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Introduction

If a compact lie group G acts differentiably on a differenti-
able manifold X , then the orbit space X/G need not be a manifold,
and the question arises as to when it is a manifold. In the first chap-
ter we answer this question for G cyclic or equal to the circle group
S1, in terms of the slice représentations of the isotropy subgroups of
the action. This is then applied to obtain some results on the orbit

space V(a) = V(ao,a1, 600 ,an) of the well known 51—action on the

Brieskorn - Hirzebruch manifold
Z(a) = {ze€®' | S2% a0, Sisi%=11.
i ’ i
We show that V(a) is a manifold if and only if a has the form

a= (dt°s1szu.sn, etiel ol 1y ds°s1u.sn_1tn)

with d, 559 ti positive integers ; ti pairwise coprime ; s; pairwise
coprime ; and (si'ti)= 1 for each 'i (Theorem 3.5).'

By Brieskorn and Van de Ven [3], V(a) is in a natural way a
complex projective variety. It turns out that this complex structure is
already non-singular if V(a) is topologically a manifold. Some bi-
holomorphic equivalences between the V(a) are found, and in particular
if V(a) is a manifold, then V(a) is equivalent to V(a") , where

a” is obtained from a by replacing each ti above by t;: 1 .

Chapters II and II of the thesis consider only closed orientable
3-dimensional S1—manifolds with no fixpoints. The Z(ao,a1,a2) are of

this type, and we show how they fit into the Seifert - Raymond.



classification ([11], [14], [15]) of all closed 3-dimensional

5'-manifolds. Namely
Z(a;,aa,) = [b5(0,8,0,0)5ds (¢ ,4),de,(t,,47),d8,(t5,85) ],

where d, S5 ti are as above, and the p;, b, and g are calculated
as in corollary 9.2. By dai(ti,ﬁ;) is meant of course (ti'ﬁ:;.)‘ 500 §
(ti,p;) ds; times, and to make the above fit Raymond's notation, the

pairs (ti.p;) with t; =1 should be disregarded.

Brieskorn [2] has calculated the integer homology of
Z(ao, 0O0 .an) in terms of a certain group ring. Theoretically this
enables one to calculate the normal form of these homology groups in
any given case, but in practice this seems very difficult. The results

) .

of chapter II enable us to do this for Z(ao,a1,a2

In chapters I and II we in fact use a slightly altered form of

the Seifert - Raymond classification, as this simplifies much formulation

and calculation. The connection of our notation with Raymond's is given

by corollary 7.3.

Let X be a closed qriented differentiable (4k-1) - manifold
and J:X-—> X an orientation preserving free involution on X .
Hirzebruch [6] has defined an invariant «(X,J) by using a special
case of the Atiyah- Bott - Singer fixpoint theorem. If the disjoint
union mx (m>1) of m copies of X bounds a compact oriented diffe-

rentiable manifold N in such a way that J can be extended to an

involution J; on W, which may have fixpoints, then

Instify, for
Ngew,
d@," . 0nd/e
Yaiversyys, gZdMe’”ﬁ/ff'
*Fix J_.‘)) o "

i

=(X,J) = &(?(H,J1) - *(FixJ,

Here ?(N,J.I) is the signature of the quadratic form x.J,y on

HZk(N.]R) , and 7T(Fix J-.‘-Fix J1) is the signature of the oriented
self intersection cobordism class Ff'Lx Ji°FixJ, ¢ Q, . By Burdick's
results on the bordism theo;.'y of Dz-actions, N and, J1 exist with
m=2 and FixJ1=¢ .

Hirzebruch and Janich [7] have proved an altex'-tia.tive definition
of o(X,J) , which coincides with the definition of the Browder-Livesay
invariant if X is a homotopy sphere. In chapter I we use this
alternative definition to calculate «(X,J) when X is a 3~dimensional
§'-minifold aia '3 is the'involntich contained in the 8'-astisa, if

this involution is free. In Raymond's notation the result is: if

X 2 {1;(0,8,0,0);(x 1, B), --- '(“n”’i)} , then (see theorem 12.1)
x(X,J) = b+ Z(c(ai.ﬁi)+1) - sign(b+ Zs‘;) .
- -1 >,

Here c(,p) is a function defined on pairs (,8) of coprime
integers with o« positive and odd, which na& be defined in terms of
continued fractions (§12). c(«,B) can also be defined axiomatically
by the properties givem in lemma 13.2 or for £>0, as the signature
of a certain matrix (§15), or as o(L(B,=),J) , where J is the free

involution on the lens space L(JB,x) such that the orbit space is

L(2g,x) (theorem 17. 2).

The final section of chapter II discusses some .weak connectioga
with the work of Bredon and Wood [1] on embedding non—orient'able sur-

faces in closed orientable 3-manifolds.
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Chapter I: The orbit space of an S1-rqanifold

oA The language of slice diagrams (Janich [9]) will be useful in
the following, so we recall the essential points. For more detail see
§4 of [9].

Let G be a compact lie group, U a closed subgroup, and V
a differentiable U-manifold. Consider the fibre bundle GXUV over
G/U with fibre V , associated to the principal U fibre bundle
G = G/U . Recall that GXUV is GXV factored by the equivalence
relation: (g,x)~(gu,u—1x) for ueU . Gx;V is a G-manifold
under the action g’lg,x]1=[g’g,x] , g°¢G, [g,x] eGxy V. If V is
a real vector space with U—actit;n given by a representation
/6: U—GL(V) , we denote V also by & and write GXUJ for GXUV,'
6/U for V/U , and so on. g :

Let & and 6 ° be real representations of closéd subgrt;ups U
and U° of G . Then Gxud and GXU' 6° are equivariantly diffeo-
morphic G-manifolds if and only if there is a geG with U= gUg"1,
and such that the representations & and 6'-(g'.~g'1) of U are equi-
valent. The pairs (U,8) and (U",8") are said to representv the same
slice type [U,6], (prieﬂy [U,6]1 ) for G, if this holds.

If X is a G-manifold and xeX , let V = Txx/TxGx be the
normal space to the orbit Gx at x , and let 6 _:G —GL(V)) be

the slice representation of the isotropy subgroup G . [Gx,dx]G is

called the slice type at the point x. Slice type is constant along

€ ) A -1
orbits of X, for if geG then ng = szg and



-1
o’sx~ Q‘XO(g weg) , 80

(1.1 (68 g = (6067, -

[Gx"x] determines the local structure of X at 'x completely, for

the slice theorem states (see for instance p3 of [9])

Theorem: There is a G-equivariant diffeomorphism of GxG 6 onto
e — x

a G-invariant open neighbourhood of the orbit Gx ,- which

maps the O-section G/Gx onto the orbit Gx .

1.2, One defines a partial order on the set of all slice types
for G by: [U,t]s[U’,"j means - [U%,¢°] is a slice type of the
G-mani fold Gxué . The partially ordered set of all slice typ.es of a
G-manifold X is called the slice diagram A(G,X) (briefly A(X) )
of X . If X/G is connected, then A(X) has a unique largest element
[H,6] , the principal type, which is characterised by the fact that &
is a trivial representation ([9] p24).

If X is compact then A(X) is finite ([9] p22).

1.3, The following remarks often simplify the calculation of
slice types. Let U be a closed subgroup of G, 6:U—GL(V) a
real representation of U . We want to investigate the slice types of
GXUS , that is the slice types which are- greater than or equal to
[p,d] . For [g,v] €Gx;6 , let [Uv.‘v]u be the slice type of the

U-manifold V at the point v . We claim
1.2 é =
(1.2) l-'Gl:g.v]’ [g,v]]G [Uv"v]G ‘

By (1.1), we need only show this for g=1 . Clearly G =0U_ .
[1,v] v

Further, the map w:G X;¢ — G/U defined by wlg,w] = gU , which
makes Gde to a fibre bundle over G/U with fibre V , when restri-
cted to the orbit G[1,v] gives a fibre bundle G[1,v] —=G/U with
typical fibre Uv . Splitting the tangent bundles of vad a}xd
G[1,v] as the sum of "component parallel to base" plus "component
along the fibres" gives »

Trq,v1&%gé ¥ T®/U e TV ,

T[,I’VJG[LVJ = ‘I‘,“IG/U @ TvUv 5
Hence the normal spaces T“'v]GxUG/T[,"v]G[‘I,v] and TvV/TvUv are
canonically isomorphic. This isomorphism is Uv-equivariant, so
‘[1,v] ~6, s proving (1.2)s

Observe that if v is not a fixpoint of U , then dv has at

least one more trivial component than 6 , corresponding to the line
through o and v in V . Hence if [U,61<[U",6°] then the dimen-
sion of the trivial component of & is strictly less than that of 6.
This can be used to give bounds on the legnths of chains in a slice
diagram A(X) , but in any case it follows that all chains are finite_.
Thus every element of A(X) is greater than or equal to a minimal ele-
ment or foot of A(X) . Since A(X) contains with each slice type

also all greater slice types for G , we have

Lemma: A(X) is the set of all slice types for G. which are greater

than or equal to a foot of A(X).

A4, Recall that if U is a closed subgroup of the compact lie group
G and X is a G-manifold then the orbit bundle X(U) is defined as
X := {xeX|G_ is conjugate to U in G}.

() x

X(U) is an invariant submanifold, a_and has a natural structure of a



fibre bundle over X(U)/G with the orbits as fibres (see for instance
(7] pp5-7).
If [U,6] is a slice type of X , then the proof (loc. cit.)
that X(U) is an invariant submanifold also }ields that
Xy, 61 = {xeXll6,6] = [U,6]}

is an invariant open closed submanifold of X(U) » which we shall also

call an orbit bundle . In fact x[U &) € X is given locally via the
,
slice theorem by ch,xax E'GXGX"’ s Wwhere Ox is the trivial compo-
nent of 6x « 1In particular it follows that
dim x[U,‘]/G = dim 6 ,
where @ is the trivial component of .6 .

Now let Y be an invariant submanifold of X . The slice rep-
resentation a‘i at x in Y is a subrepresentation of ‘x . Suppose
the codimension -k of Yﬂx[U"] in x[U,o‘] at x is equal to the

" codimension of Y in X at x . Then using the above remarks it
follows that
X
éx ~‘x.e 0.
where & is a trivial representation of dimension k . This simple
fact will be useful later. (Remark: clearly the above situation holds
if "Y is transversal to X[!“I 6] at x , however it follows easily
,

from the geometry of the situation that the converse is also true.)

§2. The local structure of X/G

-

If X is a differentiable G-manifold, we would like to kmow
- when the orbit space X/G is a manifold. We answer this here for G

cyclic and G equél to the circle group 81 in terms of the slice
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diagram of X .

Definition: If [U,é] is a slice type for G , we say [U,¢] has

if the quotient ¢/U is topologically a manifold.

Proposition 2.1. If X is a G-manifold then X/G is a manifold if
and only if every element of A(X) has QM. This

holds if and only if every foot of A(X) has QM.

Proof. Let w:X-—X/G be the orbit map. If the slice type at xe X
is [Gx"x] , then X looks locally like G Xg 6:: at x, so X/G
looks like (G Xq6,)/6 = é /G, ina neighbourho);d of w(x) . Thus the
first statement ;ﬂlows. It is now clear that if a slice type has QM,

then so do all greater slice types, so the second statement follows

also. #}

For the rest of this section we assume G = 51 or Zn (n>2).

Further we assume G acts effectively on X and that X/G is connec-
ted; this is no real restriction as one can always reduce to this case.
It follows that for any [U,6]1eA(X) , 6 is a faithful representation
(for if H = kernéd , then by the slice theorem, since G is commu-
tative, H acts trivially on an open neighbourhood of an orbit, énd
since X/G is connected it follows that H acts trivially on all of

x )

Notation: The 2-dimensional representation of S‘l defined by

(eZNit,z)Héz'iptz for zeC=TR

will be denoted by Jp . The
trivial representation of dimension n is denoted by n . Thus for

e'xa.up;l.e dpc a’qo 1 is the representation



cos 2mpt -sin 2npt 0 (o] (o]
omit sin 2mpt cos 2mpt [¢] (0] [0] 5
e — 0 0 cos 2mqt -sin 2mgt O e GL(IR’)
(0] 0 sin 2nqt cos2wmgt O
[¢] 0o 0 0o 1

If & is a representation of S1, we denote the representation
of Zn obtained by restriction also by ¢

The representations o‘p give all irreducible representations
of S1 and of Zn , n odd. For n even there is also the 1-dimen-
sional representation T of 3 , defined by 7(g) = =1¢0(1) ,
where g is a generator of Zn . Note that 7r@7r = dn/z .

It follows that every representation of S’I is equivalent to

one of the form 6 96 ©...8&6_ &k , and every representation of
P, P, P,

Zn is equivalent to one of the form d 9...edp &k or
1 by

e Sp Do eo’p ®k , where the latter case can of course only occur
1  J

for n even. The representation of S‘l is faithful if and only if
gcd(p,],..-,pr) = 1, and the representation of Zn is faithful if
and only if gcd(p,l, od ,pr,n) =1 or gcd(p_l' e ,pr,n/Z) = 1 res-

pectively.

Theorem 2.2. (i). Let gcd(p_‘, 600 ,pr,n) =1 and define for i=1,..,r
§i=gcd(p1, o ,f)i, e spy0). Then for r>1

®k] has QM & 5152._ 51_ =n .

3 cee
L n,6p1$ @ 6Pr

(ii), Let gcd(p1, vos 'pr‘M)= 1 and define for i=1,e.,r
'ﬁi:gcd(p,l, e 'ii' & ,pr,m) . Then for r>0

[Zam,rocp1Q...$6prek] has QM &> r=0, or m is

odd, the p; are even, and 5152 o Er =m.
(ii). Let gcd(p.], oo ,pr) =1 . Then

(s',6 ®...06 ©k] has QM & r<2 .
Pq Pr

We first need the following lemma.

Lemma 2.3. Let & be a representation in ]Rl of the compact lie

g an invariant sphere in ]Rl o Then

1-
group G, S¢=8
for any k , if (sek)/G is a manifold, then S46/G is

a 2-homology sphere.

Proof: (6e@k)/G = IR]'/Gx]Rk. IRl/G is homeomorphic to the open cone
c(s4/a) over S6/G , so (4@k)/G ¥ C(36¢/6) xT'. 86/c admits a
finite triangulation ([16]). Thus the result follows by lemma 2 of
Mostert [10],‘ which states that for any finite complex N , if CNX ®

is a manifold, then N is a 2-homology sphere. |}

Proof of theorem é.Z. Suppose the cyclic group zp acts effectively

by 6q on ¢ . Then the map 2 — Z°

from ¢ to ¢ induces a homeo-
morphism

7y, ¢/z, =¢.
It would be more exact to write ‘Pp'q , . but our notation leads to no
ambiguity.

Proof of (i). Let ¢, , 1<i<r , be r copiesof ¢ . 2  actson

Vi=®, X o XC x]!!k by 6 @eee®6_ Sk .
1 T - Pq L

P
Note that the Ei are pairwise coprime and divide n . Hence

“we p. =: p divi o = c . We consider
PqP, o Py =5 P divides n and 2}-)1x Xzi’r zi_zn

first the action of this subgroup on V . 25 acts trivially on Gj
i

for i#j and acts by o’pi on ¢i . Hence v/z;):

¢1/2§1x...><¢1_/zl_)erRk = cflxc’zx...xc;xmk, where the Gi are

r copies of ¢ , and the homeomorphism Gi/zi.gd:;. is ‘P_ﬁi . In
i

2r+k
9

particular if P=n then V/In = \T/zﬁ = IR proving the



sufficiency of the conditi?n.

The converse is by induction on r . If r=1 , - then
(c xm“)/zn= C/BnX]Rk= ¢ xR since 51 =n for r=1, statement
(i) holds in this case.

Suppose r>1 and [Zn"p T osp ®k] has QM. Then all
1 X

greater slice types have QM, and by §1.3 these may be considered as
slice types of the zn-manifold V=(:1 Xooo x(:rxllRk - The slice type

at (1,0,0.,0) eV is [2 ,206 ®...06 okl » where gq,=gcd(p,,n
9 P, P, Ak 1

Since ng(PZ’pj’m'ﬁj'ﬁ"pr’(h) = SCd(Pzr ~'1f’j"“1prvp1;n) = 53 ’
induction hypothesis implies that 5253.‘..51_: 44 - That is B/Py=q, -
Similarly f;/ﬁi:qi for each i , where qi=gcd(pi,n) =

The Zn—action on V induces a Tn/lﬁ = Zn/§ -action on V/ZI_J

and since v/zﬁ 2 CiX... xd:rx]Rk ,» Wwe have an induced Zn/p-actmn
on C:l Xooo XC;_ x]Rk . A simple calculation shows that this action is

given by épf‘@ ...e&p;ek , where p;=pif>i/§ for each i . But
pi=pipi/§=pi/qi , which is coprime to n/qi , as qi=gcd(pi,n) .
Hence p{ is coprime to (n/qi)/§i=n/f> for each i . It follows

that the- Zn/I_)-action is free on any invariant sphere S”=’Szr'1 in
c; Htes xc; . Thus for such an S , S/zn/ﬁ has fundamental group
zn/ﬁ (recall that r>1), so 51(s/zn/p,z) = Zn/§ . But V/Zl1 =

(V/2)/3, 0 = (€5 x... ﬁgrxmk)/zn/i , and by assumption this is a
mahifold. By lemma 2.3 ﬁ@n/p is a 2-homology sphere, so0 n =P .

This completes the proof of (i).

A

%’ha proofs of (i) and (iii) are

3

very similar, so we omit some of the de'

Proof of (ii). 2, actson V :=IRXC,

by, o 2m )
osp ®k . If the conditions of the theorem are satisfied, then
r

*;%;. x!l:rxmk by 7e 5po...9

9 Institut fir Angewandie Mathematik
der Universilét Bonn

2m b

2 = 22 XZ_ XeooX Zl_) , and similarly to the proof of sufficiency
1 r
for part (i), V/By, = (R/3)) X (01/2 ) x oo x (€, /2; ) X ®, which

is a manifold (with boundary).

Conversely suppose [2, ,7@6_®...®6_ @k] has QM. The
2m P, P.

slice type of the 2, -manifold V in the point (1,0,.,0) eV is

[2 ,106P ®...06) ®k] . Since this must have QM, P P,~B. =m,
m
1 5

by part (i).

It follows that Zp1x eee X Zﬁ_r= Zm < 22111 and V/Zul =

R x(C,/25 ) x... x (€, /2 ) xH=RxC,x...xC,x K", where, as before,
1 2

the C; are r copies of C .
Now V/ZZm = (v/zm)/zz = (]Rxcf‘ Xis s xc;x]Rk)/z , where one

checks that 2 acts by T®é_.-®...06 .k , with p£=pi§i/m for

2 ] r.

each i . Without loss of generality suppose pi is odd for 1<ifs

and even for s+1<i<r , with O0<s<r . Then 'Yaep.e...osp,ek
1 -

=0 (167)®...0 (*¢T) ®2@ ... 260k with s summands 7&T and

A .
r-s summands 2 . Taking an invariant sphere S £ S S in t®...®T N

.ne has S/z2 = PZs(IR) , which is not a 2-homology sphere unless

s=0 . Hence by lemma 2.3, s=0, so all the p:‘.L are even. Since

. are even. The condition gcd(pqye-,p,m)
1

= p;(m/ﬁi) , all the p,
= 1 now yields that m is odd.

- & 1
Proof of (iii). Let B; = gcd(p.],...,pi,...,pn) for 1<i<r . S8 acts

on V=C_X.coXC x]Rk by ¢ ®...@6_ &k . The slice type in the
g r Pq Pr

point (1,0,-...,0? is [2p1.106p20...06prek] , 8o by part (i) we

must have Py = f;af:}...ir for QM. That is p1=§/§1 , where D=
B4PyB, ., Similarly p; =B/P; for each i .

3_ Xeee XB_ = zp c s1, and as before z§ acts trivially on
p1 Pr e 5
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every C. with j#i . Hence V/2_= (C,/2_ ) X...Xx(C /a_)x]Rk ES
3 P L 7P,

Cax...xc;xll'\’k, where the C; are r copies of € . The induced

action of S1/Z§ = S‘I

on c:‘x.'..xc’x]Rk is by 6 .®...06 .0k ,
r p1

r
where p;=Pii’i/§= 1 for each i .

2r-1

Hence for an invariant sphere

. ¥ . ¢ 1 e
S s in €ix...xC , s/(s/zi)_P

-1(€) . (complex projective

space of C-dimension r-1). This is a 2-homology sphere if and only

if r<2, and for r<2 it is even a topological sphere. The result

now follows by lemma 2.3, since V/S‘l 4 (c; 36506 xc;_ XIRk)/(S1/2§) .l

In the above proof one always has a natural differentiable struc-
ture on the quotient o/U . Further J/U is a manifold with non-empty
boundary only in case (ii). Hence one has the corollary to the above

proof:

Corollary 2.4. If X is a differentiable G-manifold with G= s1 or
G cyclic, and X/G is a topological manifold, then

X/G has a natural structure of a differentiable mani<

fold such that the orbit map X— X/G is differentiable.
Further X/G has non-empty boundary if ax?d only if
slice types of type (ii) of theorem 2.2 éccur.

In particular if G=8" and x is orientable and X/G is a

manifold, then X/G has no boundary, for if [U,g] is a slice type

of type (i) of theorem 2.2, then s! Xy ¢ is non-orientable.

An easily deducible consequence of theorem 2.2 is that for G =

S1 and G

cyclic, the property that a G-manifold have a manifold as
orbit space is inherited by invariant submanifolds. It seems likely

that this holds much more generally.

11

53-. Application to Brieskorn - Hirzebruch manifolds

Let a= (ao, eoe ,an) be an (n+1)-tuple of positive integers

(n22) .

1
ntlE

a, ay
X(a) = { ze€C zo"+...+zn—0}

n+1

is a non-singular variety in C if some a; = 1, otherwise it ha

just one singular point O=(0,..,0) . Let

S(a) = x(a) N1 |

+1 n+1

where sZn is the sphere Z lzi12= 1 in €7 . 3(a) is .ji.n a

natural way a closed connected oriented differentiable

These manifolds 2 (a) have been studied extensively by B?ieskorn,

Hirzebruch, Milnor, and others (see for instance [2],[6],[8]).
Let

(3.1) a; = 1cm(a°, e ,an)/ai y (i=0, 4. ,n) .

There is a well known effective S -action on >(a) given by

i ia, 2nialt’
ezm't(zo, e ,zn) = (eFAast) ,e z_)

cee .

0!

1
Let V(a) denote the orbit space 3(a)/sS .

Question. When is V(a) =Z(a)/s1 a manifold ?

To answer this question we must first calculate the slice dia-

1

gram A(S1,Z(a)) . Observe that S' acts on ©2*

tation 6 = 6a.e...$68. , and that 582+1 .nd S(a) . are invarian
o n N

n+1

submanifolds of C under this action. The given action on X (a)

1,

A(s1,6) is just the set of all

just the restriction to 3 (a) of this action on

;
The slice diagram A(s’,e®")=

1
S1 slice types which are greater than or equal to [s',6] .

=3

(2n-1)-manifold.

by the represen-

t

is
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Lemma 3.1. A(s',5(a)) = {[U,7]i[V,7e@3]eA(s",6)].
The feet of A(S1,Z(a)) are the slice types

(v, .,6. .1=[3 50 6.9...02.0-.92,9...94,3
1313 gcd(ai,aj)' aj a; aj a "’

with 0<i<j<n . The corresponding orbit bundles are

Z(a) - {(or"'vol :90, e 3,0 .90y coe .
[Ui j'di J] ) szv ywe30) €2(a)}

1
Proof. The foot [S',6] of A(S',6) has orbit bundle {0}, which
does not intersect 3(a) . Any-other slice type [U,*] eA(S1,6) has
the form

(v, =(3

gcd(a;,m,a];)'s . o.--eo'a,e(ak—ﬂ] s

) 241 n )
with O<k<n, or can be obtained from such a slice type by permuting

n+1

the indices. The corresponding orbit bundle in C is
n+1 n+l
C [U_'ﬂ=[(zo,...,zk,o....,o)ec* |z, #0 for 0<i<k}.

For k=0 this has empty intersection with 3(a) . For k>0

an:I"r] NZ(a) is an open subspace of {(zo,...,zk,o,-..o) e2(a)}, and
thg latter is diffeomorphic to Z(ao,...,ak), which has dimension

2k-1 . Hence for k>0 an;’t] NZ(a) has codimension 3 in c"[*;'ﬂ.
This is equal to the codimension of Z(a) in c"”. The lemma now

follows by part 1.4 of §1. |l

Dgfine
(3.2) t; = gcd(a;, SOC ,E;. seeya) ,  (i=0,..,n).

Then by theorem 2.2 the foot [U, _-;"i J.:| of A(S1.Z(a)) has QM if

and only if

(3.3) 7 = gcd_(a;,a"_j) .

ki,
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Hence by theorem 2.1 :

Lemma 3.2. V(a) is a manifold if and only if (3.3) holds for all

i,je {0,0c.,n} with i#3 . |l

An alternative description of V(a)

The additive group € acts on X(a) - {0} by

t(zo, eeeyzy) = (et/a"zo, ,’et/a"zn)

Each orbit of this act;lon intersects 2%(a) cX(a) - {0} in an orbit of
the S'-action on J(a) , so the inclusion J(a) €X(a)- {0} induces
a homeomorphism
V(a) =3(a)/s" — (x(a) - {0} /6 ,

of the orbit spaces. We identify V(a) with (X(a)-{0})/€ by this
mape.

Brieskorn and Van de Ven [3] have remarked that V(a) carries
a natural complex structure such that the orbit map X(a) - {0} = V(a)
is holomorphic, and that V(a) is a projective algebraic complex space
with this structure. They give the following necessar& and sufficient

condition that this complex structure be non-singular:
For every subset {io,...,ik} of {0,e.,n} with k>1

lem(ag, ooe ,an) _ I I lcméag, <oe ,8.)
lcmZai‘, coe ,ai‘? 1cm(a,,~.,§i,‘...,a,,5

- 18 if,y--+5 4

(3.4)

Proposition 3.3. V(a) is a manifold if and only if the complex

structure on V(a) is non-singular.

Proof. For convenient reference we mention here the trivial number

theoretic lemma:
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is a tuple of divisors of an integer m ,

Lemma 3.4. If (¢, e ,cp)
then gcd(m/co, oce ,m/ck) = m/lcm(co, A0 'ck) <l

It follows that (3.4) can be written as:

For every subset {io,...,ik} of {Oyee,n} with k>1
(3.5)

cdlal , eee 48l ) = T1 o e
Eas 1% T T S A

the t;

; are pairwise coprime. It

Since ng(a;, olo o ,a;) = ALl
follows that (3.5) already holds if one only requires it to hold for
two element subsets of {O,e.,n} (k=1). By lemma 3.2, this proves the

proposition. |l

The following theorem gives a general method for constructing

tuples (ao, con ,an) such that V(a) 1is a manifold.

Theorem 3.5. V(ao, eoo ,an) is a wifold if and only if there exist
positive integers d, 551 ti' (0<i<n) satisfying:
(i). the t; are pairwise coprime,

(i). the s; are pairwise coprime,

(). ged(sy,t;) =1 (0<i<n),

I oe i<n).
(). a; =ds 5 wes; qt;8; qeeS) (0<is<n)

Note that the conditions (i) to (i) imply that

(3.6) d =gcd(a°, Qoo ,an) S
(3.7) &, = 380dla,miBysmany)
(3.8) al =t tyeety 48:t; qeet; o

and that the t, are as in (3.2). In particular d, s., t., (0<i<n)

st M0

are uniquely defined by the conditions.

Proof of theorem 3.5. If conditions (i) to (iv) hold then (3.3)

follows from (3.8) and the fact that sitj for

is coprime to s.t.
SJ1

i#j . Hence by lemma 3.2, V(a) is then a manifold.

Suppose conversely that (3.3) holds for all i,j with

0<i<jsn . Define t;, as in (3.2) and define s; by

(3.9) s, = a;/ﬂ ty .

* *ri

(3.3) implies that for 0<i<j<n , a;/  t, is coprime to

kpis]
a-:j/k’;u',j t, ;3 that is sitj is coprime to sjti . This implies (i),
(i), and (iii). Further (3.9) implies (3.8), so using (i), (i), and
(#ii) one has
., n n
(3.10) lem(al, «-- ,a]) = Hti'l;l;si .

Lemma 3.4 gives gcd(ao, cee ,an) = lcm(ao, cee ,an)/lcm(a;, 006 .a;) ]

p » n
whence follows lcm(a , +ee,a ) =dJlt. Jls, . (3.1) and (3.8) now
o n isp 1ie0 1

give () . |l

§h. Some properties of the V(a)

In this section we give a simple sufficient condition for

V(ao, see ,an) and V(bo, s ,bn) to be biholomorphically equivalent.

It would be of interest to know more about the complex spaces V(a) ,

however we only obtain complete results in very special cases.

Let (bo, ceo ’bn) and (do, voe ’dn) be (n+1)-tuples of

positive integers (n>2), and let

(4.1) (ao, ,an) = (bd,

0dor °°° 'bndn) .
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Let a; and t; (0<i<n) be defined as in (3.1) and (3.2).
The holomorphic map
?: X(ao, ,an) — X(bo, ,bn)
defined by
?(zo, 000 ,zn) = (z:", Q00 ,zﬁ“)
is ﬂ'-equivariant; and hence induces a map
Y: V(ao, ,an) —.> V(bo, ,bn)

of the orbit spaces.

Theorem 4.1. Y is biholomorphic if and only if di’ divides ti for

each i .
Proof. Note that Y is a ramified covering, so it is biholomorphic
if and only if it is bijective.

Let Gd be the group Zd x...de ’

and let Wy be a genera-
o n

tor of 2; for each i . Gy acts on X(a) by
i

( k K eZnik,/d.,z

2rik,/d
"’oov (X vwn )(Zog cee ,Zn) = ( ,e mik, / nzn)

P

The orbits of this action are Jjust the fibres of the map ¢ defined
above, so ¢ induces a bijective map X(a)/Gd—-)X(b) . One thus has
a commutative diagram

x(a) —Z—5 x(v)

%
X(a)/Gd
The Gd-action on X(a) is C-equivariant, so it induces a

Gq-action on V(a) = X(a) - {0}/€ . The above diagram induces a commu-

tative diagram
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v(a) —Y v

/

v(a) /G,
Thus ‘f' is bijective if and only if the Gd—action on V(a) is tri-
vial.

Let b;:lcm(bo, soe 'bn)/bi for each i . A simple calculation
shows that an element of G, acts trivially ox'x v(a) :j.f and only if
it ig in the cyclic subgroup generated by (w:", coe .HZ") €Gy , and
thi‘s subgroup has order lcm(ao, coe ,an)/lcm(bo, &0 ,bn) . Hence,

since Gd has order ﬁdi ’

n
(4.2) lem(ay «o- ya,)/lem(b , ... ,b)) divides Iz';di 5
and G, acts trivially on V(a) if and only if
n
(4.3) lcm(ao, < o ,an)/lcm(bo, - 'bn) = Edi e

Suppose (4.3) holds. Then lcm(ao, 9 ,an) =
lom(b y ooe ,bn)fl;di , so a"_j=1cm(b°, ,bn)f!di/bjdj=b3;[:§di c
Hence a; divides aa if j#i , so it divides ti=]]$l[nh.:i .
Conversely suppose di divides ti for each i . Since the

3 : PR 7 ifj t., divides
t, are pairwise coprime and divide 2} for i#j, 3;[- i

a.fj . Hence TTdi divides a:_j . But a&.:lcm(ao, cee ,aln)/bjd;i , 80
i+ N

ivi ( a)/b, . That is }Td. divides

dj.[?j-di divides lcm 8y eee @y 3 ey
3
lcm(ao, Yoo ,an)/b:j for each j , so it divides
i ual to

ggd(lcm(ao, eee ,an)/bj) . By lemma 3.4, the latter is eq

o¢jsn

].cm(ao, ,an)/lcm(bo, ,bn) . With (4.2) this gives (4.3). |l
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Suppose (ao, cee ,an) satisfies the condition of theorem 3.5;

that is V(ao, sun ,an) is a manifold. Taking d; =t

i in the previous

theorem gives

Corollary 4.2. Up to biholomorphic equivalence the complex manifold
V(a) of theorem 3.5 depends only on the values of d

and the s; (0<i<n), and not on the values of the ty

Suppose V(a) is a manifold, and the notation is as in theorem

3.5. Then

Example 4.3. V(to,sot,l, e 48t ) T Pn_1(01) (complex projective

space)

Example 4.4, V(dto,dt.], 000 ,dtn) ¥ Hy; (the hypersurface of order d
in Pn(C) defined by the homogeneous equation

d d
Zo+eeetz =0 ).

vProof. By corollary 4.2 we may assume t°= t1 = eee = tn= 1 . The above
biholomorphic equivalences are induced by the maps Z(1,so, cee ,so)—>
IPn_1(C) defined by (zo, eee sz )<z, ... 12, >, and

3(a,d, ... ) — B CP (€) defined by (2, eer y2.) > <2y eev y2,>. I

Remark. If J(a) is a @homology sphere and V(a) is a .manifold,
then V(a) =[Pn_1(c) , or n is even and V(a) =H, '(complex quadric).
Indeed, using the calculations in Hirzebruch- Mayer [8] (§8.1
and theorem 13.3) one can show that these conditions lead (after sui-
table permutation. oij indices) to example 4.3, or to example 4.4 with n
even and d=2.
If 2(a) is a homotopy sphere and V(a) is a manifold, then

.(€) (see [31).

similar considerations show V(a) = P4

[

lastitug g,
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Chapter II: 3-dimensional S1-manifolds

§5. Introduction

In this chapter we discuss the Seifert - Raymond classification
[, [14] , [15], of 3-dimensional 51-manifolds, and show how the
s1-manifolds Z(ao,a,],az) fit into this classification. We are only

interested in oriented closed 3-dimensional differentiable effective

S1-manifolds with no i‘ixpoints. There are then no special exceptional

orbit;.s (orbits with slice type [ZZ,‘T‘Q 1] ), and the orbit space is a
closed oriented surface. This can easily be seen directly, and also
follows i.mmediately from the Raymond classification.

orh’;\ ,I;aymond [11] constructg a set of "standard actions'" and shows
that each 3-dimensional S1-manifold ]:.5 .equivariantly homeomorphic to
precisely one such standard action. To simplify later ‘calculations we
extend Raymond's list of standard actions. We must then say to which

of Raymond's standard actions any action from the extended list is

equivalent. This is done by corollary 7.3.

Since it is necessary to keep a careful track of orientations,

we use the following conventions.

Orientation conventions. If M is an oriented manifold, give the boun-
dary M the orientation which, when followed by an inward normal to
dM , gives the orientation of M (i.e, M is locally orientation pre-
servingly diffeomorphic to an open subset of IR:‘: {xe R x, 20 5
where R® and B~ 'cE® have their usual orientations).

If M is an oriented S1—manifold and M/s'I is an orientable



manifold, orient M/S1 so that the orientation of M/S1 followed by
the natural orientation of the orbits gives the orientation of M . -

We stress that this fixing of orientation conventions is for
practical purposes only; the results are independent of the orientation

conventions used in their derivation.

§6. The standard actions

Let X = ((g),(-",l,ﬁ,]), 580 ,(v‘n,ﬁn)) be a tuple of integers with
g=>0 , p(i>0 for each i , and di . coprime to Fi for each i .
We permit ﬂi to be positive, negative, or (if o(i=1) zero.

We shall construct a 3-dimensional s'-manifold X(¥) , whose
orbit structure -is determined by the ('(i”‘i) with “1#1- , and

whose orbit space is an oriented surface of genus g -

For j=lye,n let Vj be the integer with O<Vj5_-(j and

(6.1) ﬁj‘)j =1 mod«y .
Let

(BYi = 1)
(6.2) pd = —J;T'—

Let T:i be a copy of the solid torus DZ-)(S1 , parametrised by

(rels,elw) with 0<r<1 . Define an s'-action on Tj by

200 1Ty 20 (¥ reis,z“j o) , Uzl=1 .

(6.3) z(re” ,e

If "(j;£1 , the centre circle 0j ={o} x s' is an exceptional orbit

with slice type [245’6\’5] . All other orbits are principal orbits.
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Let Qj be the curve in the boundary of Tj given by

6 Q= (M1 | ogo<am) con, .

Qj is a section to the S1-action in ij . This is easily checked,

but it also follows from the discussion of the map (Pj defined below.

Let X* be an oriented surface of genus g . Choose n
points x;, oo ,x; in X* and remove the interior of a small closed
disc neighbourhood DJ‘. of each of these points. Call the resulting
surface with boundary x; . Let

1
e *
xo = xoxs

with the obvious § -action. Let
= X* ]
R = xox{ﬂ cx -
R is a section to the S1-action on xo .

The boundary of X; consists of n circles S;, e ,S;, so
the boundary of xo consists of the n tori S; X s1, o, ’sx.x X 51 . In
each of these boundary components we have the section

s3x (1) = (5;xsHNR to the s'-action.

We sew the solid torus Tj equivariantly into Xo by matching
the orbits in Tj with the orbits in SEXS1 and matching Qj with
's;x{ﬂ s £ 4 s;xs'l is parametrised by (et%el") ., where increas-
ing € orients SJ'. as a boundary component of x; , then a suitable

identification map

1
. *
‘PJ .ijs -)MJ.
is given by

(eie'eiv) — (ei(/’;e + v,-‘f’)’ei(ﬁ;9+o(,.¥)) )
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Indeed, this map is clearly equivariant, and maps Sg x {1} onto Q. -
J
It is bijective and orientation reversing since 'Fi :’l = -1 by
B %G
(6.2) .

The manifold
X(¥) =X UT,UT U ... UT
o0g g, 2 o B

so obtained is the desired standard action.

Let Hj be the boundary of a slice Dj in Tj ;5 say
D, = {(re'®, el lo<r<1, 0s6<2m) (Y, fixed) and
M, = {(ei S,ei%) |0<f<2n} . Orient Mj by increasing € , that is
as the boundary of Dj , Wwhere D;j has the orientation which, when
followed by the natural orientatiom of an orbit through Dj , gives
the orientation of X(¥) . Let H be any orbit in )Tj , oriented by

the circle group. Orient Qj by decreasing O in (6.4), that is as a

boundary component of -R . One then has the homology relation in JT.
J

(6.5) M, ~x.Q. + p.H .
3 ~4%
It follows that if X = ((g),(1,b),(°<1,ﬁ1), ,(xn',sn)) with
0<ﬂj<xj for each j , then our construction of X(¥) coincides
with the construction ([17] §2) of Raymond's standard action

{b;(o,g,o,o);(v(1,ﬁ1), Sde ’(“n'Fn)} . Thus
Lemma 6.1. The standard action {b;(o,g,o,o);("(_l,ﬁ_l), e ,(v(n,/sn)}
of Raymond [11] is the standard action

X((g).(1,b),(°<1,ﬂ1), cee ,(-‘n,ﬁn)') constructed above. Il

Remark. In the above construction we specified very precisely what
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Q‘j should look like. However it suffices to specify only, as Raymond
(loc. cit.) does, that Qj be a section to the s'-action in a'rj
and satisfy the homology relation (6.5). In fact if Qj is as above,
and Q.:l is any other section which also satisfies (6.5), then it is
not hard to show that there is an equivariant homeomorphism of Tj

onto itself which maps Q; onto Q;] (see proof of Hilfsatz W im [151).

If Q& is smooth, there is even a diffeomorphism.

§7. The equivariént classification

Let X be any 3-dimensional closed oriented differentiable
effecf.ive 4S1-mar.|ifold without fixpoints. Let 0O,y e 0y (n>1) be
a non-empty set of orbits in X which includes all the exceptional
orbits of X . Let T1, e ,‘:l.‘n be small closed invariant tubular
neighbourhoods o: these orbits, and let

X, = X- (tu ... ut)

be obtained by removin_g the interior of each Ti from X .

xo is a free 3-dimensional S1-manifold witl: non-empty boundary,
so considered as a principal S1 fibre bundle over the orbit space x; ’
Io is the product bundle (principal S1-bundles over x; are class-
ified by. their characteristic class ¢4 EHZ(IS,Z) B X; , as a surface
with non-empty boundary, has HZ(X;,Z) =0 ) . Thus there exists a
section cho to the s1—action. R is oriented by the condition
that the natural homeomorphism R—)VX; be orientation preserving. It
is not necessary to require that R be smooth.

Let Qj =Rn?‘!j for each j , oriented as a boundary component

of -R . Let Dj be a slice in Tj , and orient Mj’-' anjca'rj as the
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boundary of Dj . Let H be an orbit in )Tj y with the natural
orientation. Since Q'j is a section to the s1-action in é'l’j oAt
is a conjugate curve to H , so the homology classes of Qj and H
freely generate H_I(QTJ.,Z) . We hence have a homology relation
(7.1) M. o x.Q. + B.H

f J 1% * P

in ij with uniquely defined coefficients.

Definition. (Xj,ﬁj) is the Seifert invariant pair of the orbit O‘_j

with respect to the partial section R in X .

An alternative description of the Seifert invariant

Let Bj be any curve in 3’1‘3. which is homologous in Tj to
the orbit Oj « Then Qj,H and Mj’Bj are both ordered pairs of con-
jugate curves in QTj and both determine the same orientation of JT, .
Hence
(7.2) By ~ -9,Q; - FjH
for some \)J. and f’j with

(7-3) I_:'; _5;' =+1 .

J
Then vj and . have the same meaning as in §6.)

(By replacing B, by Bj+sHj for some s , one may assume O0< Vj S«j.

Solving (7.1) and (7.2) for Q;j and H gives
(7.4) Qy ~ _Fju;j - A3y

(7.5) H o vj}(j +’(ij

Now M.~O0 and B,.O0, in T, , so in T,
J 5l J

/I)Sl//uf or E

Ngey,

pihid 0.17({/1,\
Qer Niversy. /ffaf,se ey

25 Qf 80/7,7 H

(7.6) Qj ~ -,ejoj )

7.7) H ~ D(joj -

(7.6) and (7.7) can be used as a definition of =, and ,?j . Geo-

J
metrically (7.7) says that the isotropy subgroup of the orbit Oj is
2. , and (7.6) says that Qj winds ﬁj times in the reverse direc-
!
b

tion around the tube Tj .

Theorem 7.1. Let X, R, 01, oo 'On be as at the beginning of this
section, and let = ((g),(-’<1,P1), Tile ,(«’(n,ﬂn)) ]
where g is the genus of the orbit space X*, and ti
(<.,P.) are the Seifert invariants of the orbits O,

12041
with respect to R . Then X is equivariantly diffeo-

morphic to the standard action X3 .

Proof. The proof that X is equivariantly homeomorphic to X(®) is
the same proof as for the Seifert-Raymond classification theorem (0s]
Satz 5, [14] Corollary 2b, [17] Theorem 2). By theorem 6 of [14],

two differentiable.}dimensional S1-manifolds which are equivariantly
homeomorphic are equivariantly diffeomorphic. Hence X is equivariantly

diffeomorphic to X(€) . |l

We now investigate under what conditions two standard actions

X(€) and X(¢) are equivariantly diffeomorphic. For brevity define

Definition. 3~ ¥ (¥ is equivalent to ¥') means X(¥) is equi-

variantly diffeomorphic to X(%') . More generally define

(S S RN CAN B P CAY A NN S

if always
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a6

S0, 6,80, e LB G ALy e (<, AD) o

~ (6gd, 6,80, e e 1aB) (B )y eee 2 (0 BD)

Lemma 7.2 ((1,b),(°".ﬁ5) ~ (6,p+bx) for any bs3 .

Proof. Let X be an oriemted 3-dimensional 81-manifold, and RCX’
a section to the 81-aoti.on oubtside the interiors of a set of small

invariant tubular meighbourhoods !'1, oo 'Tn of orbits 01, oo 'on of

X , as described at the beginning of this section. Assume O,I has F

Sei fertwinvardant -(‘1, P1) = (,f+ bx) with respect to R . It suffives

to show that we camn find a principal orbit 0O near 01 , smdll in=

vardentétabubems nedghbourhoods 'I.‘o and Tfl of Oo and O1 , and a

section R’ bo the § -action on X- ('i‘o U 'i'fl U ’i‘z V... U 'i‘n) such that
R” and R coincide outside a small neighbourhood of 01 , and the
Seifert invariants of Q and 0, with regpegt to R" are (1,b)

Let @ = RN, , orientedsas’a bousdary. GoppoRent ST R -
and («,p) respectively.

By §6 we may assume that T, is parametrised by (reie,eiw) 5 ‘By (26 3pghpmoleny FeinFio
0<r<1, with s'-action z(reie,eiv) = (z"reie,z“eiy) , where (7.8) Q ~ -(f+ )0,
(F+bdV =1 modet . Let T = ((re'?,e™ eyl 051‘5%} 22 Loty O nolds in T, , since f,= f+bx"c "Also, since 0, is a principal
be the orbit through the point (é,ﬂe T, , and let T  be the closed orbit; and any two principal orbits in T, are homologous, (7.7)
tubular neighbourhood of radius ‘;‘ around Oo . yields

The diagram on the following page shows 11.. ':I , and 'to (7.9) ()° ~o(01 .

for <=5, y=2 . The 'top and bottom of the cylinder are to be Let Qf‘ be a section to the s1-action in an‘ which runs §#

identified.

- tdmes;in the reverse direction around Tfl . That is, the relation

(7.499) Q:‘ ~ "F°1

holds in T'1 , and-hence also in T, .

1 N . o °, &
Let S be a section to the S -action in T,- (TOUT,‘) whick
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coincides with Q, on 9T, and with Q:‘ on ’)T:I , and put
R’= RUS . Let Q°=R' ﬂbTo , oriented as a boundary component of
-R".

By construction, O,] has Seifert invariant (%,8) with respect
to R, so it only remains to show that the Seifert invariant (“O,ﬁo)
of O  with respect to R” is (1,b) . «,=1 1is clear, since O 1is
a principal orbit. Further QO ~ Q"l_ Q1 in T’I , since Q_' - Q1 - QO =
38 ~ 0 . But Q-Q) ~ -(f+b0, - (~$0,) = -bx0, ~ -bO_ by (7.8),
(7.10), and (7.9), so Q ~ -bO_ in T, . Since the homomorphism
H,](TO,Z) —->H1(T1,Z) induced by the inclusion T CT, is injective,

Q’o 5 -bOo also holds in ‘1‘0 . Hence by (7.6) By = b . Il

Corollary 7.3. Let X-= ((g),("(,l.(!’,l+b1"(1), cee ,("‘n,ﬁn+bn"‘u),(’l,bn+1),

ceenpliob = )) awith o<,£j<o<j for each j=1,e.,n .

n+m
Then X(¥) is equivariantly diffeomorphic to
Raymond's standard action
(b;(o,g,0,0);(f",l,F_l), ,(ﬁn,ﬂn)} with

b=b1+b2_+ coe +bn+m .

Proof. Repeated application of lemma 7.2 gives that x .

((g)y(1vb1>y L y<1vbn)v(1’bn+1)» CLO v(11bn+m)1(d1'ﬁ1)v CRo »('(n'ﬂn))

~ ((g),(1,b1+b +...+bn

2 +

now follows by lemma 6.1. |l

Corollary 7.4. If X(¥) % X(%) , then X can be transformed into

¥* by transformations of the type given in lemma 7.2.

Proof. By the proof of corollary 7.3, both % and X’ can be trans-

m)‘("(’l'ﬁ'l)’ 553 ,(Nn,ﬂn)) , so the corollary
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formed into the standard form
((5)’(11b)v(°‘1’P1)| e ;(‘(n,[;n))
with 0.<ﬁj <°<j for each . j . Since by Raymond's classification

theorem this standard form is unique, the corollary follows. ||

§8. Quotients by cyclic groups

Let X be a 3-dimensional effective S1-manifold, and consider
the restricted action of a subgroup ZPCS1. The orbit space ){/2p
is again in a natural way an effective S1—manifold. The following

theorem will be useful later.

Theorem 8.1. If X & X((g),(=),£4), .. , (< ,A)) then
X/Zp 4 X((g),(o(f],)afl), o35 ,(a(;,p;)) where
("‘:j"’é) = (ﬁy 5 "(j,?.p ) for each j . In particular

if is coprime to . then (x,g]) = (e, %
E b 3 J'PJ) (J’p/ga)

Proof. (Notation as at the beginning of §7). Denote the orbit map

x--;x/zp by ™ and denote w)(:::/zsp by X", mR by R, -rrOj by

03 , and so on. R’ is a section to the s’ action on x- ('i‘f] Ueoo Ui";) :

and ™ maps R bijectively onto R’. Let («:].,p:].) be the Seifert
invariant of 03 with respect to R” for each j .

One sees easily that the order of the isotropy subgroup at the
;3 3

orbit O i < = L jie o
; is W » 80 o] W for each j (7.6) and

(7.7) give the following homology relations in Tj and T; H



(8.1) H ~x.0, ,
a8

8.2 B o 1xiy0)
{ ( ) "’(iyp J ’
8. .~ =BO.
®.3 o ~-FO;
8. o~ =BLO% .
(8.1) Q ~ -B39;
Further, since T maps Qj bijectively onto Q:j , and maps H as

a p-fold covering onto H",

®.5  ma; = Q

(8.6) T,H = pH ,

where 1T, is the homology map induced by 717 .

Applying T, to (8.1) and comparing with (8.2) gives

. O, = 27
8.7 .oJ'-(:-j%)-oJ

Now applying T, to (8.3) and comparing with (8.4) gives

SRR

as was to be proved. |l
Together with corollary 7.3, theorem 8.1 gives an algorithm for
computing the Seifert - Raymond classification of )(/Zp from that of X.

Similarly, but much more trivially
(8.8) =X(() (s Py eee ,(=<n,,9n)) = X((g) 4 (4= FB),y - ,(«n,_,sn)),

(compare Seifert [15], Satz 6).
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§9. The classification o:f {(a(;,a.],az)

Let (ao,a.l,az) be a triple of positive integers. Orient

3t

S(a_,a.,a,) as the boundary of the manifold ) o {(z ,2.,2 Yed |
ot 1rT2 0y 112

z,:°+ z':' + zg’ =0 , 0<%l‘zj|251 }e x'(a) has a canonical orienta-

tion induced by the complex structure in its interior. One can check

that this orientation of J(a) is compatible with the orientation of
v(a) = Z(a)/s1 induced by the complex structure on V(a) (modulo the
orientation conventions of §5). '

We recall the notation and facts of §3:

Notation:
(9.1) d = ged(a ,aay)
(9.2) a;:lcm(ao,a.‘,az)/ai , (i=0,1,2) ,

(9.3 t; = ged(aj,a) ({i,3,x}={0,1,2h) ,

(9.4) s, = %gcd(aj,ak) 9 ({i,j,k}={0,1,2}) .

1
Facts:
(9.5) a, = dt 55, , a;=dst.s,, a,-= ds s,t,
(9.6) al = s tyt,, aj = tgs.‘tz . a'z = tts,
(9.7) gcd(a;.afl,a’z) =1.

The §'-action on Z(ao,a1,a2) is given by

&2t 2nia; t eZma,tz )

2niajt
2) = (et z,e 1 >

t
(zo,z1.z
The facts (9.5) and (9.6) follow by theorem 3.5 and subsequent

comments, since V(a) is a manifold ; alternatively by elementary

number theory.
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~

By (9.7) we can find integers £, £, f, with

(9.8) poa;+ F1a; + Paa'z =1 .

Theorem 9.1. Z(a,a;,a,) ¥ x((g).dso(to,po),ds1(t1,,a1).dsz(t2,,92)) 5
where the f, are as in (9.8), and

1,42
g = 5(a%s 545, - d(s +8y+8;)) «+ 1 -

Here dsi(ti.Pi) of course means (ti,Pi), e ,(ti,ﬂi) ds; times. .

Corollary 9.2. Let 05p3 < tj with p"_]a.’j':’ 1 mod tj for j=0,1,2.
Let g= ;(dzs°s1sz - d(s°+s1+sa)) +1 . Then in Raymond's
notation ([11], [14])

1). If t°¢1, t#1, tz;ﬁ, then

3(a) = [b5(0,8,0,0)5ds (£ ,47),ds,(t1,7),ds,(t50F30)
with b= d(1-pla’ - p;a;-péaé)/tOHtZ .
then

2). It to;‘1, t1;l1, t2=1,

{v;(0,g,0,0) ;dso(to,ﬁ‘;).ds,] (t1.f:l)} 5

R

S(a)
with b= da(1-pla’-pjaj)/t ty -

3. It t°;€1, ty=t,=1, then

n

5(a) 2 {b;(0,g,0,0);ds (t 1)} »

with b= d(1-plal)/t, -

4). If t =t,=t,=1, then

o

n

3(a) 2 {d;(0,8,0,0);} -
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.2 (Notation as above). From (9.8) and (9.6) it

I
o
ty
o
=Y
o
o
H
o
)
[
o
lg ]
o

g
that .al =1 2 . = g5 ,
llollows a pJaJ mod tJ fr:;r each J Hence ’j ﬂ.] mod tJ

;gor eé.f:h i, say By = ﬁ3+kjtj - Observe that ds k4 dsgk,+dsyk, =
s (B, Bg)/to + A8, (B /by + dsy (B 1)/t = Als tytp(R- R +
8,6 R 1 B) + 858,80 (Bym B/t taty = Alag (8 =) + a3 (Bym ) +
-é(ﬂz-ﬂ'z))/tot1t2 = d(1 -'a;p; - aj ;- a5y)/t tyt, - Corollary 9.2 now
follows from theorem 9.1 by corollary 7.3, and by observing that if

1, then p;:o PO ||

The exceptional orbits of & = Z(ao,a1,a2) are among the orbits
with z =0 or z,=0 or z,=0 (see lemma 3.1). For z°=6 the

p orbits have isotropy subgroup zt. . There are dso such orbits, for
one verifies easily that two points (O,z,‘,zz) and (0,w1_,w2) ;'>f 2
are on the same orbit if and only if z:'/z;‘ =_w:'/w;‘ , and that

'I‘ the‘possible values of z:'/z? with (O.z1.2.2) € 3 are just the

~ ds,-th Toots of -1..

More generally for each j there are precisely

E dsJ orbits with zj =0, and they have isotropy subgroup ’t .
3

Let €>0 be small;y and let
Z, = {(zo,z,‘,za)eZl’ lgOISe or lz,l<e or lzZISe o

!21 is the union of small closed invariant tubular neighbourhoods of

‘the orbits mentioned above. Let

M
o
1

) T 2

E : . i, _ i6 _ i6
4 That is I = {(roe sTie ', roe YeZ | r 2e , T 2€ , T2 1
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i6 i6, i6, 3
R= {(re*®,r,e ",r e *)eZ_ | S B.6.=0 mod 2 }
N 1 ’Ty H 3 ng 3 R Let Tx be the component of 21 which containsg S1x In
where the Fj are as in (9.8). We claim that R is a section to the

81-action in Zo P

L]
ol

] ] {(erei® p o1 48,8 ¥) | i(6, +t,5,1)
Indeed, let x= (roeie’ ,r1e18' ,rzelo‘) € Io . Then the orbit > 208 ) logY<ar,

b 059<21r’ o<r<1 } )

through x is

A 2 1

. . . . . . The map ¢:T_—>D" xS iven b,

ity {(roel(e'+aov)'r1el(g,+,"r)'rzex(elnﬂ')” o<t<ar}, g x & y

ie i(6, i
) @(ere ,r1e1( ,+s,1:,_?')'r e1(91+t151‘f’)) = (reif it
,
R {(roei(a, +a,'}’)'r1ei (6, +a5¥) .raei(e’ +az‘t’)) |
. Let =T _NR . Then i i
Zﬂj(ejn;'r) =0 mod2m} . il =

: ig ; 5
Q 3 {(ere ,r_lel(sv +51t1f’)’r2e1(8‘+t,s,_r)) i

2 =3 z =
Now Zﬂj(oj+a;iy) = ijaj + (ijag)v = ijé’j +¢ by (9.8), so
; B8 +'P1(91+s1t2‘f’) + ﬂ2(92+t152v’) =0 mod2r } .

2 2
Z‘Bj(ej+a"_j‘f')50 mod 2r  if and only if ‘f’!-z,gjaj mod 2 . Hence 4
g : If one defines /£ =-fs,t_ - At
s'xNR contains one and only one point, as was to be shown. In fact i © 181%27 Atq%2 0 them by (9.'9) BE + F1(51+s1t2'f’)
*fz(gz*t-lsa'f’) =0 mod2w can be written as = .

: B0~ £¥=0 mod2m . Hence

R is clearly even a smooth section.

?Q = {*%,e!") | BO - F ¥=0 mod2m}
Part I. Calculation of the Seifert invariants. o o ’

Let x= (O.r,leie' ,rzeia") ¢2 . The orbit through x is jiiich can also be written
; : e .10) g = {(eif® 43R0 |

. 0<6<

il {(o'r1e1(9.+a,Y)'22°1(0.+a.?’)) log¥<ar} . Y ’ <6<or} .
The orbit H through the poi i6, i8,
- . . . point (e,r.e*”",r_e*%)
As ¥ runs from O to 2w (o,r 01(9' +alf) o elw1 +a,$’) runs 1 2 s

) 1 2
H

Tast i(8,+asy) 5 (0 +a’
{(ee™ 7, r o™ t8 vrzel( =8Py | ocp<ar )

around S1x to times, so

. . . . iag¥ i(6, +5,t,to¥) i(e
s i(e, +a.Y’/to)'r2°1(9;+a;7/t¢)) log¥<ar} {(ee yTgel LT Eeae ,rael( l"'sl"”‘«"')) los¥<aor} ,

[(O,r1e

EICRIANY .rzei("= +ts) ) jocy<an}, QR 1o merped by ¢ onto

{(o,r,
] (9.11 - iaZp ity
parametrised as a circle by o<¥<2mr. By replacing x by a different } ) PH = {(e%7 ™) jogy<ar] .

oint on the orbit if necess we may assume Note that © = - .
P B 2 Aoao "oto - )soa'o"' (’8151t2+/’2t182)t° =

(9.9) 104+ £;0, B0 mod 2m . ‘;"; Pay+ Aas , so by (9.8)
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(9.12) pal - £t =1 - )
°° AL e without this restriction.

Let M Dbe the boundary of a slice in Tx , say ¢M equal to Let Ja be the group ring of the group G 2
= Xeee X2
a a, a,’

n

ie iV, 9 . 28 .
(%67 ) Yo fixed, in (D" xS ) . Then (9.10), and Ia the annulator ideal of the element (1-w_)(1-w_.) e (1-w ) e d
: ) () 4t 8 asn a

the curve

(9.11), and (9.12) imply the following homology relation in 3T, @ ("i a generator of 2 ).
: a;

As a Z-module J_/I i
, 1;['(;1-1) ) a/ a 18 free of rank
Mo tton+ POH "
Let w = w wiew and let
where the sign depends on the orientation of Qx . Comparing with L

(7.1) shows that the sign should be positive, and that the Seifert 1-w 3 Ja/Ia_)J /1
a’"a

a " 1 -
invariant of the o.rb:.t slx with respect to R is (to,ﬂo) . be miltiplication with 1-w . Then ([2] §2)

Similarly also for j=1,2, the Seifert invariant of each of the dsj
- 4

. H.(Z(a)) =0 for i#O .
-1 -1 s
orbits with zj=0 is (tj,ﬂj) with respect to R . = #0,n-1,n,20-1 3

H =
Theorem 7.1 now shows that n-‘l(i(a)) = cokern 1-w ;

Hn(Z(a)) = kernl-w

(9.13) s = x((g) ,dso(to. Fo).ds.'(t.l. F.l),dsa(tz, ﬂz)) N
' 1 . ) ' ) In the proof :
where only the gemus g of /8 = V(ao.a.].az) remains to be deter- proof of lemma 4 of [2], Brieskorn shows that the eigen-

values of th i
e e endomorphism 1-w of Ja/Ia are the numbers

1'}1.‘}?.]., cee }i" 0<i <
Part II. Determination of genus V(a_,aq,a,) - @ a k%
Part - G of St=2 ,
i i 5 i ~ where _ o2mi/a . .
We -calculate the homology of Z in two different ways Comparing ] }k e k . A simple counting argument shows that precisely

will give the value of g - ¢ of these eigenvalues are equal to zero, where

1{=_“2Lan__). 8g e A
Yom(a, , e, a,) “ 7 Z 2 5 o0 B

T 15‘(%’-'0.3‘,-.'3_”)
i e d
see i eee ey F
D e e ven BEMTORRS (1 g 4B
1

(_1)n+1

§10. Homology of certain manifolds

In this section all homology is with integer coefficients.

Homology of Z(a., el rag) Gt ngRl. Hn._1(z.(a)) - 3@ Torsion

We summarise some of the results of Brieskorn [2] . Brieskorn

Hn(S(a)) = 2

there umes that .>1 for each i but what we need is valid
assumes that a; ’ : where 3 means the sum of w copies of 3 .




38
39
For n=2 we have in.the notation of (9.1) to (9.4) that 11 1%
2 q ; cee
a1az/lcm(a°,a1.a2) = d% 5.5, and ajak/lcm(aj,ak) = ds; ({i,j,k} o 2‘ o g ;:
A=
{011p2]). s0 . M
p 5
= d503152-(dso+ds1+d82)¢3-1 5 00 ... x4 s

That is which has determinant (expanding by the first row)

(10.1) H,(C(a ,a.,a,)) = (a%s s.s -d(s_+s,+s,) +2) 2 ® Torsion .
1 0?7172 0-1°2 o "1 72 (10.5) 1Al = (- 1)n_1ZF B e :
i n

112

Homology of X((g), (= ,81), «v0 ,(Xn, An)) Now let X = 3(a o13708,) « By (9.13)

Let X = X((E)y("(ﬂ :B1)v cee '(’(nvlen)) . An elementary applica Xis x((3)'dso(to’po)’ds1(1‘:1”91)’dsZ(tZ’ pZ)) J

tion of the Van Kampen theorem to the construction (§6) of X gives o in this case

that the fundamental group of X has a presentation

|5 4. 9. oo oo eee 1 0
=5 1 A t, O
(10.2) 1T1(x),\=:< si,_bi,qj,hlﬂ,,[ai,h],[bi,h],[qj,h],qj‘ h3i> Y t g /;-.
where 1i=1,2ye048 5 j=Tye,n ; and T, = q1...qn[a1,b1]...[a ,b 1 (se % o
8 8 (10.6) A= t, vee 0 R
also Seifert [151 §10). Here the letters are chosen to suggest the t, ... vee 0 B
gqometr:.c 1ntergretat10n of the generators. The a; and bi come fro & .‘, .
. t, eee 0 B
‘tbe)ﬁmdamental\goup of the surface X x/s . £, e O A
-
Abeliani gives that H1(X) has the abelian presentation A .
Ty o o cee t, Pa s
H <78, ,b. Q. h | Qb e + O-«q+ph 0>.
1 oot g 9 =
b i'7it 3 J and by (10.5), (9.2), and (9.8)

be obtained directly by the Mayer-Vietoris sequence) a a6 4 4. :
S, - s, ,ds s, .ds, -1 ds
1Al = ;n-_(deo(ﬂoto tt,0) +ds1(p1t° t t; )+

ds,  ds, .ds, -1
ds, (Bt ™t Tty ))

ds, -1 ds -1,ds,-1
= tdto Tt (s p°t1t2+s1p1t 2% 8585t t,)
= < Q. h | Q4 e + =0o( +f.h=0 > . d-1d- -
aj0b 1 ay 9, =0, <Gay+fy = xdt 5b i ds’ 1(,e°a *+ Bjal + Byay)

& The relation matrix of Hfl is

ds,-1,ds,-1,ds,-1
tdto o tyr

This is not equal to zero, so E." is a torsion group, so by (10.3)




Institut fGr Angewomdfe Mathemati®
" der Universitdt Bonn

Hy (f(aog&,'&z)) = 2g%e Torsion . Chapter IT : Involutions and the Hirzebruch invariant

Comparing with (10.1) gives

g = 32-(&2503132- d(s°+s1+sa) +2) ,
Introduction
as was to be shown. This completes the proof of theorem 9.1. ||

‘ . Let X be a closed oriented differentiable (4k-1)-dimensional

~manifold, and J:X— X an orientation preserving fixpoint free
Remark. By reducing the matrix (10.6) to diagonal form ome can calcu- e A ng po

q - differentiable involution on X . Hirzebruch [6] has defined in-
late H, (3(a ,a1,a2)) explicitely in normal form. Assuming without , an
o

; » variant =(X,J) using a special case of the Atiyah - Bott- Singer fixed
loss of generality that dsc,z.da,lzds2 , the result is: i

- point theorem. In [#] Hirzebruch and Janich prove an alternative def-

s
) ~ inition, which we shall use here. It coincides with the definition of
H1(5.(a°,a1,a2).2 .,

- the Browder - Livesay invariant [5] in the case that X is a homo topy

=d52=1 2g2

dso = da.l

_ sphere.

ds >ds,=ds,=1 2gz e (ds°—1)2_t°

1 2 Let W be a characteristic submanifold for (X,J) . That is,

ds_2ds,>ds,=1 2520(dso-ds,l)zt’o(ds1-1)2t.t| - W is the boundary JA of a compact submanifold A of X with
o

2

AUJA=X and ANJA=W . It is well known that characteristic sub-

dsozds.l 2d52> 1

2g0 (4s-ds )3, & (dsydsp)d, , ©(dsy-2)3, ¢ ¢ @
manifolds always exist. W is a (2k-2)-dimensional invariant submani-

@23 ¢ ta .
fold of X, and J is orientation reversing on W , since JW =

JOA = 0JA = =0A = -W .

Let
£91.1) L = kern(i, : Hak_1(w,o) - n_,_k_,l(A,o) RS
where i:WCA is the inclusion. Define a quadratic form f on L by
(11.2) £:(x,5) > xJy .

A ~ 2k-1

f is symmetric, since yedx = =J(yeJdx) = -Jyex = -(-1) xeJy = xoJy .
Denote by «(f) the signature of £ (number of positive minus number

of negative eigenvalues of f ); it depends only on X and J , and

not on the choice of W (Hirzebruch and Janich loc.cit.) .
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Definition. T(f) is called the Hirgzebruch invariant of (x,J) , and

Definition. Hirgzebruch invariant
Definition. If B#O0 and %

is denoted by «(X,J) - 7 is as in (12.1), then

' ‘ (12-2) ( ,F) = (- ! = s
c(x BES 1.+ 0= + + %
| | | 1) 1 -1 12 cee (-1 plt SIS
(-X J) %(X,J) 5 P_— O, then « =1, and define

12. s
Let X be an oriented closed differentiable 3-dimensional 4 3) c(1,0) := ©

S1-manifold. Then =-1¢€ 51 is an orientation preserving involution on R

ecall that if x is a real 5
numb : .

X, and is fixpoint free if and omly if the s'action has no fix- er, signx is defined by

0 if x=0
points and no isotropy subgroups of even order. That is signx =
X .
X i ox #0 .

X 2 XU, (qa By)s oee 2 (g B)

with . odd for each J - To avoid confusion later, we denote this Theorem 12.1

Let X =X

) ) 1 . ((g)y (oeqs 1)y wve s (=, f)) with all &,

involution =18 by J . In this chapter we shall calculate %(X,J) odd 2 i
, and let J ©be the involution contained in the

i 3
S -action on X . Then

®(X, ) = > (c(« ; g Lovigy
§12. The main theorem ! ,Z, j:ﬂj) + sign ﬂj) - SIS“Z%
j=1

The next 3 sections will b
1f («,p) is a pair of coprime integers with >0, we define i efibibely Wpn et
‘ first note a corollary.

an integer c(«,p) as follows.

Iif ﬁ;lo , then % has a unique continued fraction representa-

] If (ao,a,],aa)

is a triple of positive integers, let d , a_
3
tion of the form :

o< _ o €.
7:-*‘%*‘112 1

't and . i i
50 55 be defined as in (9.1) to (9.4). The involution J

contained in the S1 action an
- 0. i i i
n Z(ao,a,l,aa) is fixpoint free if and

+ 1

1 — _1)&2 only if t

k1 + (11) N e d o ts and t2 are odd. Observe that in this case (_1)a,-'_
(12.1) 8 e L . ) =

o .. ) o the involution J is given by
(=15
(12.4) J: %
ot (2402912) = (D525, (D% 20, (-0 %z) .
s

Let B, , A, , A, be chosen to satisfy (9.8).
with k°_>_0; k:i.>° and 1i>° (i=1,s,8) ; and k;, even for

i=0, oo y5=1 « k8 need not be even.
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Corollary 12.2. Let (ao.a,‘,aa) t;e a triple of positive integers

Lemma 13.1. There exists an int ! i i
such that t_, t,, and t, are odd. Then eger valued function ¢ defined on
5, pairs (%,p) of coprime integers with Ag2-1, F#O0,
«<(Z(a ,a1,a2),J) = Y s (c(t,, A) +signﬂj) =1 = : )
o e J 33 «>0, « odd, with the following properties:

Proof. This follows immediately from theorems 9.1 and 12.7, when one 1), If Xo= X((@), (X4, )y =ee 4 (<, F)) with Bi2-1,

notes that the term Z—% occuring in theorem 12.71 is in this case "j>° ) "‘j odd for all j , and (“j,ﬂj) =(1,1) for
T

some j , then

®(X,J) = i (c(dj,pj) +sign ,Bj ) - signi% B

i=r je1 9

Lo
to

“as, L2 +as, B sas, £t = & (s, t,t,8
R

t, Tt 02 ,+ 5qtotafy+ 8ottF) =

d

. ’ . d s -
t.t,tl(aopo+a1ﬁ1+aaﬂ2) =Tt ! which has sigoum +1 . |l

(i) clx,x1) =0 .
: (iti)e c(2kp+x,p) = clx £ k

Remark. The involution J considered here is not always the same as Prsf ) eer £135, 082k 4 2208

the involution T : (zo,z,],zz)r—) (-zo,-z,‘.-za) (defined on Z(ao,a1,a2)

Proof of theorem 12.1 modulo lemma 13.1.

whenever a =a;=a, mod 2 ), considered by Hirzebruch and Janich in
o Let ¢ be the function of lemma 13.1. Extend the definition of

[#]. See also §16. .
¢ to allow A<-1 as follows: if (,8) is a pair of coprime inte-
gers with A<-1, x>0, = odd, let b be the smallest integer

such that f+bx>0 and define
§13. Reduction of the main theorem. Properties of c(x,8)

(13.1) c(xyp) 1= c(x,f+b=x) = b + 2 .

Since Seifert pairs of the form (1,0) can by lemma 7.2 be

We first prove the formula of theorem 12.1. Let X =

dropped from any tuple X = ((8),(xqaf)s +oe + (% A)) without X((8), (=qs f)y wve o (=0 A)) with all <y odd. Without loss of gene-

changing the manifold X(X), and such pairs also contribute nothing to rality ﬂj<—1 for j=1,e.,m and Fj2-1 for j=m+1, «.,n. For each

the formula for «(X,J) in theorem 12.1, we loose no generality by J=1yee,m let bj be the smallest integer with A .+b.x.>0 Then by
Jikyd :

3
making the following general assumption repeated application of lemma 7%2

i H i i ) 0 . .
Assumption: In any Seifert pair (<,p) we assume f7 X 2 X((g), (b+1) (1,=1), (1,1, (o Aiab%) s ey (s Fptbpey)s

In this section we show how one can deduce theorem 12.1 from (a(m‘l‘ﬂm-‘l)’ cee ,(xn,ﬁn)) ,

the following apparantly weaker lemma. The lemma will be proved in the where b = b+ 00 +bnl , and (b+1)(1,-1) means (19=1) 4 oee 4 (1,=1)

following 2 sections. b+1 times.

We can now apply lemma 13.71(i) , giving
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=<(X,J) = (b+1)(c(1,-1) + sign=1) + c(1,1) + sign1 +

. i‘i’(c(-«j,pfbj«j) + sign(ﬂj+bj-(j)) +
i(c(“j.ﬂj) + signﬂj ) -

Jamer

sign(-(b+1) + ‘I+Z—’i;‘,‘<l,n°‘J + Z‘,%’ )
1 J

]

Using (13.1), part (i) of lemma 13.1, and the facts that sign,ﬁj=-‘l

and sign(,sj+bjo<j) =1 for j=lye.,m , (13.2) simplifies to
J) = - 3 s s i :
«(X,J) b+ Z(c(dJ,ﬂJ)+bJ+s:LgnﬁJ) +
hz"(c("(j, ﬂj) + sign 'ﬂj ) -
sign(-b + Z(ﬁ—; + b;j) 5 Zéﬁ )
1 XTI

n B;
(13.3) = i(c(e(.,p.) + signp.) - signy =~
et 3703 J T )
proving the formula of theorem 12.1.

It hence only remains to prove that c(«,B) 1is defined as in

§12. We need the following lemma.

Lemma 13.2. Properties of c(x,8) . Assume «>0; k,le3 .

(i).: olesyx1) =0

(). clx,-p) = -c(=,p) ,

(). cle,p+le) = c(,p) +1 " if signp =sign (f+1=) ,
(). c(=,p+lx) = c(«,p) +1 -2 if B+1<x>0>4 ,
(V). c(2kpre,p) = c(o,B) if 2kp+x>0 ,

(d).  c(2kp-x,p) =-c(e,p) if 2kp-«>0

Proof.
(i) holds by lemma 13.1.
(i) : By (8.8) x((g),(x,-p)) = -X((g),(«,p)) , so applying (13.3)

gives c(«,-p) + sign(-p) - sign-;p- = -(c(=,p) + signp - sig;n-é) ¥
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whence ¢ (<,=p) = —c(«,p) .
() and (i) : Assume first 120 . By lemma 7.2 X((g),(x,p+l=x)) £
x((g),1(1,1),(x,p)) , so applying (13.3) gives
o (=,p+1) + sign(f+1=) - signfX = 1(c(1,1) + sign1) +
+ c(=,p) + signf - sign(1+£)
Since ¢(1,1) =0, this simplifies to

(13.4) c(=,p+lx) = c(e,8) + 1+ signp - sign(p+1lx) .

For 1<0 , applying (13.3) to X((g),(«,p+1x)) £ X((g),(-1)(1,=1),
(«,f)) also yields (13.4). Properties (iii) and (iv) are special case:s
of (13.4).
(v) holds by lemma 13.1.
(d): This is trivial for |pl <1, so assume IgI>1 .
We prove (@) first for k>0 . Then since 2kf-« and < are
positive, we must have >0 . Assume first that k= 1 . Then
c(2f-p) = c(2p=-, (x- A+ (2p==))
=c(2p-a,«=p) + 1+ si@(d-ﬂ) - signp (by (13.4)
= 0(_2f--(,°<-,3) + sign(e-p) (as A£>0

=c (-Z(f-p)w(,-(-/s) + 'sign(«-A)

= c(v(,'j(-ﬂ) + sign(-(—,_d) (by (v) )
=c(xy=p) + 1+ sign(-p) - sign(«-p) + sign(«-4)

(by (13.4
=9(-(,-,6) (as -f<0
=-c(«,f? (by (i) )

Now if k>1 , then since =-x<0<2kg-«, there exists an integer m
with 0<m<k such that 2mp-<<0<2(m+1)f-«. Then
c(2kp-a,p) = c (2(k-m-1)p+2(m+1)p -, £)
=c(2(m+1)B ==, p) (by (v) )
=c (28~ («-2mp), p)
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49
='°(f(‘2mP’F) (by (d) with k=1) Thus c(ds, ﬂs) =0 . Furthermore for i=1, . ,s , properties (ii),
= c(x-2mp,=-p) (vy (#)) (v), and (d) of lemma 13.2 give that
=c(x,=-p) (by (v)) &
oot LapBs_ ) =c(k] B o+ (1" ,p. 1)
=-c(°"P) ehy 1)) . i-1""i-1 i-1"1i-1 i'ri-1

= (=1)% c(x.
This proves (@) for k>0 . One can now deduce it for k<O by (=17 o 1'ﬂi-1)

. ; . €
replacing « by « =2kp-«x, k by k'=-k, and g by g =-p = (1T el 1o + B;)

in (d). I &
n D% (e ,p) +1,) .
A trivial induction now gives

We now show that c(x,8) is as defined in §12. For f=0 there

is nothing to prove. Also, since the function c(«,p) defined in §12 el=,f) = C(do'po) = (-n® L (=) Setcs 1ot e (1) Tatior 4% 1.
clearly satisfies c(«x,-p)=-c(«,p) , it suffices to consider only as was to be proved. |l
g>0 .

Let («,p) be a coprime pair with £>0, >0 , = odd. Then The above proof shows that the properties (i), (ft), (i), (v),
IR P PRy oS oot daTat the euclidest algorithn and (4) already suffice to define c(«,8) uniquely. In general it is

quicker to calculate c(-t,F) by means of the properties given in lemma

gives
13.2, rather than the definition in §12. A table of values for <2%
o« =2k'B + (-1 0<«,<pB » K220
° oPo 1 ! 1 7o S and A<26 is given in Appendix I.
b = 2t Loshe 10
<, =B+ (DT, , 0<X,<A K330

§14. A characteristic submanifold for (X(X),J)

‘ € 5 )
o =2ks_1Ps_1+ (-1) 'c(s , 0<°‘s<ﬁs_1 ) k >03

s-1 ) s=-1
Boq= 1o+ By » 0SB el A =0 Throughout the following let
=k’ k>0 .
< _ksps ' s

X = X((8),(%pu By oee o (= yB))

5 . . < .
I obe defines 'k wkj .for. is0,wye- o and K=k 4 TheRiy is with «; odd and @;#0 for each j . X is constructed as in §6 as

iven the continued fraction of (12.1).
e X=xou'1‘1u soe UTn.
Observe that as in the usual euclidean algorithm, /8s is the

s H, X *x sl i .
greatest common divisor of «_ and p_, and hence is equal to 1. ere X,=X3xs' | where X3 is a surface of genus g with n holes

cut in it. The 'l‘i are solid tori with S1-actions as described in
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(6.3), and they are sewn into X = as described in §6. Gan 13 Ve RUSRUY, U e U,

1 . ey iy
rametrised by e define
LIESigdeire (recall that R=X;x{1] € X, and J is the involution, so JR =
iv 4
st = {e*" ] ogy<sT lcs X3 x {-1} . -JR is of course JR with reversed orientation).
= iy 1
= | msys<aml}es .
§7 = {e Using the map ¢; defined in §6 gives that
: i(P: g i(B; :
set LA (X0 AA0+5Y)y | ochcon, osysT)
=x*xs8t cx ;
A ° o Replacing @ by 9-??’ and using (6.2), this gives
El
A" =X*xS" cX . v
o . 0 4 o) B
¢ 5 4 (W) a*ne = (P +7) A% | ogg<ar, osvsT) .
Tor each j we have, as in §6, that Tj is a copy of D" XS . Let

2

o That is A'NT, is the strip in JT, which "lies between"
=p°xs" e 1y i J

e+

T = 0°xS" T, . Q= {(eif’“s,e“"a)l o<fg<ar}

J

o

: . . - b ; .
By (6.3) the involution J on Tj is given by JQJ ) {(el(f}h ﬁ)’elpia)l ok
(1) Irei® o) = (1" ret?,-e'")

Figure 1 (next page) shows A*nrj for 'ﬁJ.:} and fj=2 .

+ - e
i lution J on X exchanges T, and T. for each j .
Thus the involutio J J Now Vj clearly consists of the points of T:i which lie in

+ 2k
1y also exchanges A" and A .
It clearly g one of A"’nTj and )T; y but not in both. By the above comments

Define this gives (see figure 1)

+ 0 mt +
. := AT UT, U e UT . ek o
(4.2) A 1 n v, - (1= imey, 0<A6<T mod2m, 0S¥<T )
i i i mooth compact submanifold of X with the pro- o .
A is then a piecewise s 04.6) U{(el(, +),L),elﬂz9) | v< Bfs2mmod 2r , OSY<ST }
perties AUJA=X and ANJA=JA . Hence if we write

U{(re*®,41) | 0s<r<1, 0<d<ar] .
(14.3) W:= A ,

then W is a piecewise smooth characteristic submanifold for (x,J9) . W can be smoothed (to do this equivariantly, smooth w/zz in

W a ibe W in more detail X/ZZ and 1lift back to X), but since this makes no homological diffe-
e now describe .

rence, we shall work with the unsmoothed W .

Let VJ=WOTJ for each j . Then clearly




Figure 1 :
—_

A"'n'rj and Vj lying in

open along Px{1}).

Ins’[’u’ fljf Anoefv n~
JEVUTCOTe /"?Cff/';. ;
de{ U")-‘;VE‘:"S/'!df B'O”H..?maf”
i
5

Homology of W and A .

Let B1,..., be closed paths in the interior of x; which

BZg
represent a basis for the first homology H1(X‘,2) of X*. Since

R=X; x {1}, we can consider By B to be paths in the interior

2g

R of R. JB,I,...,JB are closed paths in JR , and one has the

2g

homology relations
(14.7) Bi ~ JBi in A (i=1,y e y2g)

since one can deform JBi into Bi in A+CA by sliding JBi down

the fibres of the projection A*:x; xs"—» x; &

Let 1<j<n . If '.['j=D2xS1 is parametrised by (rels,elv) ¥

then a "path running in the positive direction around Tj " will mean

a path running arpund T in the direction of increasing ¥ . For

J
0<k<gIB.I-1 1let ck be the path in V. which starts at the point
J J J

=K
(0,1 e Tj , runs in the disc Y =0 to the point (012""_, 1)e Tj 5
from there along Q, half way around T. in the positive direction
3 b

i k ™
to the point (ez(ZW;-;-H';;,.—)' -1) , and thence in the disc Y= to

the point (0,-1) e‘I.‘:i . That is

ok
Cl; = {(xe'?7, 1) | os<r<i}

a k ] :
Ul(ERTEAAT) 10 | ocpcr)

k , m
ULt @E R 1) 13r320 1, ©Oskgigl-1 .
For 1SkSIfl-1 let E]; be the closed path in V, which rums
along c’;” from (0,1) to (0,-1) , and back along c‘; to (0,1) .

That is

k-1, ok 1.
(14.8) E§=Cj €D, (sksIpI-D
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+ s : s 1
i i which is topologically
Note that E‘; lies in the boundary of Ti A

+
i to zero in T
a 3-ball, so E? is homologous

* . Since TjCA

J

(14.9) EI; ~0 in A .

Let

o, k-1 1<k<IB.l) -
(14.10) :-'kj = ¢§-ac; . (1sksIfy
One has the homology relations
PP g (1<k<IB1-1) ,
(14.11) JE‘;~ =T in A , :
+1 .
k=1, _gcKy _ ¢ -ac5 1 o(-ac) +(-c2) = F5 - F$*'. mhis
since JE‘J? = 305" (- ~ 0f-ac] 3 : Ty

holds in V. , and hence certainly also in A .
J

i i tarts at (1,1 eT. and
Let Kj be the path in V;i which s ) j

i i i . alo Q. to the
runs "—é times in the positive direction around TJ ng 5

int (et ‘(’.iw -1) , and from there along the meridial path
poin 5 e vl
5 : PG+ ) ayem. .
(ei(Pi °“;T"'-!.’;),-‘I) , OSY<T, to the point (e 7 TE -1 e 3
v; !
This latter point is the point (-1 ,-1)=301,1) , since

féi;f_". =V; by (6.2). Thus
¢ |

K, = {(ei""""fi‘e.ei"‘i’)l 0<o< ]
a2 9 i
GHE U{(ei((vi—%)“%),-nl osysT} .

i i < and may
Here the first part of the path is parametrised by ogesTT,

have multiple points.
. i ich starts at (1,1) and runs
Let K;j be the path in T;i which s -

i £ (=1 -1 =
half way around the orbit through this point to end a ’

J(1,1) . That is

as the path by which we represent it. The
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K =t fledM O gixioy

3 0<6<T}

i Rt | 5
- {(el(—j—, )O’elwid) | o<es<T}

s (pif . Oy .
(14.13) = (FOEB 169 | gy .
Comparing (14.13), (14.12), and (14.5), one sees that the paths Kj

and K; are homotopic in A+ﬂ'1‘j by a homotopy which fixes the end-

is homologous to zero in A*'NT.

points. Hence the path Kj '(-K:].) 0

and hence certainly also in A:

(14.14) Kj-(-KEi) ~0 in A

Now for 1<j<n-1 let Gj be any path in R from the point

(1,1):T11 to the point (1,1)sTJ. , and define

(o] :
(14.15) Lj = Gj-Kj (-JGJ.)'(—Kn) v GAKdi<nsg ).

That is L; is the closed path in W which runs from the point

(1,1)sTn along Gj to (1,1);1-3. , thence along KJ. to J(1,1)5Tj,

thence backwards along JGJ. in JR to J(141) €T , and finally

backwards along kK, back to (1,N)e T,

.

By (14.14) L'J? is homologous in A to the path L;.

Gj KJ '(—JGJ.)‘(-K;) - But by sliding along the fibres of the projection

A+—-)X; n L3 can be deformed into the path G;j -(-GJ.) . Hence

(14.16) Lg..o in A .

We shall denote a homology class in H1(w,Q) by the same symbol

Mayer - Vietoris sequence
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for the pair (RU=-JR,V, uv,u ... UVn) yields easily that H,l(W,Q)

is the @Q-module, freely generated by the elements :

B, , JB; (321, we 4 28)
E‘J? , JEl; (3=1ymesn 5 KTy g 1A51=1)
(14.17) 1
(j=‘|,m,n—1)
3
L‘; (§=gemyn=1) o

If P is a closed path in A , we shall denote the represented

homology class in E,I(A.,Q) by P . The Mayer - Vietoris sequence for

the pair (A+,(T1U Y UTn) AA) (note that the nicer looking pair

(A+,T':U soe UT;) is not an excisive pair, so it cannot be used)

yields that H, (A,Q is the @-module, freely generated by the elements

(i=1, o0 4 28)

(14.18) (=g yn=1 3 k.=1,..-,lﬁjl)

B s

(k=1,...,|pj|-1 ) .

If the homology map induced by the inclusion wWcA is
: 51(w,o) -)H,I(A,Q) 5

then (14.7), (14.9), (14.11), and (14.16) give that
i,B, = B (121, ooe 5 28)

(14.19)  i4JB; =By (i=1, w4 28)

i,i;‘; =0 (i=Tymesn 5 E=Tyumy1Ag1=1)
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. =k =kl )
1.J’E]; - Ek-F1;+ (§=1eesnt 3 k=1---||/9j|—1 )

( : J H
14.19) 1 =1
ctd. i.Ey = Fy (§=1y e yn=1 )

i +0 ;

1.LJ. = 0 (.‘i=1.--,n-1) .

Hence [ = k i, -
ern(i, : H, (W, ® -—)H1(A, ®)) is the Q-module

freely generated by the elementrs

Bi"JBi (i=1, v, 28)
(14.20 ' 5
) El; (3=Tqeesm 3 k=1"'"lﬁjl"1 )
o :
Lj (J=1ye00y0=-1) .

§15. Proof of lemma 13.1

W i '
e keep the notation of'§1l+, but we now make the following
additi i
itional assumptions : ﬁj2-1 for all j , and (< ,B8)=1(1,1)
Without loss of ! i . e
generalit > j=

: : y pJ 1 for j=1,e.,m , and ﬂj=*1 for
j=m+1,eeyn (0<m<n-1).

We first alter the basis (14.20) of L.

For 0<j<m and 0<i< ‘ & ;

—1"B:j 1 let Kj be the path constructed

in
the same way as K but starting from the point

j ’

s k
(*2"E NerT, 1 A
~ 3 nstead of (1,1)e¢ El‘j . That is .K; starts at

(eiaﬂ'T, 1) A3 + .
s runs -
’ . 3 times around T;j along Qj to the point

3 k oGy f
(LRTEAED Ly i@raEs - Dm
s =A1) e Ao L el AL B
- € Tj y and from there

along the meridial curve (ei(21r-‘l§+ ; -';r)vr., 2 8
i iy=1) s OSVET ., to
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L(org s ym) 12z 1) . Let G be any path
. the point (e ] ,=1) = J(e~ 5 . e i y p

% k
. 21 7
in R from the point (1,1) eT  to the point (=", 1) eT:j (for

i=0 choose G; = Gj ), and define

i el aedyeck ) .
(15.1) LJ._GJ. Kj (JGJ)( a

< s f o
For i=0 this coincides with the previous definition of Lj . Also,

Jjust as for L; , we have

(15.2) L;.' ~0 in A,
50 Lj.' represents an element of LCH_l(w,Q) . Define
J
Bi-1 .
I, = =1 (1<j<m)
J Teo J
(15.3)
L, = 1° (m+1<j<n-1) .
J J

We shall calculate the matrix of the quadratic form

f:(x,y)— xJy on L with respect to the following basis of &L :

B, - JB, (i=1, «e,28)
- 3 -
(15.4) E‘; (§=1ymnam 5 k=1, e, =1 )
'ITHLJ' (§=Tyee,n=1)
. j

Lemma 15.1. (i). (B;-JB;)°Jx =0 for all xel .
(#). EEJE:;

(i), Li-JEl;

0 for i#j,

n

o .

Proof. (i): It suffices to prove (i) as x runs through the basis
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elements (14.20).

(B; - JB,)-3(B

-JB.) = (B, -JB,)>(JB, - B,
5= 9B;) = (B, - JB)-(5B, - B,)
= Bi-JBj«r JBj_cB:l -Bi°Bj -JBi.JBj

= Bj-JB;+ J(B;°JB) - Bi-ﬂj - 3(8;°3,)

Bi- JBj - Bi’ JBj % Bi' Bj = (_Bi. Bj)
=0.

Since Bi-JBi and JE? are represented by disjoint paths
in W,
(Bi_JBi)'JE‘; =0 .
Finally note that JL‘J? coincides with -L? in the interior R
of R, and Bi lies completely in i, so Bi'JL; = -Bi'L; . Since

JB,* JL; - J(Bi°L§) = -n«i-‘L‘; , it follows that
0. o S o _ . 0_ - = o 2.
(Bi.-.nai)v.n.j = BivJLJ-JBi JLJ = Bi-LJ. ( B, LJ.) =0 .

This completes the proof of (i).

(i) is trivial, since for i#j E: and JE?].' are represented by

disjoint paths in W .

(i#): If i£j, then L; and JE‘; are represented by disjoint

paths in W, so we need only consider the case 1= 3"
gis1 b Al
S LedES = (STihyaEt - S atoas) .
i e 9 3 e 4 d

L' ana J'Ek are represented by disjoint paths in W for ifk-1,k .
3 J ;

k-1

By inspection one sees that Lj- and I..l; each intersect JEl; once

k-1

A ikl iomwk
(in the points J(e <" 57 ,MDeT. and J(elawﬂin)s‘l‘j respectively),

but with opposite parities. Hence the above sum is equal to £1+%1=0.]]



For 1<j<m let €j be the (ﬁj-‘l) - square matrix ‘ekl)
with e, =E‘S°JE§.‘ . Let F be the (n-1) - square matrix (f; j)
J
o 1 that the matrix
i = 5 L.) . Then lemma 15.71 states tha
with £ 5 = 3 Lx'J(l_'l,a; j

of the quadratic form f: (x,y) => x°Jy on L, with respect to the

basis (15.4) is equal to

0
AT

Hence the signature T(f) of f is given by
(15.5) () = WEP+ .o + €Y + «F) .

Now let 1<j<m . By (1.1, (14.6), and (14.8), the involu-

» i he closed curves

tion J on Tfl , . the surface Vj in Tj , and the close
E“; (k=1,...,ﬁj-1 ) in Vj depend only on the numbers :"j a ﬂj , and
‘ N
(-1)vj . Thus the matrix E;j depends only on /’j a F:j , and (-1)7 .

Since these numbers are determined by -(j and ,ej , we can define

(15.6) c(xj,,sj) = r(EJ.) *
This defines c(,p) for @>1 . For p=+1 define

(15.7) c(x,21) :=0 .
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Part (i) of lemma 13.1 then holds automatically. We now prove
part (iii). This is trivial for p =11, so we may assume A>0 . We
have already remarked that c(=,£) depends only on the numbers £,
g, and (=1)”  determined by o« and £, .so it suffices to show
that if we replace « by «+2kf with ke 3 and‘ <+ 2kg>0 , then
P and (-1)”  remain unchanged.

Recall ( (6.1) and (6.2) ) that V was defined as the unique

integer with O0<V<« and VW =1 mod« , and P was defined by

AR St AR

=3

Hence / = ,%ﬁ-:—‘ < ;\:-p <pB. Also, since Y21, £ >0 , and since
fe = V-1, f=-1modp . Thus f can be defined as the unique

integer with 0<P<p and f<=-1modf, and then v is given by

Px+1

ve"EF
Since P(e(+2k@) = P< = -1 modp , replacing = by o+ 2kpA does not
change £ . V is then replaced by f(—<+2];. Je d F’(—:‘-pakf’: Y+ 2kP,

which is congruent to V mod2, so (_1)v remains unchanged also.
This completes the proof of part (iii) of lemma 13.1. For an alternative

proof see §17.

Only part (i) of lemma 13.1 remains to be proved. Using the
definitions (15.6) and (15.7) and the fact that ﬂj=¢1 for
j=m+1,e.,n , (15.5) can be written as

»

(15.8) TR = zc("(j,ﬁj) +(F) .

j=t

Since T(f) is equal to o(X,J) by definition, part (i) of lemma 13.1
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now follows from the following lemma :

Lemma 15.2. HE )= ;signﬂj - signg %
Proof. Note that the paths L:;f of (15.1) are always of the form
G-K-(-JG)'(-Kn) , where G is a path in R from some point peV,
to a point qe Vj , K is a path in Vj from the point gq to the
point Jq , and Kn is a path in Vn_ from the point p to the
point Jp . Suppose L= G"K"(-JG')-(-K;) is any other path of the
same form, such that JL'= JG*JK(-G") +(-JK]) intersects L:; "nicely".
Then to calculate L; +JL° we need only consider intersection points of
Liﬁ and JL” which lie in V‘_j or Vn , for any intersection point
which lies in the interior & of R is an intersection point of G
and -G°, and is cancelled by a corresponding intersection point of
-JG and JG" in JR , and vice versa.

We shall denote by (I..?“J'L')j and (I..%"JL')n the contributions

to L:;'J'L' which come from intersection points in Vj and Vn respe-

ctively. By the above comments L;.'-J‘L': (L3°JL')J.+ (I..:g"J'L')n .

We first calculate (Lj"JLg);i for 1<j<n-1 . Observe that
18511

L:j = L; covers each of the portions of Qj which lie in the
=0

-(;2+1 times, and goes through each of the

boundary of ‘1‘;. precisely

s k .
points J(et?" Bi,1) (k=0,...,lﬁjl-1 ) precisely once. The latter are

the only points in which Lj intersects the curve JQj .
We now assume that we have slid the curve L; slightly, so that

. ) ) iPe _ip;E
ik enters Tj in the point gq= (e*’d ,eifi )e T;j (pjs small and >0)

instead of the point (1,1), and after running % times around Tj

Iostipyy
Mt fgp
ngew
~._ andy,
der € Ma
. Mversisgy Bong eMmatik

along th
g e curve Q;j » runs along the meridial curve

5 1
(el(Fg e+ (V5 -F)H'-O--t.) ig; e
i Fi%y-e Fi€) [ 0<¥<T, to the point
Ps c4 Vs 3

(e1F5e+Vim) _ ip;e
y-e 71%) = Jq , where it leaves Tj again. JLS then
) J
starts at the point Jq , and first runs =i

3 times around T;j along

the i i
curve JQj « In fio:.ng so it crosses the meridial circle

(eie_1 5 5 =1
y=1) in Tj —La

times, each time in a pbint of the form

J(eizﬂ%ﬂ) . This gives =1 i i
gives 5 points of intersection with L, .

. !
. : % s .
JI..‘_j has then arrived at the point (el(F-‘ S F),elﬂie) Yy and runs
fron N s ' S
rom this point along a meridial curve to the point gq where it
. ,

leaves T. again. At q it has an A5+l

: = - fold intersection with L, .

Th 3 :
ere are no other points of intersection. At each of these .intersec—

tion point i i :
P s the direction of I"j , followed by the direction of JL°

]

followed b i i i
Y a normal into A ‘gives the orientation of A if ;j>o o

and otherwise the opposite orientation. Thus each of these intersec

tions must be counted it i
positively if ﬁj>0 and negatively if 193.<O 5
so

0g10y _ (=1 ity .
(LJ JLj)j = (—2 + i'é"—)s:.gnﬁj = O(j signﬁ'j .

By symmetry one has more generally

15. od1d) . = «_ & i
(15.9) (L.'I JLJ)j_ocjslgnpj (1=0,....l,8j|-1 D

Hence (L.°JL.). = (L J”’Z”
RIS I e

i 18511 "
Ly = %(LJ.'JL;)J = 1A;lx;signp; =

P;j“_j « Thus

(15.10) (=L, ed( 1 ;
Bt ) = ;‘,;:Tfﬁj“j = % :
|
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gimilarly to the above, but rather more easiiy, one verifies
the following for Jj,k= 1,00 40-1 (recall that -(O(n,ﬁn)= (1,00 ) ¢

(15.11) - @ILR), = 1 (r=0se, 1A51-1 5 520, mey 1B 1=1) -

BB L l
Hence (Lj"JLk)n= ZZ(L:]'JLk)n= |ﬂjllﬁk y 5O

=0 $=0
(15.12) (ITl—]Lj-J(Ii—ILk))n =1 -
Also trivially
(15.13) (Lj’n'k)j =0 for j#k -

Combining (15.10), (15.12), and (15.13) gives altogether

r'B;ILj-J(I-P:k—ILk) S it jAk,
1
(15.14) LG, ir Jmkis
B;
Thus
"Efl-m 1 & & 0 1
1
1 ';4-+1 v & = 1
A7 D . . 5
1 1 s ek :’._'+1

. T T o il
For brevity we write b’i for F’l- (i=1, s 4n-1 ) , and reindex

" so that Y S¥,S< e-- ¥ -

A simple induction argument shows that the characteristic

polynomial det(F - tI) of F is
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g(t) = det(F-tI) = 'ﬁ'(x,-t) * “Z-' TT.-t) .
j=1 J I=1 j3i J

If for fixed i , ¥j=Xi occurs for m values of j , then
t= Xi is an (m-1) - fold root of g(t) . The roots of g(t) which
are not equal to a )(i are precisely the roots of

n= n-1
1
nee) = g/ -0 = 1+ .
g St fT—,(x,- -t)
If ¥, < xi+1 , then h(t) is negative for t just above Yi and

positive for t just below ¥. so h(t) has a root between ¥

is1 ? i
and Xi+1 . Also h(t) is negative for t just above Xn_1 and is
positive for t large, so it has a root above )(n_.l . Thus the roots
Eyatoy e at 4 of g(t) are distributed as follows :

PSS HStpS oo <Y 1<t 4
The t; , as roots of the characteristic polynomial of F ,

are just the eigenvalues of F , so
n-1

(15.15)  T(F)= > signt; -
i=1

By looking at the value of h(t) at t=0 one sees:

0< b’1 = signt; =sign Xi for each i , and

n-1 1
sign(1+ ZT;) =1 .
. i=t

’
¥,<0< Xk+1 for some

%signti=signxi for each i#k , and
k with 1<k<n-2

-1
signty = -sign(1+ ii%) .
=1

¥

n_1_<0 = sign t; =slani for each i#n-1, and
X 5 . n-1 1
sign tn_1 = -sign(1+ 3 Ti) .
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In each case one obtains

sign t.
i1 L

n-1 3 n-1 1
= > sign¥, +1- sign(1+ =)
i=1 = = i

i

’ e e i .
Now slgnb’i signp; for 1<i<n-1, since ¥ =g

Also, signp =1= En , since by assumption
n A

n-1
signt. =
With (15.5) this proves lemma 15.2,

of lemma 13.1. |l

Remark. By actually calculating the matrix 83.

above proof, one can use (15.6) to give a further definition of

for B>1 .

carry it out. The result is as follows.

1f (x,B) is a coprime pair with #>0, A>1,

define V and P as usual; that is V is defined by
0o<V< o« and VBE1 mod X
and £ by
e #;1
’
(see also p61). Define

p if Y is even,

PP if ¥ is odd.

n-1 .L n-1
Zsignlﬂi + sign ﬁn - Sign(a(" + Z
i=) . = i=1

and hence also completes the proof

The calculation is canonical but messy, so Wwe will not

o odd, then
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O . - s )
ne verifies that p" is then odd. Let A[x,8] be the (p-1) -squ
-1) - square

matrix
and D(i>o ~ 2% ‘
(ofnyﬂn)=(1.1) . Hence O 101 O 5
¢ rp__*-
e 2
B
2. O o
1 = J
Al=,8] = o O
\ s
O r-1
e
which occurs in the O 1
c(“,ﬁ) =1 19 J )
and put
A(x,p) = Alx,p] + tA[n(,F] s

where the superscript means transpose.

Then the matrix E:j occuring in (15.6) is equal to A(x_,A.)
ffn

so we have in general

c(e,8) = w(A(x,p)) .-

This is of course useless for practical calculation.




68

§16. Examples ; other methods of calculation

= i j=1) .

Example 16.1. Z(a ,apa;) = 5(3,63-1,183-1)
irwi i so in the notation of §9 :
In this case the a; are pairwise coprime, ; :
‘g Bagal) = tot., bt =
(t ,t1,t2) = (ao,a,l,az) and (ao,a,l‘,aa) = (bt t tot ty
o ! ! )
i ' ‘ + jal j-1)al = 1 we can

(1083224341, 5433, 183-3) . Since =-2aj+jaj+ (93-1a;
choose

(IEOGF»‘!FZ) = ('Zojv9j‘1) .

Thus by theorem 9.1

) -1, 3 83-1,93-1) -
S(agiaqay) € X((0),(3,-2), (65-1,3), (183-1,93

We now calculate c(ti,Bi) by ;(12.2) 4

_2_-2+1

-2 - 1 +

JEYpEY

so c¢(3,-2)=1.

8i-1 . 2.3 4 -1
J =14+ 1
b
so c(6j-1,3)=-(3-1) .
183-1 _ 2.1+ _1
93=1 _ 93-2 +

kL
1 £
so ¢(18j-1,93-1) =9§-2 -
Hence by corollary 13.2
o« (5(3,65-1,183-1),9) = 1+sisn-2 + =(j=1) +signj +
+ (9j—2)+sign(9j-1) -1
=85 .

is checks with the result of Hirzebruch 6 6, see s0 . In [?]
This S L ]§ 9, al [#] il
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Hirzebruch and Janich give an algorithm to calculate «(Z(ao,a1,a2),J)

in the case that the ai' are pairwise coprime and odd. A purely

number theoretic proof that their algorithm gives the same result as

our corollary 13.2 seems very difficult. -

The numbers S51 Sq and s, of §9 are pairwise coprime, so

at most one of them is even. Herce by (12.4) the involution. J 5 AT
it is fixpoint free, is equal (possibly after permuting indices) to
one of the involutions *

T: (zo,z1,zz) — (-.-zo,-z],-za) s

which is defined on Z(ao.a,,,aa) if a =a;=a, md2, or

To t (2gr2q02) 2. (2 y-2q,-2,)

which is defined on Z(ao',a.l,az) if a;2a,%0 mod2 ..

The Hirzebruch invariant can always be calculated for both
these involutions. Namely if aOEa,I':‘aZE 1 md2, then T=J , and
corollary 13.2 is applicable. If a,22,5a,50 mod2, then

«(2(a),T) is given by the following theorem :

Theorem 16.1 (Hirzebruch and Janich [#]).

If aOEa,I'Ea.aEO mod 2 , then

«(Z(a),T) = z e(§) (=1)de*di+iz
where the sum is over all j=(j,,i;,d,) €3 with

0<j.<a,, and e(j) is 1, -1, or 0, depending on

.

X lies strictly between O and 1

whethexj . ta,t

o)
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§17.  Involutions on lens spaces

mod 2, or strictly between 1 and 2 mod2 , or is integral.

The proof of this theorem uses the results of Pham [12] , see also [¥].
We recall the definiti )

Using essentially the same proof one has also 5 inition of the lens space L(p,q) (p>0, p and
‘ q coprime). Let S i 2 ) :

‘be the unit sphere Iz,|%+1z,1%=1 in €2 .

Theorem 16.2. If a,Za,=0 mod2, then 3, actson s by (g a gemerator of 3):

8(zg,2,) = (°12w/p‘1o°i2"q/pza) .

«(X(a),T ) = Zg(j)(_1)j1+.'iz
=

where the range ‘of summation and the function e(j) are .
: Definition. L SsS : : .
(pya) := 8§ /lp s With inherited orientation. One

as in theorem 16.71. |l .
generally also defines L(0,:1) = 82xg’

As is well known, L(p,q) can also be obtained by sewing to-

gether two copies of the solid torus- D2)<S‘1 by. means of the

Example 16.2. (a ,2025) = (6,4,4) «
Then (a;,af‘,aé) = (2,3,3) , so since 2.2+ (-1).3+0.3 =1, we can diffeomorphism

choose (/Bo"B1'/32) = (2,-1,0) . Hence g 3D2xs1 - s1xs1 ey s‘1)(51 - anaxs

1

which is defined by the matrix

x((2),4(3,2),2(1,-1) ,

n

S(6,4,4)

and applying corollary 13.2 gives ‘ : 1 : ("l x)
: ; . Dl L

(56, g ) ,3) = =3 & | ' |
) where x and y are numbers with px+qy = 1 . ‘ o

In this case J = '1‘0 . Checking with theorem 16.2 also gives

(E(6,4,4),T ) = =3 « ‘ Lens s i fi ; ; ‘
. paces are classified up to. diffeomorphism (and homeo‘mor—

Th 16.1 gi i
eorem Elves ) . § phism) as follows (see Brody [4] ).

K(S(64l4,4),T) = 7 . ;
L(p,a)2L(p",q") & p=p° and either q=q" mod p

The involution T,: (zo,z,l.zz)t—)(-zo,z,].-zz) on S(6,4,4) is ) :
! or qq" =1 modp . .

essentially the same as the involution '1‘0 on 2(4,6,4), and theorem . (17.1)

: L(p,q) £-L(p",q" e . o
16.2 gives Prd (p"44") & p=p° and either q=-q modp
or 93" =-1 modp .

(E(6,4,1),T,) = -1 -
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An oriented fixéoint free‘ 3-dimensional s1-manifold X is a
lens space if and only if its orbit space X* is the 2—spherg and X
has at most 2 exce.ptional orbits ([171, [151). The calculation of
which lens space occurs for given Seifert invariants has been done by
von Randow [13] , see also Raymond [111. 1In our notation the result is:
Theorem 17.1. Let X = x((o),(«1.ﬁ1).(°<2,ﬁz)) and let £, and Y,

be integers with &,f,- By, =il e Then X % L(p,a) »

—(%q Py + F1\’2)signp Ll

where p = legfy+ %Pl 0 @

This can easily be checked directly by comparing the construction of

§6 with the representation of a lens space as the union of two solid

tori.

Let X be as in the above theorem. The involution Je€ 51 is
free on X if and only if °f1 and <, are odd. Then by theorem 8.1
X/2, = X((O),(“1,2F1).(°‘2,2P2)) , which is again a lens space, by the
above theorem. .

'l'he classification of coverings gives that there is at most one
free Za-man:.fold X (up to equivariant dl.ffeomorphlsm) whose orbit
space X/Z2 is a given lens space L(p’,q) , for the fundamental.
group TT1L(p",q) = Zp, contains at most one subgroup of index 2 -

Such a subgroup, and hence ‘also such a Za-manifold X exists if and

only if p’ is even.

Theorem 17.2. Let 2p and q be coprime pgsitive integers. Let

(X,J) be. the unique manifold w1th free :.nvolution,such

: that X/3, = L(2pyq) . Then X = L(p,q) and

«(X,J) = c(a,p)

73"

s ’ ’ = (] ’ ’ e
roof. As X((0) (q P)) x((0) (q P) (lyO)) sy choosing f’a 1 and

v2 =0, theorem 17.1 gives that LR =
x((0), (q,p)) = L(p,q) .

Further the i i
avolution J on X((0),(q,p)) is the involution we want
: J

since by theorem 8. the orbit space is X((0) ( ))
o (g 5 < 2
P »(q,2p and this is

L(Zp,q) . Hence. by theorem 12.1°

% (L(p,q),J) = c(a,p) i i
. q,p) + signq - s:.gng = clq,p) - 1

This th i i i
eorem gives immediately the promised alternative proof

that c¢(x = i
,ﬂ? c(2kp+o,8) if o, B, 2kp+x>0 . Namely this follows

by applying the theorem to the equation

L(2p,) = L(28,2kp + ) ,

which hold
s by (17.1). A further property of c(e,8) which follows in

the same way is :

Let o«,x" ,>0 ; o o0dd ; oox” =1 mod28 . Then

c(x,B) = c(x",p) .

For by (17.1) L(28,«) ¥ L(28,«")

§18. Remarks on the characteristic submanifold.

. 3

In [1] Bredon and Wood consider the problem of which closed

non-orien e ace e embe n ven osed orie
rientable surf s can b bedded in a gi closed ientable

mani is’ ' man
3-manifold, and solve this for all finite connected sums of ifold.
8
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out of the following class : HXS1 , M any orientable closed surface ;
lens spaces. By Raymond's classification, such finite connected sums
include all closed orientable 3-manifolds which admit s1-actions with
fixpoints.

For closed orientable Z-manifolds which admit fixpoint free
S1—actions the problem still seems to be open in general, though some
resulté follow immediately by the methods of Bredon and Wood. For
instance their proof that the non-orientable surface Uak of genus
%k , k22 , (that is the connected sum of .2k copies of the projec-
tive plane) is always embeddable in st1 , M an orientable surface,
can be used to show that U, , k>2 ., is embeddable in X'= X((g),

(«;.p;), J

3 .(-c;.p;)) if g>0 . This embedding is such that the
mod 2 homology classes [UZk:Iae EZ(X',ZZ) and [H]ae 31(1'.22) have

zero intersection number, where H is a principal orbit.

Let X  be an orientable closed 3-dimensional 51-mifold with-
out fixpoints, and let H be a principal orbit in X . Let the non-
-orientable surface Uh be embgdded in X in such a way that I:l:lh:l2
and [H]Z have non-zero intersection number. In this case we can ob-

tain weak results on the minimum possiblo'value of the genus h .

Theorem 18,1, If X’ and U, -are as above, then X  is of the form

X" = XC€7) with

X = ((8) ) (%028 wor +(%302A))
and all ; odd. Let

X = (@) (gahy)s woe 2B -

Then

h > (X6, +1 .
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Proof. The 1-codimensional submanifold U= Uh of X  defines in the
well known way a 2-fold unbranched covering T: X— X  of X  with the
.property that if J denotes the non-trivial covering transformation
of X, then W= ‘IT-1(U)- is a characteristic submanifold for (X%
The 1lifting theorem for paths gives that X has an S1.-action
such that any orbit in X is mapped by m onto an orbit of s1 . in
X The fact that [Ul,-[H], # 0 gives that the map  restricted
to a typical principal orbit of X is a 2-fold covering of a principal
orbit in X", whence follows that J is the involution contained in

1 .
the S -action on X . In particular X is connected, say

(18.1) X = X((&) 4 (%3 By wee ety f))
and by §8 the txi are odd, and
(18.2) X'= x((g),(«1,2,e1). wiee ,(«n.a,sn)) .

Let A be the compact submanifold of X with AUJA = X and
ANJA = JA = W, and define

L = kern(i,: H,(W,Q) —H, (1,9 ),

where 1i;WCA is the inclusion. Since «(X,J) is the signature of a
quadratic form on L , |«(X,J)|<dimk, so the theorem is proved once

we show that

(18.3)  daimL = h-1 ..

Consider the following exact sequences, which follow from the
ex_act reduced homology sequences for the pairs (X°,U) and (4,W)
’

(coefficients in Q ) .

(18.4) 0— H,y(X") — B, (X",U) — H, (V) - B, (X)) - E,(X",0) -0
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(18.5) o—>H3(A.w)->HZ(w)—)H2(A) —-)HZ(A,W).—>I,—-)0 .
These give the following relations for rational Betti numbers :

(18.6) ba(x') - bZ(X',UD + b1(U) - b1(X') + b1(X',U) =0 ,

(18.7) b3<A,w) - ba(w) + bZ(A) - be(A,w) + dimL = O .

B (X)E= b1(X') by the Poincaré isomorphism and exact coeffi-
2
. g = since one can
cient sequence. Also bj(x ) = bi(A,w) for all j ,
replace U by a thin tubular neighbourhood of U and then excise the
interior of this neighbourhood to get a homology equivalence between

the pairs (X",U) and . (A,W) . Hence (18.6) reduces to
(18.8) —bz-(A,W) + b1(U) + b1(A,W) =0

i e i hism and exact
Also, bZ(A) = b1(A,w) by the Poincaré isomorphis

=5h. = 138. reduces to
coefficient sequence, and bB(A'W) = ba(w) =1, so (18.7)
(18.9) b1(A.w) - bz(A,W) + dimL= 0 .

(18.8) and (18.9) together give that ainf = b,(V) . Since

b1(U) = genusU -1 = h-1 ,‘(18.3) is thereby proved. ||

Example. X = L(p,a) (p,a>0) -
If U_ is embeldded in L(p,q) then by Bredon and Wood (loc. cit.)
h

p is even, say
L(p,q) = L(2k,q) ,

; L in fact
and for a suitable S'-action on L(2k,q) , [U.),°[Hl, #0 (in fac

this holds for any fixpoint free s'_action on L(2k,q) ). Hence by

Y4

theorems 18.1 and 17.2
h2lcl(q)l+1 .

Bredon and Wood have actually calculated the minimum possible value of

h in this case. It is the integer valued function N(2k,q) defined

by the properties

N(2k, 1) &k s

N(2k,q) = N(2k,q-2k) (q>2k) ,

N(2(k-q),q) = N(2k,q) -1 (q<k) .

We have thus shown that

N(2k,q) > le(q,k)} +1

and equality holds if and only if the bound of theorem 18.1 is exact
for X'= L(2k,q) . Comparison of N(2k,q) and lc(q,k)l+1 (see

Appendix I ), shows that our bound is not very good except for small
values of k .

Let X’ be as in theorem 18.1 and denote by N(X") the smallest
genus of a non-orientable surface U which can be embedded in X*

such that [U]Z‘[HJZ # 0 . Then theorem 18.1 says that

(18.10) N(X") 2 |%(X,3)| +1

where (X,J) is as in theorem 18.1.
By actually embedding a non-orientable surface in X  one can

obtain an upper bound for N(X°) . We could use the characteristic
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submanifold for (X,J) constructed in §14 and project it down to

X' = )(/2‘2 . If X'= L(2k,q) , then by choosing the sl_action on

X = L(k,q) suitably,one obtains a surface of genus N(2k,q) in this
way for k<14 , but for L(30,11) the best one obtains this way is
a surface of genus 5 , while N(30,11) = 3 . One can improve this 1
by using, instead of the method of §14, the method of Bredon and Wood \
to define the surface within the tubes T,/Z, o ,'1'11/22 (T, asin

§14) . This leads to the bound
(18.11)  NQX )< 28 + > N2l -
i=1

By varying the (o(j,zpj) in accordance with lemma 7.2 one can optimise
this bound, and if g=0 , then (18.10) and (18.11) often do (but in

general do not) yield a precise value for NEX™).

c(a’ﬂ)

Table of

Appendix e

1 2 ;
a\ﬁ 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

22 23 24 25

19 20 21

10 11 12 13 14 15 16 17 18

2¢ 3le B 6y T8 9

"

0 -1
0

0

2 -1

1

1-2 -1

1

2-3 0 -1
-2 -

0 -1

-2

-1

=%

5 -

- =1

B

0
0

1 452 1

0 -1 -2

0

11
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-1

-2
-6

-2 -1

0 5=6-1 -3

2 -1

1

-2

-1

0 -1
0

15
17
19
21

—<

-1

-1
=3
=h

-2
-2

=4
0
0
~b

-1

<%

-2
-2
9 =10

“3
=9

2. 7-8

1
1 -l -1

1-2 30
-1
0-1-2-3 052

-1

3

8

1
-1

2

2

0 -1

-1

=2

-1

-1
=3

-1

-2

-1

=3

0 3 10 -11

1
5=1-2 0

23
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