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Abstract. We investigate the relationships between the Lipschitz outer ge-

ometry and the embedded topological type of a hypersurface germ in (Cn, 0). It
is well known that the Lipschitz outer geometry of a complex plane curve germ

determines and is determined by its embedded topological type. We prove that

this does not remain true in higher dimensions. Namely, we give two normal
hypersurface germs (X1, 0) and (X2, 0) in (C3, 0) having the same outer Lips-

chitz geometry and different embedded topological types. Our pair consist of
two superisolated singularities whose tangent cones form an Alexander-Zariski

pair having only cusp-singularities. Our result is based on a description of

the Lipschitz outer geometry of a superisolated singularity. We also prove
that the Lipschitz inner geometry of a superisolated singularity is completely

determined by its (non embedded) topological type, or equivalently by the

combinatorial type of its tangent cone.

1. Introduction

A complex germ (X, 0) has two natural metrics up to bilipschitz equivalence, the
outer metric given by embedding (X, 0) in some (Cn, 0) and taking distance in Cn
and the inner metric given by shortest distance along paths in X.

In this paper we investigate the relationships between the Lipschitz outer geom-
etry and the embedded topological type of a hypersurface germ in (Cn, 0).

It is well known that the Lipschitz outer geometry of a complex plane curve
germ determines and is determined by its embedded topological type ([12], see also
[5] and [9, Theorem 1.1.]). We prove that this does not remain true in higher
dimensions:

Theorem 1.1. There exist two hypersurface germs in (C3, 0) having same Lipschitz
outer geometry and distinct embedded topological type.

It is worth noting that for families of isolated hypersurfaces in C3, the constancy
of Lipschitz outer geometry implies constancy of embedded topological type. In-
deed, Varchenko proved in [13] that a Zariski equisingular family of hypersurfaces in
any dimension has constant embedded topological type and it is proved in [10] that
for a family of hypersurface singularities (Xt, 0) ⊂ (C3, 0), Zariski equisingularity
is equivalent to constant Lipschitz outer geometry.

It should also be noted that the converse question, which consists of examining
which part of the outer Lipschitz geometry of a hypersurface can be recovered from
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its embedded topological type seems difficult. In particular the outer geometry of
a normal complex surface singularity determines its multiplicity ([10, Theorem 1.2
(2)]) so this question somehow contains the Zariski multiplicity question.

In order to prove Theorem 1.1 we construct two germs of hypersurfaces in (C3, 0)
having the same Lipschitz outer geometry and different embedded topological types.
They consist of a pair of superisolated singularities whose tangent cones form an
Alexander-Zariski pair of projective plane curves.

A surface singularity (X, 0) is superisolated (SIS for short) if it is given by an
equation

fd(x, y, z) + fd+1(x, y, z) + fd+2(x, y, z) + · · · = 0,

where d ≥ 2, fk is a homogeneous polynomial of degree k and the projective curve
{fd+1 = 0} ⊂ P2 contains no singular point of the projective curve C = {[x : y :
z] : fd(x, y, z) = 0}. In particular, the projectivized tangent cone C of (X, 0) is
reduced. In the sequel we will just consider SISs with equations

fd(x, y, z) + fd+1(x, y, z) = 0 .

Definition 1.2 (Combinatorial type of a projective plane curve). The combinato-
rial type of a reduced projective plane curve C ⊂ P2 is the homeomorphism type of
a tubular neighborhood of it in P2 (see, e.g., [3, Remark 3]; a more combinatorial
version is also given there, which we describe in Section 3).

It is well known that the combinatorial type of the projectivized tangent cone of
a SIS (X, 0) determines the topology of (X, 0). In fact, we will show:

Theorem 1.3. (i). The Lipschitz inner geometry of a SIS determines and is
determined by the combinatorial type of its projectivized tangent cone.

(ii). There exist SISs with the same combinatorial types of their projectivized
tangent cones but different Lipschitz outer geometry.
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2. Proof of Theorem 1.1

The proof of Theorem 1.1 will need Lemma 2.2 and Proposition 2.3 below, which
will be proved in section 4. First a definition:

Definition 2.1. We say that two germs (C1, 0) and (C2, 0) of reduced irreducible
plane curves are weak RL-equivalent if for i = 1, 2 there are holomorphic maps
hi : (C2, 0) → (C, 0) with (h−1i (0), 0) = (Ci, 0), a homeomorphism ψ : (C2, 0) →
(C2, 0), a constant K ≥ 1 and a neighborhood U of the origin in C2 such that for
all a, a′ ∈ U .

1

K
||h2(ψ(a))(1, ψ(a))− h2(ψ(a′))(1, ψ(a′))||C3 ≤ ||h1(a)(1, a)− h1(a′)(1, a′)||C3

≤ K||h2(ψ(a))(1, ψ(a))− h2(ψ(a′))(1, ψ(a′))||C3
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Lemma 2.2. Weak RL-equivalence of reduced irreducible plane curve germs (C1, 0)
and (C2, 0) does not depend on the choice of their defining functions h1 and h2.
Moreover, it is implied by analytic equivalence of (C1, 0) and (C2, 0) in the sense of
Zariski [14] (also called RL-equivalence or A-equivalence).

Proposition 2.3. Let (X, 0) be a SIS with equation fd + fd+1 = 0. The Lipschitz
outer geometry of (X, 0) is determined by the combinatorial type of its projectivized
tangent cone and by the weak RL-equivalence classes of corresponding singularities
of the projectivized tangent cones.

Proof of Theorem 1.1. Recall that a Zariski pair is a pair of projective curves
C1, C2 ⊂ P2 with the same combinatorial type but such that (P2, C1) is not home-
omorphic to (P2, C2). The first example was discovered by Zariski: a pair of sextic
curves C1 and C2, each with six cusps, distinguished by the fact that C1 has the
cusps lying on a quadric and C2 does not. He constructed those of type C1 in [14]
and conjectured type C2, confirming their existence eight years later in [15]. He
distinguished their embedded topology by the fundamental groups of their comple-
ments, but they can also be distinguished by their Alexander polynomials (Libgober
[7]) so they are called Alexander-Zariski pairs.

Let (X1, 0) and (X2, 0) be two SISs whose tangent cones are sextics of types
C1 and C2 as above. According to [16], the analytic type of a cusp is uniquely
determined, so its weak RL-equivalence class is determined (Lemma 2.2). Then by
Proposition 2.3, (X1, 0) and (X2, 0) are outer Lipschitz equivalent.

On the other hand, Artal showed that (X1, 0) and (X2, 0) do not have the same
embedded topological type. In fact, he shows ([1, Theorem 1.6 (ii)]) that a Zariski
pair is distinguished by its Alexander polynomials if and only if the corresponding
SISs are distinguished by the Jordan block decompositions of their homological
monodromies. �

3. The inner geometry of a superisolated singularity

We first recall how the topological type of a SIS is determined by the combina-
torial type of its projectivized tangent cone. We refer to [2] for details.

A SIS (X, 0) ⊂ (C3, 0) is resolved by blowing up the origin of (C3, 0). The
exceptional divisor of this resolution of (X, 0) is the projectivized tangent cone C of
(X, 0) and one obtains the minimal good resolution by blowing up the singularities
of C which are not ordinary double points until one obtains a normal crossing
divisor C ′. Let Γ be the dual graph of this resolution. Following [4] we say L-curve
for a component of C ′ which is a component of C and L-node any vertex of Γ
representing an L-curve.

One can also resolve the singularities of C as a projective plane curve to obtain
the same graph Γ except that the self-intersection numbers of the L-curves are
different (in the example below the self-intersection number −9 becomes +3). The
graph Γ with these data is equivalent to the combinatorial type of C.

Example 3.1. Consider the SIS (X, 0) ⊂ (C3, 0) given by F (x, y, z) = y3 + xz2 −
x4 = 0. Blowing up the origin of C3 resolves the singularity: using the chart
(x, v, w) 7→ (x, y, z) = (x, xv, xw), the equation of the resolved X∗ is v3+w2−x = 0
and the exceptional curve has a cusp singularity x = v3 + w2 = 0. Blowing up
further leads to the following dual graph Γ, the black vertex being the L-node.
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−2 −1 −3

−9

The self-intersection −9 of the L-curve is computed as follows. Let E1, . . . , E4

be the components of the exceptional divisor indexed so that E1 is the L-curve
and E2, E3 and E4 correspond to the string of non L-nodes indexed from left to
right on the graph. Since the tangent cone is reduced with degree 3, the strict
transform l∗1 of a generic linear form l1 : (X, 0) → (C, 0) consists of three smooth
curves transverse to E1. The total transform l1 is given by the divisor:

(l1) = E1 + 3E2 + 6E3 + 2E4 + l∗1 .

Since (l1) is a principal divisor, we have (l1).E1 = 0, which leads to E1.E1 = −9.

Proof of Theorem 1.3 (i). Let (X, 0) ⊂ (C3, 0) be a SIS with equation fd+fd+1 = 0.
We set f = fd and g = −fd+1.

Let ` : C3 → C2 be a generic linear projection for (X, 0), let Π be the polar curve
of the restriction ` |X and ∆ = `(Π) its discriminant curve.

Let e be the blow-up of the origin of C3 and let p be a singular point of e−1(0)∩
X∗. Without loss of generality, we can assume ` = (x, y). We can also choose our
coordinates so that p = (1, 0, 0) in the chart (x, v, w) given by (x, v, w) 7→ (x, y, z) =
(x, xv, xw) in the blow-up e (so p corresponds to the x-axis in the tangent cone of
X). Then X∗ has equation

f(1, v, w)− xg(1, v, w) = 0

and g(1, v, w) is a unit at p since {g = 0} ∩ Sing(f = 0) = ∅ in P2.
Let e0 : Y → C2 be the blow-up of the origin of C2. We consider e0 in the chart

(x, v) 7→ (x, y) = (x, xv), we set q = (1, 0) ∈ Y in this chart, and we denote by
˜̀: (X∗, p) → (Y, q) the projection (x, v, w) 7→ (x, v). So we have the commutative
diagram:

(X∗, p)
e //

˜̀

��

(X, 0)

`

��
(Y, q)

e0 // (C2, 0) .

Now Π = X ∩ {fz − gz = 0}, so the strict transform Π∗ of Π by e has equations:

fw(1, v, w)− xgw(1, v, w) = 0 and f(1, v, w)− xg(1, v, w) = 0 ,

which are also the equations of the polar curve of the projection ˜̀: (X∗, p)→ (Y, q).

Since g(1, v, w) ∈ C{v, w} is a unit at p, the quotient h(v, w) := f(1,v,w)
g(1,v,w) defines

a holomorphic function germ h : (C2
(v,w), 0)→ (C, 0). In terms of h(v, w) the above

equations for (Π∗, p) can be written:

hw(v, w) = 0 and h(v, w)− x = 0 .

Consider the isomorphism proj : (X∗, p)→ (C2, 0) which is the restriction of the
linear projection (x, v, w) 7→ (v, w). Then Π∗ is the inverse image by proj of the
polar curve Π′ of the morphism `′ : (C2

(v,w), 0) → (C2
(x,v), 0) defined by (v, w) 7→

(h(v, w), v), i.e., the relative polar curve of the map germ (v, w) 7→ h(v, w) for the
generic projection (v, w) 7→ v.
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We set ∆′ = `′(Π′) and q = (1, 0) in C2
(x,v). We then have a commutative

diagram:

(C2,Π′, 0) oo
proj

`′

&&

(X∗,Π∗, p)
e //

˜̀

��

(X,Π, 0)

`

��
(Y,∆′, q)

e0 // (C2,∆, 0)

Let (Π0, 0) be the part of (Π, 0) which is tangent to the x−axis (i.e., it corre-
sponds to p ∈ e−1(0) in our chosen coordinates) and let (∆0, 0) be its image by
`. Let V be a cone around the x-axis in (C3, 0). As in [4], consider a carrousel
decomposition of (`(V ), 0) with respect to the curve germ (∆0, 0) such that the
∆-wedges around ∆0 are D-pieces. We then consider the geometric decomposition
of (V, 0) into A-, B- and D-pieces obtained by lifting by ` this decomposition. Lift-
ing the carrousel decomposition of `(V ) by e0 we get a carrousel decomposition
of (Y, q) with respect to ∆′. On the other hand the lifting by e of the geometric
decomposition of V is a geometric decomposition of (X∗, p) which coincides with

the lifting by ˜̀ of the carrousel decomposition of (Y, q) just defined.
By the Lê Swing Lemma [8, Lemma 2.4.7], the union of pieces beyond the first

Puiseux exponents of the branches of ∆′ at q lift to pieces in X∗ which have
trivial topology, i.e., their links are solid tori. Therefore these are absorbed by the
amalgamation process consisting of amalgamating iteratively any D-piece which is
not a conical piece with the neighbor piece using [4, Lemma 13.1].

Moreover, since ∆′ is the strict transform of ∆ by e0, the rate of each piece of the
obtained decomposition of X∗ equals q + 1, where q is the first Puiseux exponent
of a branch of ∆′. Let Γp be the minimal resolution graph of the curve h = 0 at p.
Let us call a node of Γp any vertex having at least three incident edges including
the arrows representing the components of h and the root vertex of Γp if h = 0 has
more than one line in its tangent cone. According to [8, Théorème C], the rate q
equals the polar quotient

mEi
(l)

mEi
(h)

where vi is the corresponding node in Γp and where l : (C2
v,w, p)→ (C, 0) is a generic

linear form at p.
Now, set f̃(v, w) = f(1, v, w). Since g(1, v, w) is a unit at p, the curves h = 0

and f̃ = 0 coincide, so mEi(h) = mEi(f̃). Since the strict transform of f̃ coincides
with the germ of L-curves at p, Γp is a connected component of Γ minus its L-nodes

with free edges replaced by arrows. Therefore the rates
mEi

(l)

mEi
(f̃)

, and then the inner

rate of (X, 0) are computed from Γ. �

Example 3.2. Consider again the SIS (X, 0) of Example 3.1 with equation xz2 +
y3−x4 = 0. Its projectivized tangent cone xz2+y3 = 0 has a unique singular point,
and the corresponding graph Γp is the resolution graph of the cusp w2+v3 = 0, i.e.,
the graph Γ of Example 3.1 with the L-node replaced by an arrow. The multiplicity
of f̃ along the curve E3 corresponding to the node of Γp equals 6 while that of a
generic linear form (v, w) 7→ l(v, w) equals 2. We then obtain the polar quotient
mE3

(l)

mE3
(f̃)

= 1/3, which gives inner rate 1/3 + 1 = 4/3.
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The Lipschitz inner geometry is then completely described (see [4, Section 15]) by
the graph Γ completed by labeling its nodes by the inner rates of the corresponding
geometric pieces:

−2 −1 −3

−9
1

4/3

Example 3.3. Consider the SIS (X, 0) with equation (zx2+y3)(x3+zy2)+z7 = 0,
that we already considered in [4, Example 15.2] and in [10]. The tangent cone
consists of two unicuspidal curves C and C ′ with 6 intersecting points p1, . . . p6, the
germ (C ∪ C ′, p1) consisting of two transversal cusps, and the remaining 5 points
being ordinary double points of C ∪ C ′.

For each i = 1, . . . , 6, the tangent cone of (C ∪ C ′, pi) has two tangent lines

and the quotient mEv0
(l)/mEv0

(f̃) at the root vertex v0 of Γpi is then a polar

quotient in the sense of [8]. The root vertex v0 has valency 2 and it corresponds

to a special annular piece in the sense of [4], with inner rate mEv0
(l)/mEv0

(f̃) + 1.

For p2, . . . , p6, we obtain inner rate 1/2 + 1 = 3/2 for that special annular piece
and for p1, we obtain 1/4 + 1 = 5/4. The inner rates at the two other nodes of Γp1
both equal 2/10 + 1 = 6/5. We have thus recovered the inner geometry:

-2 -5 -2

-1 -1

-1 3/2

-1 3/2

1

-23

1

-23

6/5 6/5

5/4

This was also computed in [4] with the help of Maple, in terms of the carrousel
decomposition of the discriminant curve of a generic projection of (X, 0).

Proof of Theorem 1.3 (ii). Consider the two SISs (X1, 0) and (X2, 0) with equa-
tions respectively:

X1 : F1(x, y, z) = (y3 − z2x)(y3 + z2x) + (x+ y + z)7 = 0

X2 : F2(x, y, z) = (y3 − z2x)(y3 + 2z2x) + (x+ y + z)7 = 0

We will prove that they have same inner geometry and different outer geometries.
On one hand, the projectivized tangent cones of (X1, 0) and (X2, 0) have same

combinatorial type, so (X1, 0) and (X2, 0) have same Lipschitz inner geometry
(Theorem 1.3). The tangent cone consists of two unicuspidal components C and
C ′ with two intersection points: one, p1, at the cusps, with maximal contact there,
and one, p2, at smooth points of C and C ′ intersecting with contact 3 there. The
inner geometry is given by the following graph. In particular, the inner rates at
the two non L-nodes are computed from the corresponding polar rates in the two
graphs Γp1 and Γp2 . They both equal 1/6 + 1 = 7/6.



LIPSCHITZ GEOMETRY DOES NOT DETERMINE EMBEDDED TOPOLOGICAL TYPE 7

−1 −2 −2

7/6

−21

−21

1

1

7/6
−1

−3

−2

On the other hand, let us compute the multiplicities of the three functions x, y
and z at each component of the exceptional locus. We obtain the following triples
(mEj

(x),mEj
(y),mEj

(z)) for both X1 and X2:

(3, 3, 2)(6, 5, 4)

(9, 7, 6)

(1, 1, 1)

(1, 1, 1)

(12, 14, 15)

(4, 5, 5)

(6, 7, 8)

We compute from this the partial derivatives ∂Fi

∂x , ∂Fi

∂y and ∂Fi

∂z along the curves

of the exceptional divisor. We obtain different values for two multiplicities (in bold)
for (X1, 0) and (X2, 0), written in that order on the graph:

(11, 12, 12)
(22, 24, 24)

(33, 35, 36)

(5, 5, 5)

(5, 5, 5)

(72,70 or 69, 69)

(24, 24, 23)

(36, 35,36 or 35)

We compute from this the resolution graph of the family of polar curves a∂Fi

∂x +

b∂Fi

∂y +c∂Fi

∂z = 0. In the X1 case one has to blow up once more to resolve a basepoint.

We then get the resolution graph of the polar curve of a generic plane projection
of (X1, 0) resp. (X2, 0) (the arrows represent the strict transform, the numbers in
parentheses are the multiplicities of the function a∂Fi

∂x + b∂Fi

∂y + c∂Fi

∂z for generic

a, b, c and the negative numbers are self-intersections):
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(11)
(22)

(33)

(5)

(5)

(69)

(23)

(35)

(105)

(X1, 0)

−1
−2 −2

−21

−21

−2

−1

−3

−3

(11)
(22)

(33)

(5)

(5)

(69)

(23)

(35)

−1
−2 −2

−21

−21

−1

−2

−3

(X2, 0)

The polar curves of (X1, 0) and (X2, 0) have different Lipschitz geometry since they
don’t even have the same number of components. Therefore, by [10, Theorem 1.2
(6)], (X1, 0) and (X2, 0) have different outer Lipschitz geometries. �

4. The outer geometry of a superisolated singularity

Proof of Lemma 2.2. We first re-formulate the definition of weak RL-equivalence.
We will use coordinates (v, w) in C2 and (x, y, z) in C3. We have functions h1(v, w)
and h2(v, w) whose zero sets are the curves (C1, 0) and (C2, 0), a homeomorphism
ψ : (C2, 0)→ (C2, 0) of germs, a constant K ≥ 1 and a neighborhood U of the origin
in C2 such that for all a, a′ ∈ U .

1

K
||h2(ψ(a))(1, ψ(a))− h2(ψ(a′))(1, ψ(a′))||C3 ≤ ||h1(a)(1, a)− h1(a′)(1, a′)||C3

≤ K||h2(ψ(a))(1, ψ(a))− h2(ψ(a′))(1, ψ(a′))||C3

For i = 1, 2 we define Hi : (C2, 0)→ (C3, 0) by

Hi(v, w) = hi(v, w)(1, v, w)

and denote by (Si, 0) the image of Hi in (C3, 0). Note that Hi maps (Ci, 0) to
0 and is otherwise injective. We can thus complete the maps ψ, H1 and H2 to a
commutative diagram

(C2, 0)
H1 //

ψ

��

(S1, 0)

ψ′ (?)
��

(C2, 0)
H2 // (S2, 0)

and ψ′ is bijective. Weak RL-equivalence is now the statement that ψ′ is bilipschitz
for the outer geometry.
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Now write h1 = Uh′1 and H1 = UH ′1 where U = U(v, w) ∈ C{v, w} is a unit.
Then we obtain a commutative diagram

(C2, 0)
H′

1 // (S′1, 0)

η

��
(C2, 0)

H1 // (S1, 0)

where η is (x, y, z) 7→ U( yx ,
z
x )(x, y, z). The factor U( yx ,

z
x ) = U(v, w) has the form

α0 +
∑
i,j≥0 αihv

iwj with α0 6= 0 so if the neighborhood U is small then the factor

is close to α0, so η is bilipschitz. Thus ψ′ ◦ η : (S′1, 0) → (S2, 0) is bilipschitz, so
we have shown that modifying h1 by a unit does not affect weak RL-equivalence.
The same holds for h2, so weak RL-equivalence does not depend on the choice of
defining functions for the curves (C1, 0) and (C2, 0).

It remains to show that analytic equivalence of (C1, 0) and (C2, 0) implies weak
RL-equivalence. Analytic equivalence means that there exists a biholomorphic germ
ψ : (C2, 0) → (C2, 0) and a unit U ∈ C{v, w} such that Uh1 = h2 ◦ ψ. We have
already dealt with multiplication with a unit, so we will assume we have h1 = h2◦ψ.
If ψ is a linear change of coordinates, then we get a diagram as in (?) above, with
ψ′ given by the corresponding coordinate change in the y, z coordinates of C3, so
ψ′ is bilipschitz and we have weak RL-equivalence. For general ψ the same is true
up to higher order in v and w, so we still get weak RL-equivalence. �

Proof of Proposition 2.3. Let (X1, 0) and (X2, 0) be two SISs with equations re-
spectively

f1(x, y, z)− g1(x, y, z) = 0 and f2(x, y, z)− g2(x, y, z) = 0,

where for i = 1, 2, fi and gi are homogeneous polynomials of degrees d and d + 1
respectively. We can assume that the projective line x = 0 does not contain any
singular point of the projectivized tangent cones C1 = {f1 = 0} and C2 = {f2 =
0}. We assume also that C1 and C2 have the same combinatorial types and that
corresponding singular points of C1 and C2 are weak RL-equivalent.

Since the tangent cone of a SIS (X, 0) is reduced, the general hyperplane section
of (X, 0) consists of smooth transversal lines. Therefore, adapting the arguments
of [11, Section 4] by taking simply a line as test curve, we obtain that the inner
and outer metrics are Lipschitz equivalent inside the conical part of (X, 0), i.e.,
outside cones around its exceptional lines. So we just have to control outer distance
inside conical neighborhoods of the exceptional lines of (X1, 0) and (X2, 0) whose
projective points are corresponding singular points of C1 and C2.

Let p1 ∈ Sing(C1) and p2 ∈ Sing(C2) be two singular points in correspondence.
After modifying (X1, 0) and (X2, 0) by analytic isomorphisms, we can assume that
pi = (1, 0, 0) for i = 1, 2. We use again the notations of the proof of Theorem 1.3,
and we work in the chart (x, v, w) = (x, y/x, z/x) for the blow-up e.

Set hi(v, w) = fi(1, v, w)/gi(1, v, w). Then the germs (X∗i , pi) have equations
hi(v, w) + x = 0.

Since C1 and C2 are weak RL-equivalent and hi = 0 is an equation of Ci, there
exists a local homeomorphism ψ : (C2

(v,w), 0)→ (C2
(v,w), 0), a constant K ≥ 1 and a
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neighborhood U of the origin in C2 such that for all (v, w), (v′, w′) ∈ U .

1

K
||h2(ψ(v, w))(1, ψ(v, w))− h2(ψ(v′, w′))(1, ψ(v′, w′))||C3 ≤

||h1(v, w)(1, v, w)− h1(v′, w′)(1, v′, w′)||C3 ≤ (∗)
K||h2(ψ(v, w))(1, ψ(v, w))− h2(ψ(v′, w′))(1,ψ(v′, w′))||C3

Locally,

X∗1 = {x = h1(v, w)} and X∗2 = {x = h2(ψ(v, w))} .
As in the proof of Theorem 1.3 we consider the isomorphisms proji : (X∗i , pi) →
(C2, 0) for i = 1, 2, the restrictions of the linear projections (x, v, w) 7→ (v, w).
The composition proj−12 ◦ψ ◦ proj1 gives a local homeomorphism ψ′ : (W1, p1) →
(W2, p2), where Wi is an open neighborhood of pi in X∗i . Then, ψ′ induces a local
homeomorphism ψ′′ : e(W1) → e(W2) such that ψ′′ ◦ e = e ◦ ψ′. Notice that each
e(Wi) contains the intersection of Xi with a cone in (C3, 0) around the exceptional
line represented by pi.

Consider a pair of points q = (x, xv, xw) and q′ = (x′, x′v′, x′w′) in e(W1). By
definition of ψ′′, we have

||q − q′|| = ||h1(v, w)(1, v, w)− h1(v′, w′)(1, v′, w′)||C3 ,

||ψ′′(q)− ψ′′(q′)|| = ||h2(ψ(v, w))(1, ψ(v, w))− h2(ψ(v′, w′))(1, ψ(v′, w′))||C3 .

Then (∗) implies that the ratio ||ψ
′′(q)−ψ′′(q′)||
||q−q′|| is bounded above and below in a

neighborhood of the origin.

Now let W̃i be the union of theWi’s and let ψ′ : W̃1 → W̃2 be the homeomorphism

whose restriction to each W1 is the local ψ′. Then ψ′′ : e(W̃1)→ e(W̃2) is the outer
bilipschitz homeomorphism induced by ψ′ and we must extend ψ′′ over all of X1.

Let B be a Milnor ball for X1 and X2 around 0. We set Ỹi = (e−1(B ∩Xi) r W̃i.

For i = 1, 2 we can adjust W̃i so that Ỹi is a D2-bundle over the exceptional divisor

Ci minus its intersection with W̃i, i.e., over C̃i := Ci r W̃i, and whose fibers are

curvettes of Ci. We want to extend ψ′′ : e(W̃1) → e(W̃2) to a bilipschitz map over

the conical regions e(Ỹ1) and e(Ỹ2). For this it suffices to extend ψ′ by a bundle

isomorphism Ỹ1 → Ỹ2, since the resulting e(Ỹ1)→ e(Ỹ2) is then bilipschitz.
(X1, 0) and (X2, 0) are inner bilipschitz equivalent by Theorem 1.3), so by [4,

1.9 (2)] the image by ψ′′ of the foliation of e(W̃1) by Milnor fibers of a generic
linear form `1 has the homotopy class of the corresponding foliation by fibers of `2
in e(W̃2). Since the projectivized tangent cones C1 and C2 are reduced, a fiber of

`i ◦ e intersects each D2-fiber over ∂C̃i in one point. This gives a trivialization of

the D2-bundle over each ∂C̃i and therefore determines a relative Chern class for
each component of the bundle Ỹi over C̃i. The map ψ′ restricted to the bundle

over ∂C̃1 extends to bundle isomorphisms between the components of Ỹ1 and Ỹ2 if
and only if their relative Chern classes agree. But for i = 1, 2 these relative Chern
classes are given by the negative of the number of intersection points of `∗i with each
component of Ci (i.e., the degrees of these components of Ci), and these degrees
agree since C1 and C2 are combinatorially equivalent.

We have now constructed a map ψ′′ : (X1, 0)→ (X2, 0) which is outer bilipschitz
if we restrict to distance between pairs of points x, y which are either both in a

single component of e(W̃1) or both in the conical region e(Ỹ1). Let NỸi be a larger
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version of the bundle Ỹi, so e(NỸi) is a conical neighborhood of e(Ỹi). We still
have an outer bilipschitz constant for ψ′′ for any x and y which are both in a single

component of e(W̃1) or both in the conical region e(NỸ1). Otherwise, either one

of x, y is in e(W̃1) r e(NỸ1) and the other in e(Ỹ1) or x and y are in different

components of e(W̃1). The ratio of inner to outer distance is clearly bounded for
such point pairs, so since ψ′′ is inner bilipschitz, it is outer bilipschitz. �
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courbes planes, Ann. Sci. École Norm. Sup. 24 (1991), 141–169.
[9] Walter D Neumann and Anne Pichon, Lipschitz geometry of complex curves, Journal of

Singularities volume 10 (2014), 225-234.

[10] Walter D Neumann and Anne Pichon, Lipschitz geometry of complex surfaces: analytic
invariants and equisingularity (2014), arXiv:1211.4897v2.

[11] Walter D Neumann, Helge Møller Pedersen and Anne Pichon, Minimal surface singularities
are Lipschitz normally embedded (2015), 24 pages, arXiv:1503.03301.

[12] Frédéric Pham and Bernard Teissier, Fractions Lipschitziennes d’une algebre analytique com-
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