T (g3 (@)5B)) e en, (@ LB )) by (g5 (0y,B),ene, (0 ,B)).

Proposition 10,1, Either (g;(al,Bl),...,(an,Bn))_= (1; Y and 7(L; ) =

%3, or <h> is the complete center c(ﬂ(g;(ul,Bl),...,(an,Bn)} of

T = 'rr(g;(ul,Bl),---,(un.Bn))-

Proof. Recall we have the exact sequence

1+ <h> >+ w(g;(al,sl),...,(an,sn)) + P(g;al,...,an) + 1

Claim. T = T'(g;o .,un) has a trivial center unless

120

(15 ) (r = z%)

).

(g;qi,...,an)

(0;2,2,n) (T = an

Proof of Claim:

Case_l T is hyperbolic

By the Brouwer fixed point theorem any g € Isom+CH2) has a
fixed point in the extended plane ;;Z (the closed disc in the Poincaré
model). The elements of Isoﬁ+CH2) > PSL(2,R) can be classified into

+, .2
three types according to how many fixed points each g € Isom (H") has



in Hz = I.‘l2
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and where these fixed points are located. This classification

can also be given in terms of the absolute value of the trace of g

considered as an element of SL(2,R), Let 1 # g ¢ Isoﬁ+CH2), then

the three types of elements are:

a)

b)

g has a fixed point which is in the interior of D2. In this
case g 1is called an elliptic element and is a rotation about
the fixed point with |trg[ < 2.

2

g has just one fixed point and it is on the boundary of D".

Here g 1is called a parabolic element and is rotations of

horospheres. When g 1is parabolic |trg| = 2.
¢) g has two fixed points on the boundary of D2. g 1s called
a hyperbolic element and is a tramslation along a geodesic
and along curves of constant distance from this geodesic. Here
|trg| > 2
e“-'phc para bolic Ay’&fbb“t-

gy 8y

Since if 8128y € Isom+(X) and 818, = 898y then gl(X Yy =X
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g
X 2 {s the fixed point set of gz), we can conclude that any abelian

subgroup of Isom+CH2) is contained in a subgroup of the following type:

§” - rotations about a given point;
R -~ Il-~parameter family of parabolic elements, with a given
fixed point at infinity;

R - translations along a given geodesic.

Hence in a discrete subgroup of Isom+(fg) any abelian subgroup is cyclic
Thus if ¢ € C(I') and e # 1 we can choose g not in the same
l-parameter subgroup. Then cg # gc¢ which is a contradiction., Therefore

I' has a trivial center.

Cage 2: I' is Euclidean

The only possible Euclidean subgroups are:

T(2,4,4)
r(2,3,6)
T(3,3,3)
r(2,2,2,2)

I'(i; ) .

If T #T(l; ), there exists elements of finite order in T, namely
rotations about a point in IRZ. Assume c¢ € (¢(I'), then ¢ fixes the
fixed point of any such rotation. If x is a fixed point of v €T

then gx 1is a fixed point of gyg—l €T, for any g € I'. Therefore
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¢ fixes infinitely many points, so ¢ = id.

Case 3: T is spherical

The proof is just a case by case verif;qgtion gﬁ%cbmwe‘pmit.

This completes the proof of the claim. The claim implies that
C(r) = <h> except for possibly n(l; ) or w(0;(2,1)(2,1),(n,)).
These two cases can be checked individually (exercise), completing the

proof of Proposition 10.1

Theorem 10.2. (spherical case) If (al,az,as) is one of (2,2,n),

(2,3,3),(2,3,4) or (2,3,5 then T =m(0;(ay,8,),(y,8,),(0,,8,))

determines the Seifert invariant (up to sign).

Proof. 7/ C(m) = F(ul,az,a3) which by Theorem 9.2 allows us to recover

17273
It is sufficient to show al,uz,QB,e cbmpletely determine the Seifert

®y,8,,04. Since [7/[7,m]| = a a,0,]e(F)| we can recover |e(w+F)|.

invariant. That is, we must compute each Bi (mod ai) in terms of
al,az,a3, and e.

Case 1: (ul,mz,as) = (2,2,n). Recalling that the o, and Bi are

i
relatively prime, the Bi (mod ai) are given by:

81 = I{mod 2), 82 z 1(mod 2), 83 £ -ne{mod n).

Case 2: (al,az,a3) = (2,3,3). Up to exchanging Bz and 83 there

are three possible cases:
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a) B, =1(mod 2), B, =1l(mod 3), B, = l(mod 3), e = 2(mod 1)
B) By =1(mod 2), B, =1l(mod 3), By =2(mod 3), e = F(mod 1)
¢} By = l(mod 2), B, = 2(mod 3), By = 2(mod 3), e = %{mOd 1.

Thege three possibilities are thus distinguished by the value of e(mod 1)
The final two cases are completely analogous.

Case 3: (al,az,a3) = (2,3,4)

Bl(mod 2)' B,(mod 3) 84 (mod 4) | e(mod 1)
1 ! 1 ™
1 1 3 i%f
1 2 ! 3
: : A




Case 43 (al,uz,a3) = (2,3,5)

Bl(mod 2) 32(m0d 3) Sa(mod 5) e(mod 1)
1 1 1 %%
1 1 2 %%
1 1 3 i
1 1 4 -%%
1 2 1 %%
1 2 2 %%
1 2 3 £
1 2 4 -§3

Definition 10.3. A Seifert group T = ﬂ(g;(al,sl),...,(an,sn)) is a

group with presentation:

<a1,bl,...,ag,bg,q1,...,qn,h|[ai,h} = [b;,h] = {qj,h} =1

uj Bj n g
1=1,0.0,83 = 1,...on,q.°0 0 = L, Tq, T la;,b,]= 1>,
3 j=1 4 1=1

Here we do not assume the (ai’Bi) are relatively prime, but we do

assume X = 2-—23-#2(ai-1)/ai is not positive.
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Remark: As before, and by a similar argument we can show if T is a Seifert

group and 7 #£ 7(l; ) = 23 then the center of T ié c(n) = <h>. Thus
L+ Z > w(g5(0,8))5000s (@58 )) > Tlgiay,enny0) > 1

is exact. By the theory of group extensions (see for example Mac]), this
extension Is classified by an element a € HZ(F;ZD. In our situation

we can say more,

Theorem 10.4, If w,I' and a are as above then HZ(F;ZQ =

= S 4 b2 um sasn
Ab<X0,Xl,...,Xn|uiXi Xo,l 1,...,n> and a lel + + Ban. Also
any automorphism £ of I induces f#*: HZ(T;Z) 4‘H2(T;ZJ of the
following type: either f*(Xi) = Xi' for each 1, where 1w i' is a
permutation with O, =0;y, O f*(Xi} = mXi, for each i, with

iw 1i' as before. We say f: T + T is "orientation preserving"”

or ""orientation reversing' correspondingly.

Remark: In view of this theorem, the élassifying eléﬁent a EVHZ(F;Z)
is equivalent to the Seifert invariant, in that the one.determines and is de-
termined by tlie othetr (up to sign), so the Seifert invariant of a Seifert group
is an abstract invariant of the group.

Observe also that if we tensor with R we have HZ(F;EU =

2
H(';Z) ® R R by X, » 1/0¢i € R, and under this identification

i
of HZ(F;B) with R, the classifying element a becomes the Euler
number. This Euler number is still an invariant for Seifert groups, not
just for Seifert manifolds.

Before proving Theorem'lo.h, we need a brief summary of the theory

of central extensions.
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Fix an abstract group [I', and an abelian group A. We define an
equivalence relation on the set of short exact sequences of the form
1+A+7+T+1 where AC C(m) as follows: Given two short exact

seguences

El:l+A-+1rl+I‘-+1, E2:1+A+TT2+I"+1

we say Elfv E2 if there exists a group isomorphism ¢: ﬂl >, such that

1+A—>1rl+I‘+l

l 14) I

1+A+1r2+I'~a-l

commutes. We define Ext(l',A) = {1 > A-> 7 >T +'1|A c g(m)}/~, where
~ 18 the equivalence relation just defined.
Given a homomorphism f: ' + T we define f*: Ext(I',A) - Ext(T',A)

by means of the following pullback diagram:

1%
1> A~ fas—T"'=>1 ¢ Ext(T",A)

el

P
1+ A—7—>T =1 € Ext(T,A)

where f£*% = {(r,y") € m x I''|p(m) = £(y')} and the maps o¢: f*r + %
and Y: £*m > I'' are the obvious projections onto the first and second
coordinates respectively. Given a homomorphism g: A+ A' we define

gyt Ext(l,A) > Ext(T,A') by means of the following pushout diagram:
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l——*—i —+ § ~— [—+ 1 € Ext(T,A)
g wl I
W

1—+ At g7 —+ T — 1€ Ext(I',A")

where g,m =(r % A {(a,g(a))|a € A} and ¢, are the obvious maps.
Therefore what we have shown is that Ext(T,A) is a functor which is
covarlant in A and contravariaat in T.

Let E,E' € Ext(I',A) be represented by 1=+ A->7~>T -+ 1 and
1+A>7w">T+ 1 respectively. We define E x E' € Ext(I'xI',AxA) to

be the equivalence class represented by
I1+AxA>mxqa' »+»T xT>1,

Define A: T+ T xT by vw (y,yD and V: Ax A+ A by
(a,b) » a+b. Then we let E ® E' = V AX(EXE") = A4V _(ExE'). We
leave it as an exercise to show that these two definitions of E®E'
are the same and that this Baer sum turms Ext(T',A) into a group.
It is a classical result that Ext(T,A) = HZ(P;A), see Maclane [Mac,
p. 137] for a historical discussion. For our purposes, with A =Z we

can take it as a definition of HZ(T;Z).

Proof of Theorem 10.4. Recall u(g;(al,sl),..,,(an,en)) and

'F(g;al,...,un) have presentations



(g3 (05B))sen ey (@580 = <@y bryecnsasbosqysee s b

o, B

[a, 0] = [by,h] = [q,,0] =1, qInd =1,

n
t=1,0083 = Lo, [T gy '1%“ [a;,b,] = 1>

i=1 iﬂl
OL
F(gsal,---.an) = <al’b1""’ag gsqln---sq ]qj =1,j=1, 3t
L] g
l q. ! [ai’b I
j=1 3 4=1

Let
1> Z +7+T~»>1

be a representative of an element of Ext(T,Z). If we choose lifts

ai’ bi’ qj i’ bi’ qj

it is easily seen that w has presentation

of a i=1,...,8, J=1,...5n regpectively,

<alibl!"', g g!ql""!q !hi [ai’h} [bi’h] = [qj’h] = l’
o s,
a0 = Ry, =1,...,8,5 =1,...,n0, || q, [[ [a ,b ;1= h 0,
j=1 7 i=1

for some integers Sgreerabe We denote this presentation by

U(so,...,sn). We denote the element of Ext([,Z) represented by

1+Z »1n(s sn)+f‘+1

LT

by E(so,...,sn). Notice that we made a choice for the lifts of
L

) = =%

a;s bi’ qj. We could have chosen different lifts a, = aih
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k

m' e —_
E; & bih 1, qj = qjh 3 in which case ® would have presentation

< 1,b1,...,ag,bg,ql,...,qn,hl{ai,hJ = [by,h] = [4,h] =1,
o, s.+0 .k

qu =nd 33 i-1,...,8,4=1,...,n,
no_ - 8 .tk 4 -tk

..”,._,j _ﬁ._ Iai’bi] -t 01 n,

j=1 i=

Thus any element E = E(SO""’sn) € Ext(I',Z) corresponds to an element

n+1/

[90,...,sn] € Z I where T ={(k1 doeer + kn’alkl s Tt ankg|k&‘€m ¥

span {(1,o O,...,O),(l,O,az,O,...,O),...,(l,O,...,O,GH)}. Therefore

1!

we have an injective map ¥: Ext([,Z) -+ Rn+1/1. We leave as an exercise

the proof that E(so,...,sn) & E(sé,...,sé) = E(SO'¥S',...,SH+S;) and

hence F is a group homomorphism.

z* - <KX ,ee05X [0,X = X1 = 1,...,0>. (This can be

1~ (0,-1,0,...,0),..., X.n =

{0,...,0,-1)). Therefore to see HZ(I‘;ZZ) has the desired form we must

seen by representing XO = (1,0,...,0), X

show F 1is onto.

1/1

To this end it suffices to show that given [SO,...,sn] € z""
we get E(so,...,sn) € Ext(T,Z). This requires showing that given
[so,...,sn] the kernel of the map p: Tr(so,...,sn) > T ds Z and not

‘a non-trivial quotient of Z. We define a function wv: ZZn+1/I + S(&Z) =

{subgroups of Z} by [so,.,.,sn] b ker(Z + W(SO"""Sn))' Thus

(*%) 1 Z/ﬁ([so,...,sn]) + w(so,...,sn) +T =1

ig exact. Note v has the following properties:
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1) v(k[so,...,'sn]) = kv([so,...,sn}) for all k¢ Z

2) V([sos"-ssn] + {363--"5;‘]) S \)({Sos"-:ﬂ'n]) +\)(E563"-3SI'1])

for any Iao,...,s 1s [so,...,s ] € Zn—i—l/

Since (%**) is exact, if we can show the image of v is trivial, we will

have shown HZ(I';Z) = <X.,X WX | =X ,i=1,...,n>. Note that

g %o X 10Xy = Koo
for every {so,...,sn} € Znﬂ'/l there exists k,m € Z such that
k{so,...,s-n] = uﬂio. Therefore by property 1 it is sufficient to show
v(mXO) = <0>, In fact it is sufficient to show \;(lel+...+8nx } = <0>

n

n
for some B X) + +-- +B X with ) B,/o; # 0 since

i=1
Cysenl (B b +...+ﬁ X ) = mXO with m # 0. In the hyperbolic case
we zaw {(2g - 2)X + z ((DLI.L-—l)/cat.].L)Xi ‘classifies (TlB)/I‘ and
i=1.

1 wl(rlm - 1?1('1‘1}1/1‘) ST+ 1

Z —————r f e T

ig exact. Hence \)((?ﬂ.g-—z)x + z ((ai—l)/ai)xi) = <0>,
i=1

For the Euclidean case we recall that an earlier computation showed

the universal abelian covers of the Seifert manifolds
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M(0;(2,8,),(3,8,),(6,8,))
M(0;(2,8,),(4,8,),(4,8,))
M(0;5(3,8,),(3,8,),(3,8,))
M(0;(2,8,),(2,8,),(2,85),(2,8,))
are

M(1;(1,1))

M(1;(1,2))

M(1;(1,3))

regpectively, provided we assume e(M—+>F) < 0 in each case, That is the
universal abelian cover is the genuine Slmbundle over TZ of Euler
number -1,-2,-3 or -4, Thus h has infinite order in the fﬁndamental
group of the cover and consequently in the fundamental group of the
Seifert manifold in question.

It remains to show that automorphisms vy of T dinduce isomorphisms
v* of HZ(P;ZD of the desired type. As we saw in the proof of Theorem
9.2, v must map <qj> to a conjugate of soﬁe <qj,> with a, = aj..

L]

m,
For simplicity of notation we assume j = j' and hence y(qj) = ggl(qjj)gj

with m, € Z g.c.d. (m,,00.,) =1 and g, € ['. Consider the action
i T i N Mt b ®1™
induced b on TW(S.,.v.,%5 ). = h .=h .
y Y (54 ) Y(qj ) B4 8y

Consequently for the element X-j of 112(1‘;22) we have Y*(Xj) =ijj.

Y* 1is an isomorphism hence we must have m, = 1.
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Remark: Much of the above proof can be put in a more general setting. If

we let [ = <X ..,Xg!Wl =1,...,H_=1> and A be an abelian group,

1*’ r

then by a completely analagous construction as in the proof of Theorem 10.4
we obtain a map F: Ext(T,A) + Ar/I where I = Im(ﬂz'Ag-+ Ar) and
W= (Wib,...,wib) (W‘ib is the abelianiZafion,of Wi). More precisely:

given
1>A+E=+T»>1
a representative of an element of Ext(T',A), E has presentation:

(*) <ii,...,§#,"A“|ﬁi = a W= a_» "relations in A",

l’.."r
A central'>
(Here by "A" we mean a set of generators of A, by "relations in A"

we mean a set of defining relations of A and by "A central” we mean

A dis central in E.) As before X W, are lifts of X and Wi

i* i i
respectively. If we had chosen different ii's say ﬁ; = i&ai we would
o = s = \.ab
have Wi(xlal""’xnan) Wi(X ,...,Xn)wi (al,...,an). Thus by letting
F(E) = (al,...,ar) we get a well-defined map F: Ext([,A) >

r ab ab
A /Im(W1 ,...,Wr ).

We define a map V: Ar/I + S(A) = {subgroups of A} by

[al,...,ar]'+ ker (A +'ﬁ(al,.,.,ar) where T(a a_) 1is the group

LIRS
presented as in (*) above.
Hence 1 A/v([al,...,ar}) + W(al,...,ar) + T + 1 is exact.

v as defined in this more general way still satisfies properties 1) and

2) as listed in the proof of Theorem 10.4. Therefore in general, given a



yxesanzatim of I‘ and an ahﬁim gxwp A we get a'su}:gfz;oup I of Ar

A map Vi A /I + S(A) such that Ext(I‘,A) .v,' “(G} p__ﬁgdr‘_Eit(I‘,A/nA} =

Fooora

E K
L 2%
R L £
o
. e
4 e
- H
Y z
Fin
I
. e =
& i
x - i
'
- . " k3
= o T

Tt
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GEOMETRY OF QUASIHOMOGENEOUS SURFACE SINGULARITIES

Walter D. Neumanngg

University of Maryland
College Park, MD 20742

This is a slightly expanded version of my talk, the first
part of which was purely expository, describing the analytic
classification of normal quasihomogeneous surface singular-
ities (from now on QH-singularity for short, our base field
is €). This classification is well known; the earliest ver-
sion seems to be Conner and Raymond [CR, especially §13], and the
most explicit probably Pinkham [P1l, Theorem 2.1], who bases his
version on Orlik and Wagreich's in [0OW] (see also [W21). OQur
approach is different from either, and seemed worth reproducing
here. It is in terms of "Seifert line bundles" on complex curves
a concept easily generalizable to higher dimensional base spaces
and maybe of use in other contexts.

The second part of the talk, and the part to which the
title refers, is new material. The main result is a natural
"geometric structure'" on the link M of any QH-singularity
(V,p), such that the geometric structure on M determines
fhe analytic structure on (V,p) and vice versa, in a cne-one

fashion.

o

hPartially suppeorted by the National Science Foundation,

Reprinted from Proceedings of Symposia in Pure Mathematics, vol.
40, by permission of the American Mathematical Society.
® 1983 by the American Mathematical Society.
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The archetypal example of this is due to Klein [K1 11.
Let I c S0(3) be the icosahedral group, that is the group
of orientation preserving symmetries of an icosahedron. The
universal cover of S0(3) is the group SU(2), also des-

cribable as the group 83 of unit quaternions, and if we 1ift

I +to 83 we get the binary icosahedral group I' c¢ 83 of
order 120, Klein gave a homeomorphism
a3
I'\S" = J(2,3,5)
where }(2,3,5) = V(2,3,5) n S5 with V(2,3,5) =
(z ¢ c3|z§+z§+zg = 0}. That is, the link 3(2,3,5) of the

QHmsingulafity (v(2,3,5),0) has the geometric structure
I'\Sa. Klein gave other examples, including a treatment for
V(2,3,7) in [X1 2] and [XF], see alsc Brieskorn [B]. These

results were generalized by Milnor [M] to arbitrary V(a >3558

1
and by Dolgachev [D] and the author [N1] to complete intersec-
tions of n -2 copies of the n-dimensional Brieskorn variety
V(al,...,an) in general position. The present result géner—
alizes all of these, without however giving as explicit a des-
cription of the geometric structure as was possible in these

special examples. In the general case of rational base curve
these more explicit results still hold however, see Section 7
and [N4]. |
Returning to V(2,3,5), we should say that Klein's for-
mulation is an analytic isomorphism between I'\C2 and
V(2,3,5). Our general correspondence is analogous. Namely

the relevant geometries are certain simply connected
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3-dimensional homogeneous spaces X = G/K. To each of them
we give a G-invariant complex structure on X x R_. To a
geometric structure M = [I\X on a singularity link M is
thus associated a complex structure II\X x R, on Mx IR+,
and this is then V - {p}.

The result is slightly more general than stated in this
introduction. Also we give an analogous result for cusp sin-

gularities and singularities with dual resolution graphs of

-2 _bl "bn -2
the form :)1 ______ 4<:' . Since in these cases both the
-2

geometric structure on the link, and the singularity itself are
rigid, this is of more philosophical interest. No other sin-
gularity links M3 admit geometric structures.

The proofs of the geometric results will appear in detail
in [N31. BHere we just sketch them in a typical case (section 6),

using the analytic classification of the first part of this paper

1. Topology of a QH-singularity

By a QH~singularity we mean a normal surface singularity

(V,p) with a good C¥-action. "Good" means p 1s in the
closure of every C¥-orbit. Denote Vg =V - {pl. VOKC* is
a complex curve, which we denote X. Consider R, < c*

acting on V. After renormalizing by the automorphism t ~ ’c"l

of ¢* if necessary, the Zm+~orbits are rays emanating from

P, as in the schematic picture.
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&_CR+—orb1ts

e ey AT

Wé éaﬁméhu;‘identify VO/H{P wi%h the link M of the singu-
larity. Since C¥* = R, X Sl, we have M/st = VOIC* = X,
and the map M » X 1is a Seifert fibration of M whose fibers
are the Sl-orbits of M.

The topology of VO’ and ‘hence also (V,p), 1is determined
by M, since V4 is C*-equivariantly homeomorphic to M x R_.
M itself 1is determined (up to Sl-equivariant orientation pre-

serving diffeomorphism) by its Seifert invariant
{g;b;(al,ﬁl),...,(an,Bn)}.

Here g = genus (X), and each pair (ai,Bi) satisfies
0 < Bi < a. and gcd(ai,Bi) = 1, and it codes the topology

near a singular orbit of the Sl-action on M. The invariant
e(MsX) = «b - ) Bi/ai
. ] 1
generalizes the usual euler number of a non-singular S -bundle.

Proposition (LNR,§5], [P1,§21). M océurs as the link of a

QH-singularity if and only if e(M»X) < 0.




85

A sharper result is in [N2, Corollary 6]. This propositiOn
completes the classifica?ion of topological types of QH-
singularities. -

We are using the orientation conventions for Seifert invar-
iants most prevalent in the literature. A reversal of orientation
replaces Bi by"ai - si’ b by =-b - r, and these values are
sometimes used instead, particularly in the context of resolution

of singularities, where they occur naturally. This is true for

instance in ([P1], gquoted above.

2. Analytic Classification

With notation as in §1, let x; denote the point in X

over which the (ai,Bi) orbit lies.
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Theorem ([CR}, [OW]l, [P1]). The set of isomorphism types

of QH-singularities (V,p) with fixed Seifert invariant and

fixed analytic type of (X,x

ses.9X_) 1s isomorphic to Jac(X)
1 n —_— —

modulo an action of Aut(X,x 2K_ ).

10" n

We just sketch our argument; the details are not hard to

fill in. Let V =V €, that is, V_, x € factored by

0
Y2y, writing T = (Vg xg, CF)

0 e
the C#*-action t{v,z) = (tv,t

U (v {0}) = v_ U X, we see that 7V is obtained from V

0 *ex 0
by adding a 0 +to each €* orbit. We call X © V the zero

0

section. The projection VO x g = VD induces V = VO/C* = ¥

which is a "Seifert line bundle", that is, a complex line

bundle except that for each 1 the fiber over Xy is a sin-

gular fiber of the form €/K, , where §;
i i

is the group of

Gi~th roots of unity.

We shall prove the theorem by classifying Seifert line
bundles, so we digress to explain how the Seifert line bundle
E = (V+X) determines (V,p). We can form V = Vo Xox © for
any Seifert &€*-bundle VO -~ X, not just complements of
QH-singular points, so Seifert €%-bundles and Seifert line
bundles are equivalent concepts. We define the Seifert
invariant of such & bundle to be the Seifert-invariant of the
éssociated Seifert fibered M3 = VO/IR+, and the euler number
e(VO+X) = e(V+X) +o be g(M*X). The latter equals the self-
intersection number X-X of the zero section X ¢ ¥V (V is a

Q-homology manifold and so intersection numbers can be defined

~-Poincare dua o cup product). y Grauert's criterion .
Q-Poi dual t product) By G t! t el



which can be generalized to this situation, we can blow down
X c ¥V to get a normal singﬁlarity (V,p) 1if and only if
XX « 0. ¥V is in fact the first stage in a resolution of
(V,p). It has only cyclic gquotient singularities, at the points
X: € X ¢ V, and these resolve by linear configurations of
exceptional curves to give the familiar star shaped resolution
configuration for (V,p).

Let Pic(X,(xl,al),...,(xn,an)) be the set of isomorphism
classes of Seifert line bundles E = (V-+X) which have singular

fibers only over {xl""’xh} and which are locally isomorphic,

near X., to the following:

By

(DXC)/[.L(I. -+ D/“'a. « D,
i i

for some ﬁi. with 0 EBif(ai' Here D denotes {z ¢ €]]z] < 1}

and “2 denotes the a-th roots of unity Hy acting on

Dx € by t(zl,zz) = (tzl,t-ﬁzz). We do not require

gcd(ai,Bi) = 1. Thus the Seifert invariant will have the form

(g;b,(ai,Bi),...,(aé,ﬁé)), where Gi = ai/gcd(ai,Bi),

By = Bi/gcd(ai,ﬁi}, and pairs (ai,Bi) = (1,0) refer to non-

singular fibers and may be deleted.

Tensor product ® 1is defined for Seifert line bundles

(do it locally in the cyelic cover and then factor by by » OF
i

globally: use Seifert €%*-bundles and form VD & Vé by a

pullback, factor V. @ V! by the Cf-action t(v,v') =

0 0

1v'), and then normalize to get Vg ® Vé). This gives a

(tv,t

semigroup structure on Pic(X,{(xi,ai)}) such that



By :Pic(X,{(xi,ai)}) -+ Z/ai is ‘a homomorphism. The kernel of
B = By x roe X Bn {Pic(X,{(xi,ai)}) + TIZ/a; consists of line
bundles with no singular fibers, that is, KXer(g) = Pic(X),
which is a group. Hence Pic(X,{(xi,ai)}) is a group and
moreover its identity component will be PicD(X) = Jac(X).

Denocte Pic(X,{(xi,ai)}Nﬂac(X) by H. We obtain

0 0
B
§ =—— Jac(X) - Pic(X) ——— y /A
i : l ;i
0 — Jac(X) — Pic(X,{(x;,a,)}) S g —m 0
'l_l':Z/ai = '[‘l'Z/cni
l | +
0 0

With exact rows and columns, where the top row is classical,
with d equal to degree or chern class, and the right hand
column 1s induced by the rest of the diagram. The projection

map ¢ should be thought of ags a2 chern class for Seifert bundles

By the following lemma it is an abstract version of the Seifert

invariant.

Lemma. (i) H = <g0,gl,...,gn|aigi=g0> with 1i:Z =+ H

given by i(1l) = g5° In particular any g € H can be uniguely

written in the form g = bgy + ZBigi with © = Bi < a..

(ii) If E € Pic(X,{(xi,ai)}) has c¢(E) = —(bg0+ZBigi) with



0 = B; < a; then its Seifert invariant is

Bi =Bi/gcd(ai,ﬁi).

The content of this lemma is a formula for the Seifert
invariant for V ® V' in terms of the Seifert invariants of
V and V'. It follows easily from the definition of the
Seifert invariant of V in terms of a nonzero continuous sec-
tion to V over X - {x;} (see [NR]) and the observation
that such sections in V and V' give one in V o V'. The
lemma can also be proved using only naturality properties of
the euler number for nonsingular bundles to give an independent
introduction to the Seifert invariant (exercise).

The exact sequence
0 —— Jac(X) — Pic(X,{(Xi,Gi)}) — H — 0

is the desired classification of Seifert bundles. This is also
the form in which it was proved, by very different methods, in

[CR]. In [CR] H arises as the second cohomology group H2(T)
of a certain Fuchsian or euclidean group T (unless (V,p) is

a quotient singularity). The connection will become clear in

Section B.

3. CGeometry of 3-manifolds

A geometric structure on a manifold M shall mean a com-

plete locally homogeneous riemannian metric of finite volume.
Locally homogeneous means any two points have isometric neigh-
borhoods. On the universal cover X of M such local iso-

metries extend to global ones, so X is a homogeneous space.



We can thus write
X = G/K, M = I\X = TI\G/K,

where G = G(X) 1is the isometry group of X, K = Gx the
isotropy group of some point x € X (so K 1is well defined

up to inner‘automorphisms of @), i1 ¢ 8 is a discrete sub-
group which acts freely on X = G/X with finite volume quotient
T is of course isomorphic to nl(M). G = G+CK) will denote
orientation preserving isometries.

To avoid trivial distinctions, we consider two metrics
on X with the same isometyry group 6 to be equivalent, and
we only allow maximally symmetric metrics, that is, we assume
no metric on X, has strictly larger isometry group than G.
The geometry (X,8) will be relevant to 3-manifold theory
if dim X = 3 and X admits finite volume quotients MX
with I € G discrete. Thurston [T] has pointed out that
there are exactly 8 such geometries. They are most easily

computed in terms of K the identity component of the group

05
K =6, of isometries fixing a point x ¢ XK.

KD: X = K=
30(3) g° E3 Y 0(3)
J g2 x g B x EL I 0(2) x 0(1)
50(2) [|F==m=-mam] S Vi S
: N PSL 0(2)
£
(1} S D
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Here Sn, IEn, and Ef} are spherical, eucliidean, and
hyperbolic geometry. N, ?El, and S are certain lie groups
with left invariant metrics. Namely PSL is the universal
cover of PSL(2,R) = G+CM2); this geometry can also be
described as the universal cover of the unit tangent bundle
T1]H:3 of fﬁz, with natural metric. N is the group of real

3 x 3 wupper triangular unipotent matrices. It is more use-

fully described for us as the group structure:

2

(a,bjc){a',b';e') = (a+a',b+b';c+c'+ab'-a’d) on R~ x IR.
Its center is {0} x IR, giving a central extension
0+ R >N - R’ » 1. TFinally S8 1is a split extension

2

1+ R =+ 8 -+ R ~~1, and can be described explicitely as the

group structure

(a,b;edX(a',b'i;c') = (a+eca‘,b+e'cﬂ;e+c‘) on IR2 x R,

The isometry group for each of X = PSL, N, and S 1s
a semidirect product GX) = T.X, where T 1is the group
EEE, N, or 8 vrespectively, acting by left translations,
and XK 1s given in the table and acts on T as follows. For
X = ﬁgi, K = 0(2) < G(EIZ) acts by conjugation on G+CH2) =
PSL(2,R), so lift this action to an action on T = rsL.
For N, with coordinates IR? x R as above, X = 0(2) acts
standardly on IR2 and by determinant on IR. .For S, K 1is

dihedral of order 8 generated by =t :(a,b:c) = (b,a;~c) and
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c:(a,bje) » (-a,bje).

If M3 + F is a Seifert fibration of a closed connected
oriented M over a possibly non-orientable surface F, the
Seifert invariant {g;b;(al,sl),...,(an,Bn)) is still defined

-but we use negative g to indicate non-orientable F. Thus

the euler number

e(M-+F) -b - B./a

" e~13

i

is still defined. We also define, with X(F) equal to euler:

characteristic:
x(M=F) = x(F) - ] (a;-1)/a,.

Theorem. Let M gg a closed connected oriented

3-manifold which admits a geometric structure. Then:

(i) The geometry X igfquestion is uniquely determined

by M.

(ii) If M admits an IHS structure we won't discuss it.

(iii) M admits an S-structure if and only if either:

sl with fiver sl x st

al M ecan be fibered over

such that the monodromy h € SL(2,Z) has

[trace(h)| = 3, or

b) M is a twisted double of the orientation [0,1]-

bundle over the Klein bottle, but cannot be

Seifert fibered.
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(iv) M admits an X-structure, - X’#ZHB,S, if and only

if M admits a Seifert fibering M-T. The relevant

geometry is as follows:

o X >0 =0 <0
= X = X(M->F)
) 2 1 3 2 1
S B T M e = e(MoF)
3 o
£0 3 N P3L

We call the six geometries of part (iv) the Seifert

geometries.

£ +
Remarks. 1) For X = N or PSL, G(X) = 6 (X), so all
manifolds with an X-structure are orientable. TFor X = 83

the latter is still true but less obvious.

2) The theorem is valid with minor changes also for non-
orientable and/or noncompact M, and with slightly more change

even for arbitrary lattices 11 ¢ G(E), X # HB, see [N3].

3) The invariants X and e arise naturally for
QH-singularities. TFor instance, Dolgachev has shown, and it
also follows easily from Pinkham [Pl, Theorem 5.1), that the
Poincaré series for the graded affine ring of (V;p) is a

rational function of the form

p(t) = -et/(1-t)% 4 x/2(1-t) + P(£)/Q(t),

where Q(t) 1is cyclctomic and not divisible by (t-1}. See

also [W2, §23} and [Wu, §uj.

4} With a natural normalization of the metrics on the
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. . 2.2 . .
geometries, the volume of M is Un“x"/|e|l in the Seifert
case when eX # 0, and is indeterminate, depending on the
geométric structure, in all other cases with X # Eﬁ . For

X =N it is 32|e], where £ = (length of a fiber of M).

If X 1is a Selfert geometry other than SB or ES, then
the set of isometries which fix a ?oint x € ¥ fixes a tangent
direction at that point up to sign, so X has a G(X)-invariant
tangent line field. This line field gives a foliation of X,

2

which in fact fibers X over Sz, E", or Hz in a way which

is obvious for X = 32 x E and H2 x E, and which is visible
from our description of X for X = N and X = PSL. It is

this vertical fibration of X which induces the Seifert fibra-

tion of M =TI\X (except for some S2 X E%-structures on

S2 XSi). Lach of the geometries SB and E3 alsc fibers

geometrically over $2 and Ez respectively (33-+82 is
Hopt fibration), but this fibration is only well defined up to

isometries, so the subgroup Gflb € & which preserves this

fibration is only determined up to conjugation. The different
conjugates of Gflb correspond to the different "vertical
fibrations" of X. If M =I\X 1is a geometric 3-manifold

fib

with X = 53 or ES, then I is in some conjugate of G

and a Seifert fibration of M can again be induced from the

corresponding vertical fibration of X. If M = T3 :Sl XSl
one must choose the conjugate of Gflb correctly—otherwise

xSl

one just gets a foliation of M,

We call the Seifert fibration of M = MX, induced as
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above from a vertical fibration of X, a geometric Seifert
3

,His,‘ but may depend on

containing [0 for X = g% or

fibration. It is unique for X # 8§
a choice of conjugate of Gfib
Hﬁ.

If X isaSeifert geometry, let G, = GC(X) ¢ Y (K) be

the subgroup preserving a vertical fibration on X as an

oriented fibration. Then GC = (Gflb)O if X = SScH*E3 and
GC = GO otherwise. The centre C of GC is Sl for
, .

X =3 and is IR otherwise.

Proposition. Let M = T\X with X a Seifert geometry.

Then 1 cG_ (respectively T is in some conjugate of 6, if
X = Sa or Eﬁ) if and only if M can be Seifert fibered with

orientable base. If M ¢ 82 x Sl, then C/C N0 = Sl and it

acts on M inducing the geometric Seifort fibration M -~ M/Sl

(for M = T3 this holds only for suitable conjugates of GC

containing 11).

Not every geometric structure on 82 X Sl

admits a geo-
metric Seifert fibration, but any Seifert fibration, of any

M, is geometric for some geometric structure on M,

4. Geometry of holomorphic Seifert Cg-bundles

For each Seifert geometry X let GCCX) = GC(X) x I, ,

acting transitively on X x IR, in the obvious way. We shall

describe a complex analytic structure on X x IR such that

GQ = GQ(X) acts by complex analytic maps.
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On ]El x IR, take the complex structure

-

IE+ X ]R_!_ - C, (G,I") — B-=-L-fnl(r),

The notation is chosen to suggest that I x R, is pelar

- B ~ - "-
coordinates in €%, the universal cover of (¥. Now the com-

plex structures on Sz X 1}31 X IR+, IFJ2 X IEl X 1R+, and

]H2 X ]El x IR+ dare the obvious ones: lDPl‘x c, € x C,

2

H x € (we use H, as opposed to H", +to denote the upper

half plane with complex structure, instead of hyperbolic

metric).

3

On 8" x IR, take the obvious structure as CQ—{O}, by

considering s° x R, as polar coordinates, with G acting

as U(2).

On N x IR,, coordinatize N as in §3 and take the com-

plex structure
_ .. i, 2 ..2
Nx R, »€xC, ({a,b3c),r) = (a+1b,c-—2~(a +5 -2 enlr))).

For PSL x R, recall first that we can identify

PSL = ZAP3L with the unit tangent bundle TiH? of T°.

Thus PSL x IR+ can be taken as polar coordinates in TDIH

P

(the bundle of non-zero tangent vectors), so P3L x R, is,

identified with (TU]H)N . Since TUIH >~ H x €%, we have ;

PSL x R, = (H x ¢*)” = H x C.

In each case denocte Xdl =X x R with the above complex

structure. The center (C x IR+ of GC can be identified as
' . . . 3
¢" acting by multiplication on XC = C2-{ 0} when X3 =%, and

as €, acting by translations in the second factor of



X@ = (=) x € in each of the other cases.
Let M=TI\X be a geometric Seifert manifold with
geometric Seifert fibration, as in the last proposition of §3.

Thus T € G_ and C/C N1 = st. Then

Mx R, = INX xR = H\XE

gives a complex structure on M x Eﬂ. and Sl XZR+ acts as

(c/cnily x R, = €%, acting holomorphically. That is,
Mx R, receives the structure of a holomorphic Seifert

C*-bundle.

Theorem. Normalize by fixing wvol(M) in the X = 0

cases and fixing the length of a fiber of M in the e = 0

cases (see Remark 4 on p. 13). Then if double brackets

represent "set of equivalence classes of ..." with an appro-

priate isomorphism concept, the above construction defines a

bijection
" Geometric aizugiuresgg_Mlﬂ ""Holomorphic structures QQ!K
1) (with geometric Seifert e Mx IR, as a Seifert N
wiibration. Je AE%-bundle. JJ

In particular:

oy

((Geometric structuresgg_M{\ (‘QH-sinpularities (V,D)
2) (lwithggpmetricSeifert ) .with link homeomorphic pg\
fibration withnegative e.j M.

Unless (V,p) is a cyclic quotient singularity, so M 1is a
lens space, the singularity (V,p) has a unigue good C*-action
and M  has a unique geometric Seifert fibration. So excluding

lens spaces, and assuming M admits a Seifert fibration with
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negative e, we get:

Normal singularities
;) (V,yp) with link homeo-
morphic to M which
dmit a good C*-action..

3) {{Geometric structures on M}} «»

For a cyclic quotient singularity (V,p) the geometric
structure on its link M 1is unique and geometric Seifert fi-

braticons of M correspond cne-one with ¢€#-actions on (V,p).

5. Cusps and the geometry S

There is a correspondence, analogous to 3} above, con-
nected with the geometry 5. Coordinatize S as
{(aﬂuc)|a,b,c ¢ R} as in §3. Let Gc c G(S) be the sub-
group of index 4, generated by GO = 53 (acting on itself by

left translations) and the element =~ : (a,b:c) - (b,a;-c)

mentioned in §3. Then GC acts on H x H as follows:
- o} -c
(a,b,c)(zl,zz) = (e Zl+a,e 22+b)
T(Zl,Zz) = (22,21).

Themap M xH-Sx IR, (21’22) ~ ((Re Zq Re zQ;Enl'mzl),Imz -Imzz)

1
is a Gcnequivariant,homeomorphism. Thus an S-structure

M2 TI\S, with 0 ¢ GC, on a manifold M 1leads to a complex

structure M x R, = [O\§ x R« I\(H xH) on M x R_.

Thecrem. 1) A manifold M which admits an S-structure

admits a unique one of any chosen volume.
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2} The following are eguivalent:

a) M=i\S8 with I < §;

b)Y M  fibers over S1

with fiber T and mono-

dromy of trace =3;

c¢) M 1s homeomorphic (preserving erientation) to

the link of a cusp singularity (that is a sin-

gularity (V,p) with cyclic resolution graph);

d) Statement c) is true and V-{p} = TIN(IH x H).

3) The following are eguivalent:

a) M~TI\S with NI ¢ GC, me¢s

b)

=

is homeomorphic (respecting orientation) to

the link of a singularity (V,p) with resolu-

tion graph of the form

|
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|
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&
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i
o
\\
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™o
lwa
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+h
0
"3
0
o]
=]
13
j_J

c) Statement b) is true and V-{p} = I\N(H xTH).

Remarks. 1. The analytic structure on these singulari-
ties is unique, by Karras [K]. Their description as "cusps"
of discrete quotients of T xMH is how they originally arose,
in the work Hirzebruch et. al. on Hilbert modular surfaces.

2. The double cover of the singularity of 3b) above,

determined by T 1 S ¢ T, must be a cusp. It is the cusp with

resolution graph
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3. In sections % and 5 we have dealt with every singularity
link which admits a geometric structure. Indeed, a singularity
link M cannot admit an }fs—structure,-since no plumbed manifold
admits an Ifa-structure. We have dealt with all Seifert manifolds

which are singularity links by [N2]. Thus the only case remaining

was S-gtructures. One can either compute all orientable
S-manifolds and compare with [N2]}. This is not hard, they turn
out to be all 3-manifolds which can be plumbed according to a
cyclic plumbing graph or a graph as in 3b) above but without
the restrictions on bl and bk' It is easier to observe that

an S-manifold has solvable fundamental group. We have all

singularity links with solvable fundamental group by Wagreich's

list [W1].

6. Ideas of proof

We illustrate the proof of the theorem of Section 3 by
sketching why a manifold MB, Seifert fibered as M - X with
orientable base, has a ﬁgi structure when X « 0 and e # 0.
Lét IT be nl(M). The center of 1T 1s %, generated by the

class of a non-singular fiber, and we have an exact sequence

0 —Z — I — T — 1,
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where T = F(g;al,...,an) is a Fuchsian group with signature

(g;al,...,an) (if X had been =0 or >0 then T would
be euclidean or spherical respectively, instead of Fuchsian).
Now the group H of Section 2 is in fact HZ(F;%) and
the "chern class" ¢ € H described there is just the classify
ing element for this exact sequence. Note that Hz(T;BU
H® R =R by the map g, +*+1, and if 1:%Z ~» R 1is the
inclusion, then i.c € HZ(T;IR) = R 1is Just e(M-X), by
the lemma in §2.
We need to embed 0 in Gy = GO(PSL) in the following

way

0 —— @ — II - T > 7

Lk I°
0 — R — G, — et (m?)y =psn(2,R)) — 1

It is not hard to see that this is just what 1is necessary to
give m P3SL the desired Seifert fibered structure. The map
a is given to us by choosing a complex structure (or a hyper-
beolic orbifeold structure) on (X,xl,...,xn). Let us form the

following pushout and pullback extensions (%) and (##):

0 — Z » 11 i e i |

S ”
0 » IR s 1,00 +T + 1 (%)
0 m—es IR e G o oo r ce= (#%)

I {
¥ e
0 + TR » Gy — PSL(2,R) —> 1
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It suffices to show that (%) and (#%) are iscmorphic.

But we have already observed that (%) 1s classified by

ige = e = e(M+X) € R = HQ(F,EU , and it is not hard to show
that (#%) is classified by X ¢ R = H2(r,RR) (this follows,
for instance, from the computation of Seifert invariants of
T'\PSL(2,R), see L[EHN] or [RV]). Thus, letting 8 :1R - IR

be multiplication by x/e, the following diagram can be com-

pleted, and we are done.

0 = R —+ 141 —=+ T —= 1 ¢+
1
e =
0 — IR — a* s T — 1 (%)

The various different PSL-structures on M lying over

a fixed structure on X are classifled by the different homo-

morphisms v : 11 - GO for which

0 s T —— 11 T oD — -

( a
- l
0 — R --—«-—»GD —s PSL(2,IR) —= 1

-~

commutes, up tTo automorphisms of II fixing T. Given one v,
any other «y' 1is given by «y'(g) = y(g)-¥n(g) for some

v € Hom(I',IR), with < e Hom(r;Z) 1if ' 1is related to y by an
automorphism of NI, Thus Hom(I',R)/Hom(I',Z) <classifies the
§§i~structures on M. The correspondence of §4 sets up a map
Hom(r,RY/Hom(Il,Z) - Jac(X) and to prove the theorem of §i

for this case, we must show this is bijective. But it 1s amap
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of real tori of equal dimension, so it is enough to show in-
jectivity. A computation shows that this is equivalent tb
the image of the period mapping HO(X,Ql) - Hom(T,€) = Hl(X,C)
being transverse to Hom(r,R) = HICX,IR), which is true, by
classical complex curve theory. |

The proofs of the results of §3 and §4 in the other cases

are similar. Details will be given in [N3].

7. An application

One interpretation of the results of §4 is that the co-
cycles which are used in ofher approaches to classify (Seifert)
C*-bundles over a curve X <can be put in a very special form.
This implies that one can interpret the affine coordinate ring
of a QH—singularity (V,p) as a suitable ring of automorphic
forms which transform by characters, rather by some general
cocycle "multiplier system." But thig is really a non-
application, in that it would be of interest only if the type
of ring of X-automorphic forms which arises were a type which
has independent interest, say to number theorists, which it
isn't. Nevertheless, as an application of this train of

thought we get:

Theorem. Let (V,p) be a QH-singularity with V. /C% =

(X% 50 s

Suppose X 1is rational, that is, g = 0. Let n =3 (i.e.,

xn) and Seifert invariant (g;b;(al,Bl),...,(an,Bn)).

(V,p) is not a cyclic gquotient singularity). Then the universal
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abelian cover (vab,p) of (V,p), branched only at p, is

isomorphic to (VA(al,...,an),O), where VA(al,...,an) is

the Brieskorn complete intersection:

a

- n 1o... ®n _ .
VA(al,...,an) = {z € € [ailzi + ta, 2.7 =0, i=1,...,n-2}
for suitable coefficient matrix A = (aij). In fact, if one
- determines Aysr-esh 5 € € Dy the unigque analytic isomorphism

(X,xl,...,xn) o (CUo, AL senaah 1,0,«), then one can take

1 n-37

Proof. We Jjust sketch the proof, for a reason given below

Assume X < 0. We first note a general fact that if, for

i=1,2,

Y; Y-l a'
lIZ+ 1 l
0 —— A v G —= J —= 1
is a map of central extensions, then yl([nl,nlj) = Tz([nz,nzj)
Now our VG = V-p is classified by an embedding 1 -~ GO =

Go(ggi) which fits in a diagram

47
|,,._I

0 — I > I T

v o v ¢
0 e IR + G? > PSL(2,R) -—» 1,
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Also v![m,0] corresponds to the universai abelian cover of
VO’ so our initial comment shows that if we prove the theorem
for just one (V,p) with given a, then it follows for all
such (V,p). But such a proof was given (in fact for

Vg = a(F)\TUﬁD in [N11, see also [D].

So this proves the case X < 0. The analogous proof
applies for X » 0, and would apply too for X = 0 'except
~that in this case the neéessary examples had only been
analyzed by ad hoc means in [M] and [N1], and this analysis
does not give the information we need. This gap could be filled
but this i1s not necessary, since a much more elementary proof
of the theorem will appear elsewhere in these Proceedings [Nu].
The above is‘however essentially how I found the result, with
the observation about commutator subgroups replaced by the cor-

responding observation about rings of X-automorphic forms,
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