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Abstract

Heegaard-Floer homology, introduced around the turn of the millennium by P.

Ozsváth and Z. Szabó, employs holomorphic curves to study 3- and 4-dimensional

manifolds. The Heegaard-Floer package assigns to each 3-manifold Y a collection

of abelian groups ĤF (Y ), HF+(Y ), HF−(Y ) and HF∞(Y ); to bordisms of three-

manifolds, Heegaard-Floer homology assigns maps between these groups.

In this thesis, we extend the invariant ĤF from closed three-manifolds to three-

manifolds with arbitrary connected boundary. We assign to each 2-manifold S

a differential algebra A(S), and to each 3-manifold with boundary parameterized

by S a differential A(S)-module. Our invariants generalize the invariants of knot

complements constructed by Oszváth-Szabó and, independently, J. Rasmussen.
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Chapter 1

Introduction

In [OS04d], P. Ozsváth and Z. Szabó associated to an oriented 3-manifold Y , to-

gether with a SpinC-structure s on Y , certain chain complexes ĈF(Y, s), CF+(Y, s),

CF−(Y, s) and CF∞(Y, s), well-defined up to chain homotopy equivalence; the ho-

mology of these complexes, denoted ĤF(Y, s), HF+(Y, s), HF−(Y, s) and HF∞(Y, s)

respectively, is called Heegaard-Floer homology. In [OSb], they associate to a

smooth bordism W from Y1 to Y2, together with a SpinC-structure t on W , a map

FW,t : HF∗(Y1, t|Y1
) → HF∗(Y2, t|Y2

), where ∗ ∈ {∧, +,−,∞}, making the Heegaard-

Floer homology into some kind of “(3+1)-dimensional topological field theory.” The

Heegaard-Floer package also includes invariants of closed 4-manifolds ([OSb]), con-

tact structures ([OS05a]), and knots ([OS04b], [Ras03]); we will discuss the last of

these in somewhat more detail presently.

The Heegaard-Floer homology package contains a great deal of geometric in-

formation. For instance, the Heegaard-Floer groups of a 3-manifold Y detect the

Thurston norm on H2(Y ) ([OS04a]) and whether Y fibers over S1 ([Nia]), and the

4-manifold invariant, which is believed to be equivalent to the Seiberg-Witten in-

variant, is strong enough to distinguish many smooth structures on 4-manifolds.

Unfortunately, the Heegaard-Floer groups, and the maps between them, remain

hard to compute.

One of the original motivations for Heegaard-Floer homology was to compute the

Seiberg-Witten invariants of closed 4-manifolds by cutting them into simpler pieces
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CHAPTER 1. INTRODUCTION 2

and then reassembling the invariant of the closed manifold from certain invariants

of the pieces. Similarly, one might hope to compute the Heegaard-Floer homology

of closed 3-manifolds by cutting the closed manifolds into pieces and associating

some invariants to the pieces; these invariants should contain enough information

to reconstruct the Heegaard-Floer homology of the closed manifold, but still be

computable, at least in some interesting examples.

In a special case, this program has already been carried out. In [OS04b] and

[Ras03], Ozsváth and Szabó and, independently, J. Rasmussen, defined invariants of

a knot K in a homology 3-sphere Y . We will focus on the case of ĈFK(Y, K), which

takes the form of a filtered chain complex, well-defined up to filtered homotopy

equivalence. (This fits into the framework discussed above by viewing ĈFK(Y, K)

as associated to Y \ K, together with a framing of ∂(Y \ K).) In [OSd], Ozsváth

and Szabó show that the chain complex ĈFK(Y, K) contains enough information to

reconstruct the groups ĤF(Yr(K)), where Yr(K) denotes r-surgery on K (r ∈ Q); in

our language, this can be thought of as gluing a solid torus to ∂(Y \K). Building on

work of E. Eftekhary on longitude Floer homology and ĤFK of untwisted Whitehead

doubles ([Eft05]), M. Hedden showed in [Hed05] and [Hed] that the knot invariant of

cables on and twisted Whitehead doubles of K can be recovered from ĈFK(Y, K).

In our language, this corresponds to gluing a manifold with two torus boundary

components to Y \ K.

The knot invariant ĈFK(S3, K) has been computed in many interesting exam-

ples. Indeed, remarkable recent work of C. Manolescu, Ozsváth, and S. Sarkar

([MOS]) provides an algorithm to compute ĈFK(S3, K) for general K. The surgery

formula of [OSd] is, therefore, a powerful tool for computing Heegaard-Floer groups

of closed manifolds. It is also of use in answering abstract questions about surgeries;

for instance, it can be used to give restrictions on which surgeries on knots yield

Lens spaces ([OS05b]), and restrictions on cosmetic surgeries ([OSd], [Wan]).

In this paper, we present a generalization of ĈFK(Y, K) to manifolds with arbi-

trary connected, oriented boundary. To do so, in chapter 3 we associate a differential

algebra A to each 2-manifold S. Then, in chapter 5, we associate to each 3-manifold

Y with boundary parameterized by S a differential A-module CF(Y ), well-defined
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up to chain homotopy equivalence (over A). We conjecture in Section 8.1 that given

Y1 and Y2 with ∂Y1 = −∂Y2 = S, one can reconstruct ĈF(Y1∪∂ Y2) from CF(Y1) and

CF(Y2). In the case that Y is the complement of a null-homologous knot, CF(Y )

contains, and is closely related to ĈFK (Section 8.2); it is not known at present

whether CF(Y ) contains more information than ĈFK in this case.

Our construction falls short of our goals in two ways. The first is that, while

we can compute the invariant CF(Y ) in certain cases, it seems to be substantially

harder to compute, in general, than ĈFK. The second is that, for now, the gluing

conjecture remains merely a conjecture.

Our construction involves studying holomorphic curves in Σ × [0, 1] × R, where

Σ is a special kind of Heegaard diagram, which we call a Heegaard diagram with

boundary, for a manifold with boundary. (In the closed case, this reduces to the

cylindrical formulation of Heegaard-Floer homology given in [Lip].) Rather than

being closed, the surface Σ has a single puncture, so the space Σ × [0, 1] × R has

two kinds of infinities, ±∞ (in R) and “east ∞” (in Σ).

At east ∞, holomorphic curves are asymptotic to certain Reeb chords, at certain

heights (in R). The R-coordinate gives a (partial) order on the Reeb chords at east

∞ to which a curve is asymptotic; the algebra A keeps track of this partial order. In

codimension 1, the R-coordinates of Reeb chords can come together. Also, a Reeb

chord which is the concatenation of two other Reeb chords can split apart. These

phenomena are recorded in the differential on A.

With the correct definition of A, it is relatively easy to define the Heegaard-Floer

differential module: it is generated, over A, by the obvious analogs of generators

of ordinary Heegaard-Floer homology. The differential counts rigid holomorphic

curves. The asymptotics are tracked by coefficients in A. One must then prove

that, up to chain homotopy equivalence, the Heegaard-Floer module is independent

of the choice of Heegaard diagram with boundary. This is done in chapters 6 and 7.

We stress that the invariant CF(Y ) depends on not just Y but also the pa-

rameterization of ∂Y by a fixed reference surface. (In fact, CF(Y ) depends on the

reference surface S only through a Morse function which we pull back from S to

∂Y .) So, for instance, there are many different invariants associated to a solid torus,
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depending on a choice of framing for the boundary. (This is, of course, the case for

ĈFK as well, which depends on a choice of meridian for K.) One can not hope

to do much better: to specify a gluing of two 3-manifolds, one needs to specify

an identification of their boundaries; different identifications lead to different glued

manifolds.



Chapter 2

The topology of Heegaard

diagrams with boundary

2.1 Heegaard diagrams for 2-manifolds

Fix a closed, connected, orientable 2-manifold B of genus k. (B stands for “bound-

ary”.) Let f be a self-indexing Morse function on B with unique index 0 and 2

critical points. Let C denote the circle f−1(1/2), and {b±i }
2k
i=1 denote the 2k de-

scending spheres of index 1 critical points in C. (That is, each b±i is a pair of points,

which is the intersection of the ascending disk of some index 1 critical point of f

with C.) We will call the data (C, {b±i }) a Heegaard diagram for B. Fix also a point

z ∈ C \
(⋃2k

i=1{b
±
i }

)
. The data (C, {b±i }, z) is a pointed Heegaard diagram for B.

Note that the basepoint z allows us to order the points b±i canonically by starting

at z and then reading them off counter-clockwise.

We can recover the original surface B from the data (C, {b±i }) as follows. Thicken

C to C×[0, 1]. Attach a 1-handle (thickened interval) to each pair of points b±i ×{1}.

There is a unique way to do this so that the result is an orientable surface (with

boundary). If (C, {b±i }) was the Heegaard diagram of some closed orientable surface

then after attaching these handles the result has two boundary components. Cap

each with a disk.

This construction also provides an explicit description for H1(B). Each pair b±i

5



CHAPTER 2. HEEGAARD DIAGRAMS WITH BOUNDARY 6

gives a generator for H1(B) by gluing the core of the 1-handle corresponding to b±i

with the arc in C\{z} between b±i . Alternately, for a pointed Heegaard diagram

we can view H1(B) as being generated by a certain subgroup of H1(C,
⋃
{b±i }): the

subgroup generated by arcs connecting b+
i to b−i not covering z.

2.2 Morse functions on 3-manifolds with bound-

ary

Fix a 3-manifold with boundary Y and self-indexing Morse function f on Y such

that

1. The restriction (df)|ν(∂Y ) of df to the normal bundle to the boundary is zero.

2. The function f has a unique index 3 critical point. This critical point lies on

∂Y . It is also the unique index 2 critical point of f |∂Y .

3. The function f has a unique index 0 critical point. This critical point lies on

∂Y . It is also the unique index 0 critical point of f |∂Y .

4. Every index 1 critical point of f |∂Y is an index 2 critical point of f .

Notice that it follows that the gradient flow of f preserves ∂Y , and has no index 1

critical points on ∂Y . There may be more index 2 critical points of f , as well as

index 1 critical points, inside Y . We show in Lemma 2.2.1 below that such an f

always exists.

In this thesis we will first construct invariants of the pair (Y, f |∂Y ) which are

unchanged under deformations of f |∂Y through Morse functions (as well as any

changes of f in the interior of Y ).

We call f−1(3/2) the Heegaard surface corresponding to f , and denote it Σg,

where g is the genus of f−1(3/2). This is a surface with a single boundary component.

Let α1, · · · , αg denote the intersection of the ascending disks of index 1 critical

points of f with Σg, and β1, · · · , βℓ the intersections of the descending disks of
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index 2 critical points of f with Σg. Order the βi so that β1, · · · , β2k are arcs and

β2k+1, · · · , βℓ are circles.

From the data (Σ, ~α = {α1, · · · , αg}, ~β = {β1, · · · , βℓ}), which we call a Heegaard

diagram with boundary, we can recover (Y, ∂Y ) as follows. Thicken Σ to Σ × [0, 1].

Recall (Section 2.1) that (∂Σ, {βi ∩ ∂Σ}) specifies a surface B, which contains by

construction a copy of ∂Σ× [0, 1]. We now plumb together Σ× [0, 1] and B × [0, 1].

That is, identify a collar neighborhood of ∂Σ ⊂ Σ with this ∂Σ× [0, 1] ⊂ B × [0, 1].

Glue a thickened copy B×[0, 1] of B to Σ×[0, 1] by identifying (p, s, r) ∈ ∂Σ×[0, 1]×

[0, 1] ⊂ B×[0, 1] with (p, r, s) ∈ ∂Σ×[0, 1]×[0, 1] ⊂ Σ×[0, 1]. Call the result Y0. The

arcs βi×{1} extend to pairwise disjoint simple closed curves βi in Y0 by joining them

with the cores of the 1-handles in B. Now glue 2-handles (thickened disks) along

the αi × {0} and the βi. Call this new space Y1. It is a (topological) manifold with

boundary. The manifold Y1 has two boundary components, each homeomorphic

to S2, and one boundary component homeomorphic to B. Fill the S2 boundary

components with three-balls. The result is homeomorphic to the original manifold

Y . See Figure 2.2.

Observe that this construction gives a recipe for obtaining the homology of Y

from the Heegaard diagram. That is,

H1(Y ) = coker
(
(⊕H1(αi)) ⊕

(
⊕H1(βj)

)
→ H1(Σ ∪∂ B)

)

H2(Y ) = ker
(
(⊕H1(αi)) ⊕

(
⊕H1(βj)

)
→ H1(Σ ∪∂ B)

)

H1(Y, ∂Y ) = H1(Y/∂Y ) = coker ((⊕H1(αi)) ⊕ (⊕H1(βj)) → H1(Σ/∂Σ))

H2(Y, ∂Y ) = H2(Y/∂Y ) = ker ((⊕H1(αi)) ⊕ (⊕H1(βj)) → H1(Σ/∂Σ))

Note that there are restrictions on which β-curves are possible. In particular, if

there are 2k β-arcs, ℓ β-circles, and g α-circles then 2k + 2ℓ = 2g. This follows by

considering the closed 3-manifold obtained by doubling Y along ∂Y .

Another restriction is that the images of the β-curves in H1(Σ, ∂Σ) are linearly

independent. If they weren’t, in the induced Heegaard diagram for the double

Y ∪∂ −Y there would be a linear dependence between the β-circles.
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Figure 2.1: Constructing a manifold with boundary from a bordered Heegaard dia-
gram

That these are the only restrictions is clear, by the doubling construction.

Lemma 2.2.1 Every orientable 3-manifold Y with connected boundary admits a

Heegaard diagram with boundary.

Proof One can see this from the Morse-theoretic description as follows. Choose a

Morse function f in a neighborhood of ∂Y with the desired properties; this is clearly

possible. Extend f to a Morse function on Y arbitrarily. We need to eliminate all

index 0 and 3 critical points of f in the interior of Y . Since Y is connected, for each

index 0 critical point a in the interior of Y there is an index 1 critical point b in Y so

that there is a single flow line between a and b. By a standard handle cancellation
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lemma (e.g., [Mil65, Theorem 5.4], one can cancel a against b. Reversing f , the

same argument applies to cancel any excess index 3 critical point d. In this case,

we need to check that the index 2 critical point c used to cancel d is contained in

the interior of Y . This follows from the fact that the ascending sphere of an index

2 critical point of f in ∂Y is contained entirely in ∂Y . �

In Section 2.4 we will discuss how to construct Heegaard diagrams with boundary

in practice.

Lemma 2.2.2 Suppose that f1 and f2 are Morse functions on Y inducing Heegaard

diagrams with boundary (Σ1, ~α1, ~β1) and (Σ2, ~α2, ~β2) for Y , and that the restrictions

of f1 and f2 to a collar neighborhood of ∂Y agree. Then (Σ1, ~α1, ~β1) and (Σ2, ~α2, ~β2)

are related by a sequence of the following moves.

• Isotopies of the α- and β-curves, fixed near ∂Σ,

• Handleslides between α-circles,

• Handleslides between β-circles,

• Handleslides of β-arcs over β-circles,

• Stabilizations (taking the connect sum with a standard genus 1 Heegaard dia-

gram for S3) and destabilizations (the inverse operation).

Further, for given zi ∈ Σi \ (~αi ∪ ~βi), we can assume all stabilizations occur in

the connected component of Σ1\(~α1 ∪ ~β1) containing z1, prior to any isotopies and

handleslides, and all destabilizations occur in the connected component of Σ2\(~α2 ∪

~β2) containing z2, after all isotopies and handleslides.

Proof The proof, which is standard handle calculus, is the same as the proof of

Proposition 2.2 in [OS04d]. (One might be concerned that handleslides of β-circles

over β-arcs, whatever that would mean, could be necessary, but this is prohibited

by the fact that the ascending sphere of each index 2 critical point of f in ∂Y is

entirely contained in ∂Y .)
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The second part of the statement is clear: performing a stabilization in any

other component of Σ1\(~α1 ∪ ~β1) is the same as performing a stabilization in the

component containing z1 and then a sequence of handleslides, passing α- and β-

curves over the new handle; similarly, one can trade an isotopy (or handleslide)

followed by a stabilization for a stabilization followed by isotopies and handleslides.

(Compare [OSb, Lemma 2.10].) �

2.3 Notation

We will generally denote a Heegaard diagram with boundary by (Σ, ~α, ~β)

where the genus of Σ is g, ~α = {α1, · · · , αg} are g circles, and ~β =

{β1, · · · , β2k, β2k+1, · · · , βg+k} where β1, · · · , β2k are arcs and β2k+1, · · · , βg+k are

circles. Let C = ∂Σ and b = ~β∩C. Our Heegaard diagrams will always be pointed,

i.e., come with a choice of distinguished basepoint z in int(Σ) so that z can be con-

nected to ∂Σ by an arc in Σ\(~α∪ ~β). We will sometimes think of z as a point in ∂Σ

(in the same connected component of Σ\(~α ∪ ~β)). The invariants will depend only

on the connected component of Σ\(~α ∪ ~β) containing z, not on z itself.

2.4 Examples

Figure 2.4 shows a Heegaard diagram with boundary for a solid torus. Note that

if we glue two copies of this Heegaard diagram along their common boundary after

performing a half twist, we obtain a Heegaard diagram for S3.

This is not, in fact, the only genus one Heegaard diagram with boundary for a

solid torus. Others are given by taking the α-circle to be any other essential curve

in the the torus, disjoint from the boundary. See, for example, Figures 5.1 – 5.3.

Another interesting class of examples is knot complements. E. Eftekhary and,

independently, M. Hedden pointed out that a Heegaard diagram with boundary of

S3\K can be constructed as follows. Let (Σ, {α1, · · · , αg}, {β1, · · · , βg−1}) denote an

ordinary Heegaard diagram for S3 \K. Let λ ⊂ Σ be a longitude of K, and µ ⊂ Σ a

meridian of K, and assume that λ and µ intersect in a single point. Obtain Σ′ from
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Figure 2.2: Heegaard diagram for a solid torus

Σ by deleting a small disk around λ∩µ. Then (Σ′, {α1, · · · , αg}, {β1, · · ·βg−1, λ, µ})

is a Heegaard diagram with boundary for S3 \ K. (This generalizes in an obvious

way to complements of knots in other manifolds.)

More generally, suppose that one is given a relative handle decomposition of

(Y, ∂Y ) (with a single 3-handle and no 1-handles). Fix a point q in ∂Y and embedded

simple closed curves in π1(∂Y, q) giving a π1-framing for ∂Y and disjoint except at q.

Let Σ0 be a surface with genus g(∂Y ) and fix p ∈ Σ0. Choose simple closed curves

β1, · · · , β2k ∈ π1(∂Y, q), k = g(∂Y ), giving a π1-framing of Σ0, disjoint except at q.

Then the choice of the βi together with the π1-framing of Σ0 identifies Σ0 with ∂Y

(up to isotopy).

We are given a description of Y by attaching 1- and 2-handles, and a single

3-handle, to ∂Y ∼= Σ0. For each 1-handle, attach a cylinder in the corresponding

way to Σ0, and let βk+i be a belt circle for the 1-handle (in the cylinder). Call

the result of gluing the cylinders for the 1-handles (Σ1, β1, · · · , βk+m). Next, let αi

be an attaching circle for the ith 2-handle. Then (Σ1, α1, · · · , αg, β1, · · · , βk+m) is a

Heegaard diagram with boundary for Y .
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Figure 2.3: (a) The definition of βup(γ) and βdown(γ). Shaded region shows the image
of πΣ ◦ u for u a curve converging to γ1. (b) Motivation for the terminology. The
curve is part of the intersection of u(∂S) with the β-cylinders. The vertical line in
the center is east ∞.

2.5 Reeb Chords

By a Reeb chord at east ∞ we mean an arc in ∂Σ\{z} with endpoints on b. We label

the Reeb chords at east ∞ by γ1, · · · , γN . Given a Reeb chord γ at east infinity we

can define βdown(γ) and βup(γ) of γ as in Figures 2.3.

Given a Reeb chord γi at east infinity, we write γi = γj ⊎γk if γj and γk intersect

only at one endpoint, γi = γj ∪ γk, and γj is north (counterclockwise with respect

to the “outward normal first” orientation) of γk, i.e., βup(γj) = βdown(γk). See

Figures 2.3 and 2.4. We will say that γi runs from βdown(γi) to βup(γi). We will say

γi runs between βj and βk if the endpoints of γi are in (βj ∩ ∂Σ) ∪ (βk ∩ ∂Σ). We

will sometimes drop the word “runs” from “runs between” or “runs from”.

Note that since each β-arc intersects ∂Σ in two points, it is possible to have,

for instance, βup(γi) = βdown(γi) (i.e., γi runs from β1 to β1) and other similarly

confusing phenomena. See, e.g., Figure 3.1.
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Figure 2.4: Example of ⊎.

2.6 Maps, homology classes and SpinC-structures

Most of the preliminaries discussed in this section have analogs in traditional

Heegaard-Floer homology; see [Lip, Sections 1 and 2].

We will define Heegaard-Floer homology by studying curves in W = Σ×[0, 1]×R.

Viewing ∂Σ as a puncture p, W has three kinds of infinity: Σ× [0, 1]×{+∞}, which

we call +∞, Σ× [0, 1]×{−∞}, which we call −∞, and p× [0, 1]×R, which we call

east ∞. Let Cα = ~α×{1}×R and Cβ = {~β ×{0}×R}. There are projection maps

πΣ : W → Σ and πD : W → [0, 1] × R.

By an intersection point we mean a g-tuple of points ~x = {xi ∈ αi ∩ βσ(i)}
g
i=1

so that exactly one xi lies on each α-circle, exactly one xi lies on each β-circle,

and at most one xi lies on each β-arc.1 An intersection point specifies a g-tuple of

arcs {xi × [0, 1]} in Σ× [0, 1]× {±∞}; with respect to a split symplectic form ω on

Σ× [0, 1]×R, such arcs are leaves of the characteristic foliation on Σ× [0, 1]×{±∞},

with endpoints on Cα ∪ Cβ. Sometimes when we write ~x we will in fact mean the

corresponding g-tuple of leaves; the meaning should be clear in context.

Fix intersection points ~x and ~y, and Reeb chords γi1 , · · · , γik at east ∞. We will

be interested in holomorphic maps u : (S, ∂S) → (W, Cα ∪ Cβ), with respect to an

almost complex structure J on W satisfying certain properties explained in chapter

4.1, asymptotic to ~x (or rather, ~x × [0, 1]) at −∞, ~y at +∞ and {γij × {0} × {tj}}

1The term comes from thinking of ~x as an intersection point between certain tori in Symg(Σ).
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at east ∞, and disjoint from {z} × [0, 1] × R. We say such curves connect ~x to ~y.

The space of curves connecting ~x to ~y breaks into homology classes in an obvious

way. Let π2(~x, ~y) denote the set of homology classes of curves connecting ~x to ~y.

(The use of π2 to denote homology classes is a holdover from˜[OS04d], in which the

corresponding objects are homotopy classes of disks in Symg(Σ).)

Let Σ◦ = (Σ/∂Σ)\z. Observe that

π2(~x, ~x) = H2

(
Σ◦ × [0, 1], (~α × {1}) ∪ (~β × {0})

)
.

There are concatenation operations π2(~x, ~y) × π2(~y, ~z) → π2(~x, ~z) and inversions

π2(~x, ~y) → π2(~y, ~x). If π2(~x, ~y) is nonempty, concatenation of π2(~x, ~x) with any

given element of π2(~x, ~y) gives a bijection π2(~x, ~x) → π2(~x, ~y).

Given w ∈ Σ\(~α ∪ ~β) and a (topological) representative u of an element A ∈

π2(~x, ~y), write nw(u) to mean the local multiplicity of πΣ ◦ u at w. The number

nw(u) does not depend on u, so we may write nw(A) to mean nw(u) for some

representative u of A. Note that if w and w′ are in the same component of Σ\(~α∪ ~β)

then nw(A) = nw′(A). Our requirement that curves be disjoint from {z}× [0, 1]×R

means that nz(A) = 0 for any homology class A.

By a cellular 2-chain in Σ we mean a formal linear combination (with integer

coefficients) of connected components of Σ\(~α ∪ ~β). (Note that this is a slight

abuse of terminology, since some components may not be disks.) Given an element

A ∈ π2(~x, ~y) there is a corresponding cellular chain in Σ, called the domain of

A, where the coefficient of a component D is nw(A) for some point w ∈ D. The

concatenation operations on π2 correspond to addition of domains, and inversion

corresponds to negation.

Lemma 2.6.1 There is a natural isomorphism π2(~x, ~x) ∼= H2(Y, ∂Y ).

Proof Recall that π2(~x, ~x) ∼= H2

(
Σ◦ × [0, 1], (~α × {1}) ∪ (~β × {0})

)
. From the

long exact sequence for the pair
(
Σ◦ × [0, 1], (~α × {1}) ∪ (~β × {0})

)
, since H2(Σ

◦) =
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0, we have

0 // H2

“

Σ◦ × [0, 1], (~α × {1}) ∪ (~β × {0})
”

//

))TTTTTTTTTTTTTTT

H1

“

~α × {1} ∪ (~β × {0})
”

// H1(Σ◦)

ker

0

B

B

@

0

B

B

@

H1(~α)

⊕

H1(~β)

1

C

C

A

→ H1(Σ◦)

1

C

C

A

0

88
q

q
qq

q
q

qq
q

qq
q

H2(Y, ∂Y )

Since H2(Y, ∂Y ) = ker
(
H1(~α) ⊕ H1(~β) → H1(Σ/∂Σ)

)
(Section 2.2), the result

follows. �

Notice that, as a consequence of the proof, a homology class is completely de-

termined by its domain. We shall use the words interchangeably.

We next turn to the question of when π2(~x, ~y) is empty. The situation is simi-

lar to the closed case as described in [OS04d, Section 2] or [Lip, Section 2] Given

intersection points ~x = {xi} and ~y = {yi}, choose g arcs γα in the α-circles con-

necting the xi to the yi. Choose g arcs γβ in ~β ∪ (∂Σ\z) connecting the xi to

the yi. Then, γα − γβ defines a one-chain in Σ◦. Let ε(~x, ~y) denote the image of

γα−γβ in coker
(
H1(~α) ⊕ H1(~β) → H1(Σ

◦)
)

= H1(Y, ∂Y ). We will see that ε is the

obstruction to the existence of (topological) curves connecting ~x to ~y.

Lemma 2.6.2 For a pair of intersection points ~x and ~y, ε(~x, ~y) = 0 if and only if

π2(~x, ~y) is nonempty.

Proof If π2(~x, ~y) is nonempty then let A ∈ π2(~x, ~y). Then ∂A is a chain defining

ε(~x, ~y), so ε(~x, ~y) is zero in homology. Conversely, if ε(~x, ~y) = 0 then for an appro-

priate choice of γα and γβ, γα − γβ bounds in Σ. It is easy to see that the domain

bounded by γα − γβ corresponds to an element of π2(~x, ~y). �

Next, we construct a map from intersection points ~x to SpinC-structures sz(~x)

on Y . We will see that ~x and ~y represent the same SpinC-structure if and only if

ε(~x, ~y) = 0. In fact, PD(ε(~x, ~y)) = sz(~x) − sz(~y) ∈ H2(Y ). (Here, PD denotes the
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Poincaré duality isomorphism H1(Y, ∂Y ) → H2(Y ).) The construction is a simple

adaptation from [OS04d, Section 2].

Recall from [Tur97] that a non-vanishing vector field v on Y specifies a SpinC-

structure as follows. The choice of v, together with the orientation of Y and a

Riemannian metric on Y reduces the structure group of TY to U(1). The inclusion

U(1) →֒ SO(3) lifts to the standard inclusion U(1) →֒ U(2) = SpinC(3). This gives

a SpinC-structure on TY. It is not hard to check that two vector fields specify the

same SpinC-structure if and only if they are homotopic through nonvanishing vector

fields in the complement of some ball (or equivalently, finite disjoint union of balls).

So, it remains for us to construct a non-vanishing vector field on Y , well-defined in

the complement of some balls.

For convenience, fix a Morse function f on Y inducing the Heegaard diagram

(Σ, ~α, ~β) as in Section 2.2. Fix an intersection point ~x = {xi}
g
i=1. For notational

convenience, assume that xi ∈ αi∩βi+k (so the first k β-arcs are not used in ~x.). The

basepoint z lies on a flow from the index 0 critical point of f to the index 3 critical

point; let B0 denote a tubular neighborhood of this flow line. For i = 1, · · · , g, the

point xi lies on a flow line from the ith index 1 critical point of f to the (i + k)th

index 2 critical point of f ; let Bi be a small tubular neighborhood of this flow line.

Finally, for i = 1, · · · , k let Bi denote a hemiball neighborhood of the ith index 2

critical point of f (which lies on ∂Y ). Let B =
⋃g+k/2

i=1 Bi. The gradient ∇f of f

is non-vanishing on Y \B. Further, ∇f |Y \B admits an extension to all of Y as a

non-vanishing vector field, and so specifies a SpinC-structure sz(~x). It is clear that

sz(~x) does not depend on the choice of Morse function f inducing (Σ, ~α, ~β). We may

sometimes write ~x ∈ s to mean sz(~x) = s.

The proof of the following lemma is the same as [OS04d, Lemma 2.19] or [Lip,

Lemma 2.2], and we refer the interested reader there.

Lemma 2.6.3 For intersection points ~x and ~y, ε(~x, ~y) = 0 if and only if sz(~x) =

sz(~y).

Next we turn to an issue which does not exist in Heegaard-Floer for closed 3-

manifolds: how domains interact with ∂Σ. The role of this discussion in the present
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paper will be minimal, but these results are almost certain to be useful in future

developments. Call an element A of π2(~x, ~y) provincial if in ∂A the multiplicity of

any arc in ∂Σ is zero or, equivalently, if the coefficient in A of any component of

Σ\(~α∪~β) adjacent to ∂Σ is zero. Let π∂
2 (~x, ~y) denote the subset of π2(~x, ~y) consisting

of provincial homology classes. Notice that, as with π2(~x, ~y), if π∂
2 (~x, ~y) is nonempty

then π∂
2 (~x, ~y) ∼= π∂

2 (~x, ~x), non-canonically.

Lemma 2.6.4 π∂
2 (~x, ~x) ∼= H2(Y ).

Proof Observe that π∂
2 (~x, ~x) = H2(Σ× [0, 1], ~α×{1}∪ ~β ×{0}). The proof is then

the same as the proof of Lemma 2.6.1, replacing Σ◦ with Σ everywhere. �

Next we discuss when π∂
2 (~x, ~y) is nonempty. Let B(~x) denote the set of β-arcs

containing ~x (so B(~x) is a k element subset of {β1, · · · , β2k}). Observe that if

π∂
2 (~x, ~y) 6= ∅ then certainly B(~x) = B(~y). Suppose B(~x) = B(~y). Then we can

define an obstruction ε∂(~x, ~y) to the existence of elements in π∂
2 (~x, ~y) as follows. Let

{ai} be a g-tuple of arcs in ~α with ∂(a1 + · · ·+ ag) = ~y − ~x. Let {bi} be a g-tuple of

arcs in ~β with ∂(b1 + · · ·+bg) = ~y−~x. Then (a1 + · · ·+ag)− (b1 + · · · bg) is a cycle in

Σ. Let ε∂(~x, ~y) denote the image of this cycle in H1(Y ) = H1(Σ)/
(
H1(~α) + H1(~β)

)
.

Fix a Morse function f and metric g on Y inducing (Σ, ~α, ~β). An equivalent

description of ε∂ is given by considering the g flow lines F (~x) of f containing ~x, and

the g flow lines F (~y) of f containing ~y. Then ε∂(~x, ~y) = F (~y) − F (~x).

Fix a SpinC-structure t on a collar neighborhood D of ∂Y , such that t extends

over Y . (The SpinC-structure t extends over Y if and only if 〈c1(t), [∂Y ]〉 = 0. Since

∂Y is connected, this characterizes t|∂Y .) Let SpinC(Y, ∂Y ) denote the set of distinct

extensions of t over Y . Using the fact that SpinC(n) → SO(n) is a fibration with fiber

S1, it is not hard to see that SpinC(Y, ∂Y ) is an affine copy of H2(Y, ∂Y ) ∼= H1(Y ).

Fix a k-tuple of β-arcs B; B corresponds also to a k-tuple of index 1 critical

points of f |∂Y . Let crit(B) denote the union of this k-tuple with the index 0 and 2

critical points of f |∂Y . The SpinC-structure t on D is specified by a non-vanishing

vector field on D; we can choose a vector field which agrees with ∇f away from

crit(B)×[0, 1] ⊂ D = ∂Y ×[0, 1]. Then, given an intersection point ~x with B(~x) = B,

the SpinC-structure specified by the restriction of ∇f to the complement of the flow



CHAPTER 2. HEEGAARD DIAGRAMS WITH BOUNDARY 18

lines containing ~x ∪ {z} extends t. Denote this extension by s∂
z (~x). We have the

following lemma, the proof of which we leave to the reader.

Lemma 2.6.5 For intersection points ~x and ~y with B(~x) = B(~y), the following

conditions are equivalent.

• ε∂(~x, ~y) = 0.

• s∂
z (~x) = s∂

z (~y).

• π∂
2 (~x, ~y) 6= ∅.

Further,
(
s∂

z (~x) − s∂
z (~y)

)
= PD

(
ε∂(~x, ~y)

)
∈ H2(Y, ∂Y ). (Here, PD : H1(Y ) →

H2(Y, ∂Y ) denotes Poincaré duality.)

2.7 Admissibility for Heegaard diagrams with

boundary

As is standard for Heegaard-Floer homology, in order to insure that various counts

of curves are finite we will have to impose certain “admissibility conditions” on the

Heegaard diagrams under consideration. A satisfactory condition is the “weak ad-

missibility” of [OS04d]. Since our setting is somewhat different from theirs, however,

we will explain the requirements from the beginning, making the necessary minor

adaptations to their proofs. (When proofs are exactly the same, we will simply refer

to the original.)

Recall that homology classes in π2(~x, ~y) correspond to certain cellular chains in

Σ. Also, unlike in [OS04d] or [Lip], π2(~x, ~y) denotes only those chains with local

multiplicity 0 at z. The following definition is equivalent to the “weak admissibility

for all SpinC-structures” of [OS04d, Definition 4.10]:

Definition 2.7.1 A pointed Heegaard diagram with boundary (Σ, ~α, ~β, z) is called

weakly admissible if every element of π2(~x, ~x) has both positive and negative coeffi-

cients.
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The proof of the following proposition is exactly the same as [OS04d, Lemma

4.12].

Proposition 2.7.2 A pointed Heegaard diagram with boundary (Σ, ~α, ~β, z) is weakly

admissible if and only if there is an area form on Σ with respect to which every

element of π2(~x, ~x) has zero signed area.

Corollary 2.7.3 Given intersection points ~x and ~y in a weakly admissible Heegaard

diagram there are at most finitely many domains in π2(~x, ~y) all of whose coefficients

are positive.

Proof Fix an area form on Σ as in Proposition 2.7.2. Suppose A, A′ ∈ π2(~x, ~y).

Then A′ = A + B for some B ∈ π2(~x, ~x). It follows that A and A′ have the same

area. Obviously only finitely many domains with positive coefficients can have the

same area. �

Next, we turn to existence and “uniqueness” of weakly admissible Heegaard

diagrams.

Proposition 2.7.4 Given any pointed Heegaard diagram with boundary (Σ, ~α, ~β, z)

there is an isotopic weakly admissible pointed Heegaard diagram with boundary

(Σ, ~α′, ~β ′, z). More precisely, the ~α′ and ~β ′ are isotopic to the ~α and ~β in the com-

plement of z, via an isotopy fixed near ∂Σ.

Proof (Compare [OS04d, Lemma 5.4].) The idea of the proof is that admissibility

can be ensured by deforming the α-curves so that z lies on both sides of each α-curve.

Let D denote the component of Σ\(~α ∪ ~β) in which z lies. Then ∂D is a linear

combination of arcs in various α- and β-curves. Suppose that for each i there is an

arc of αi occurring with a negative coefficient in ∂D and another arc of αi occurring

with a positive coefficient in ∂D. (In this case, we will say that z lies on both sides

of αi.)

Claim. If z lies on both sides of each αi then the Heegaard diagram (Σ, ~α, ~β, z)

is weakly admissible.
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To see this, let P ∈ π2(~x, ~x). Then ∂P is a linear combination of α- and β-curves.

Since the βi are linearly independent, if P 6= 0 then some αi occurs with a non-zero

coefficient in ∂P . Since the local multiplicity of P at z is zero, it follows from the

fact that z lies on both sides of αi that P has both positive and negative coefficients.

This proves the claim.

It is easy to arrange that z lies on both sides of each αi, proving the proposition.

�

Proposition 2.7.5 Suppose that (Σ, ~α, ~β, z) and (Σ, ~α′, ~β ′, z) are isotopic weakly

admissible Heegaard diagrams. Then (Σ, ~α, ~β, z) and (Σ, ~α′, ~β ′, z) are isotopic, in the

complement of z, through weakly admissible Heegaard diagrams.

Proof (Compare [OS04d, Lemma 5.6 and Lemma 5.8].) Preliminary to the proof

proper, notice that an element P of π2(~x, ~x) is completely determined by ∂P , a linear

combination of α- and β-curves. It follows that there is a natural correspondence

between elements of π2(~x, ~x) and π2(~y, ~y) for different intersection points ~x and

~y, and a natural correspondence between elements of π2(~x, ~x) and π2(~x
′, ~x′) for

intersection points in isotopic Heegaard diagrams.

Throughout the proof, objects without primes (′’s) will correspond to the

Heegaard diagram (Σ, ~α, ~β, z) and objects with primes to the Heegaard diagram

(Σ, ~α′, ~β ′, z).

To make the proof more transparent, we will prove the following slightly weaker

statement: given P ∈ π2(~x, ~x) we can find an isotopy between (Σ, ~α, ~β, z) and

(Σ, ~α′, ~β ′, z) so that the image P ′′ of P in any intermediate Heegaard diagram has

both positive and negative coefficients. (To prove the proposition, one needs to find

a single such isotopy for all P simultaneously. How our argument generalizes to

prove this will be clear.)

Fix a point w+ (respectively w−) in Σ at with P has positive (respectively neg-

ative) local multiplicity. Fix a point w′
+ (respectively w′

−) in Σ at with P ′ has

positive (respectively negative) local multiplicity. For appropriate choice of w′
± and

(Σ, ~α′′, ~β ′′, z) it is possible to find an isotopy I1 from (Σ, ~α, ~β, z) to (Σ, ~α′′, ~β ′′, z)
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and an isotopy I2 from (Σ, ~α′′, ~β ′′, z) to (Σ, ~α′, ~β ′, z) so that I1 is supported in the

complement of w± and I2 is supported in the complement of w′
±.

Suppose that Q is the image of P in some Heegaard diagram occurring during I2.

It is clear that nw±
(Q) = nw±

(P ) so Q has both positive and negative coefficients.

Suppose that Q′ is the image of P in some Heegaard diagram occurring during I2.

It is clear that nw′
±
(Q′) = nw′

±
(P ) so Q′ has both positive and negative coefficients.

This proves the claim. �



Chapter 3

Invariants of 2-manifolds

3.1 Ordered lists of Reeb chords

By an ordered list of Reeb chords at east infinity we mean a sequence of Reeb chords

at east infinity separated by < signs. If o denotes an ordered list of Reeb chords we

define |o| to be the number of Reeb chords appearing in o.

Fix an ordered list of Reeb chords o = γi1 < · · · < γij , and fix also k distinct

β-arcs at −∞, B = {βj1, · · · , βjk
}. (Later, B will be the β-arcs appearing in some

intersection point ~x.)

We try to use o to obtain a sequence of j+1 k-tuples of β-arcs B0, · · · , Bj, which

can be thought of as the β-arcs in the image of u at various heights. (See Figure

3.1.) If we are successful we will call the pair Γ = (o, B) admissible; otherwise, Γ is

inadmissible. Set B0 = B. Inductively, if βdown(γiℓ) ∈ Bℓ−1 and βup(γiℓ) 6∈ Bℓ−1 \

{βdown(γiℓ)} then Bℓ is obtained from Bℓ−1 by replacing βdown(γiℓ) with βup(γiℓ). If

at any stage either βdown(γiℓ) 6∈ Bℓ−1 or βup(γiℓ) ∈ Bℓ−1\{βdown(γiℓ)} then Γ = (o, B)

is inadmissible.

Remark. There are (many) ordered lists of Reeb chords o for which there does

not exist B such that (o, B) is admissible.

Remark. Later, we will consider holomorphic curves in Σ × [0, 1] × R, where Σ

is a Heegaard diagram with boundary. Such curves will be asymptotic to various

Reeb chords, at various heights (in R). Ordered lists of Reeb chords will keep track

22
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Figure 3.1: The pair (γ1, {β1, β3}) shown in (a) is admissible. B0 = {β1, β3} and
B1 = {β2, β3}. The pair (γ12, {β1, β3}) shown in (b) is inadmissible. B0 = {β1, β3}
but B1 = {β3, β3}, which is not allowed. Note that the pair (γ1 < γ2, {β1, β3}) is also
inadmissible. (The vertical line in the middles of the pictures, labeled p, denotes
east ∞.)

of the order induced by these heights. The motivation, then, for the concept of

admissibility is as follows. Suppose (Σ, ~α, ~β) is a closed manifold. In the cylindrical

definition of Heegaard-Floer homology ([Lip]), the holomorphic maps

u : (S, ∂S) → (Σ × [0, 1] × R, (~α × {1} × R) ∪ (~β × {0} × R))

have the following property: for each t ∈ R and 1 ≤ i ≤ g, u−1(βi × {0} × {t})

consists of a single point. In other words, ∂u runs monotonically up each β-cylinder.

In the relative case, we must loosen this condition to the condition that for each

1 ≤ i ≤ g + k and each t ∈ R, u−1(βi ×{0}×{t}) consists of at most a single point.

Admissibility is a combinatorial requirement on the asymptotics for such a curve to

be conceivable. The Bi can be thought of as the sequence of sets of β-arcs for which

u−1(βi × {0} × {t}) is nonempty (as t goes from −∞ to ∞). (See Figure 3.1 and

Lemma 4.3.1.)
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By a two-level ordered list of Reeb chords we mean a sequence of Reeb chords

separated by < and <ǫ signs. From a two-level ordered list O we can obtain an

ordered list o(O) be replacing the <ǫ signs with < signs. In a two-level ordered

list O, we refer to the maximal chains of Reeb chords separated by <ε signs as

the microscopic partitions of O and the ordering of each microscopic partition the

microscopic ordering. We call the partial order on O induced by the < signs the

macroscopic ordering.

Remark. When we consider holomorphic curves in Σ × [0, 1] × R, part of the

boundary of the spaces of curves will correspond to the heights (in R) of different

Reeb chords coming together. The <ǫ’s will be used to keep track of this boundary.

If O is a two-level ordered list of Reeb chords and B a k-tuple of β-arcs, we say

(O, B) is admissible if (o(O), B) is admissible.

If (O, B) is admissible, Bi is defined to be the ith k-tuple of β-arcs induced by

(o(O), B). Define |O| = |o(O)|. We say that O collapses to O′ if O′ can be obtained

from O by replacing some < signs with <ε signs. Note that if O collapses to O′

then (O, B) is admissible if and only if (O′, B) is.

We will use the symbol ≺ to denote either < or <ǫ, so γi1 ≺ · · · ≺ γim is the

general two-level order with m terms.

Given admissible Γ1 = (O1, B1) and Γ2 = (O2, B2), if B1
|O1| = B2 define Γ1 < Γ2

to be the admissible pair (O1 < O2, B
1), where O1 < O2 is the ordered list of Reeb

chords obtained by concatenating O1 and O2 with a < sign in between. Let G denote

the collection of all admissible pairs. We make A = F2[G] into a ring by defining

[Γ1] · [Γ2] = [Γ1 < Γ2] if Γ1 < Γ2 is defined and 0 otherwise.

Remark. The unit in A is
∑

B(∅, B).

There is an operation join : A → A given by

join(O, B) =
∑

j

(γi1 ≺ · · · ≺ γij−1
≺ γij+1

⊎ γij ≺ γij+1
≺ · · · ≺ γm, B)

where O = (γi1 ≺ · · · ≺ γm) and the sum is over those j such that γij <ε γij+1
in O,

γij+1
⊎ γij is defined, and the pair on the right hand side is admissible.

Remark. Later (Proposition 4.6.1) we will see that part of the boundary of the
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space of curves in Σ× [0, 1]×R corresponds to a Reeb chord splitting into two Reeb

chords. The operation join will be used to record this part of the boundary.

Define a second operation decol : A → A by

decol(O, B) =
∑

γij
<εγij+1

occurs inO

(γi1 ≺ · · · ≺ γij−1
≺ γij < γij+1

≺ γij+1
≺ · · · ≺ γm, B).

That is, decol(O, B) is the sum of all possible ways of replacing a single <ε in O

with a < sign. (The symbol decol stands for “decollapse.”)

Remark. Later (Proposition 4.6.1) we will see that part of the boundary of the

space of curves in Σ×[0, 1]×R corresponds to the heights of two Reeb chords coming

together. The operation decol will be used to record this part of the boundary.

Note that we can regard any element of A as a subset of G. So, the expres-

sions (O, B) ∈ decol(O′, B′) and (O, B) ∈ join(O′, B′) have a natural meaning.

(In fact, since the terms in the sum defining decol(O′, B) (respectively join(O′, B))

are distinct, (O, B) ∈ decol(O′, B) (respectively (O, B) ∈ join(O′, B)) if (O, B)

appears in the sum defining decol(O, B) (respectively join(O′, B)).) Observe that

decol(O, B) ∩ join(O, B) = ∅.

Example. Consider the Heegaard diagram for T2 shown in Figure 3.1. There

are Reeb chords γ1, γ2, γ3, γ4 = γ1 ⊎ γ2, γ5 = γ2 ⊎ γ3 and γ6 = γ1 ⊎ γ2 ⊎ γ3. The pair

(O, B) = (γ2 < γ3 <ε γ2 < γ4 <ε γ3 < γ5, {β2}) is admissible. We have

decol(O, B) = (γ2 < γ3 < γ2 < γ4 <ε γ3 < γ5, {β2})

+(γ2 < γ3 <ε γ2 < γ4 < γ3 < γ5, {β2})

join(O, B) = 0.

Remark. It is not hard to see that in the case k = 1 (i.e., the surface is a

torus), join is always zero. This is presumably related to the fact that, in the k = 1

case, the boundary conditions correspond to a pair of nonsingular tori in Symg(Σ)

(see Section 8.2). (Here, Σ denotes Σ with the puncture filled-in.) For k > 1, the

boundary conditions correspond to 2k choose k singular tori in Symg(Σ).
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Figure 3.2: A pointed Heegaard diagram for T2.

3.2 The 2DHF DGA

Define a differential on A as follows: given an admissible pair Γ, define

d(Γ) = join(Γ) + decol(Γ).

Proposition 3.2.1 d
2

=0.

Proof It is clear, in fact, that join and decol form a pair of commuting differentials,

i.e.,

join(join(Γ)) = 0

decol(decol(Γ)) = 0

join(decol(Γ)) + decol(join(Γ)) = 0.

�

Proposition 3.2.2 d satisfies the Leibniz rule. That is, d(Γ1Γ2) = d(Γ1)Γ2 +

Γ1d(Γ2).

Proof It is clear from their definitions that join and decol each satisfy the Leibniz

rule. �
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Remark. M. Hedden and E. Eftekhary point out that there is a homological

grading gr on A, defined by gr(O, B) is the number of <ε’s appearing in O.

3.3 The homology of A

Observe that to every two-level ordered list of Reeb chords O one can associate a

homology class H(O) ∈ H1(C \ {z}, b) = Z|b|. In fact, since a Reeb chord can only

appear a non-negative number of times, H(O) ∈ N|b|.1 Let H(Γ = (O, B)) = H(O).

The map H makes A into a N|b|-graded algebra. The differential on A preserves

this grading in the sense that H(d(Γ)) = H(Γ). (That is, it is an “internal” rather

than “homological” grading. Later, we will be interested not in graded A-modules

but rather in filtered A-modules, so the reader should perhaps think of H as giving a

N|b|-filtration rather than a grading.) So, H(A) = ⊕~nH(A~n), where A~n is the part

of A in grading ~n. Each A~n further decomposes according to the B in Γ = (O, B),

as A~n,B.

There is a filtration on A~n,B by the number of Reeb chords appearing in O, that

is, the total length of O. Let gr(A~n,B) denote the associated graded complex. There

is a spectral sequence from the homology of gr(A~n,B) converging to the homology of

A~n,B. The differential on gr(A~n,B) is just decol. The complex gr(A~n,B) is a direct

sum of complexes of the form
(

F2
id
→ F2

)⊗ℓ

, where (O, B) lies in
(

F2
id
→ F2

)⊗|O|

.

Thus, the homology of gr(A~n,B) is a free F2-vector space on admissible pairs (O, B)

where O is either empty or consists of a single Reeb chord, and H(O) = ~n. For each

pair ~n, B there is at most one such (O, B). So, there are no higher differentials in the

spectral sequence, and the homology of A is the free F2-vector space on admissible

pairs (O, B) where O consists of either a single Reeb chord or the empty list of Reeb

chords. Notice, in particular, that the homology of A is finite-dimensional.

For computations of the homology of the three-dimensional invariant below, we

would like to use spectral sequence arguments like the one we used above. For

technical reasons, to do so we must work not with A but rather with the completion

Â of A with respect to the filtration H .

1Here and later N = {0, 1, 2, · · · } denotes the set of non-negative integers.
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Let A0 denote the part of A in H-filtration level zero. That is, A0 is generated

by pairs (∅, B). Recall from the definition that

(∅, B1) · (∅, B2) =

{
0 ifB1 6= B2

(∅, B1) ifB1 = B2

.



Chapter 4

Structure of the moduli spaces

4.1 Almost complex structures, moduli spaces

and transversality

Fix a neighborhood Up of the puncture p in Σ. Let jD denote the standard complex

structure on [0, 1] × R and jΣ some complex structure on Σ. We will work with

almost complex structures J on Σ × [0, 1] × R satisfying the following properties.

(J1) The projection map πD is (J, jD)-holomorphic.

(J2) For (s, t) coordinates on [0, 1] × R, J ∂
∂t

= − ∂
∂s

.

(J3) J |π−1

Σ
(Up) is split, i.e., J |π−1

Σ
(Up) = jΣ × jD.

(J4) J is R-translation invariant.

The choice of such a J is equivalent to choosing a family jΣ,s of almost complex

structures on Σ parameterized by s ∈ [0, 1] (with jΣ,s|Up = jΣ). Observe also that

with respect to such a J , the fibers of πΣ and πD are J-holomorphic. Further, for ωΣ

and ωD positively-oriented area forms on Σ and D respectively, such a J is tamed

by the split symplectic form π∗
ΣωΣ + π∗

D
ωD on Σ × [0, 1] × R.

Let Σ denote Σ with the puncture filled-in, so Σ is a closed surface. Observe

that any almost complex structure J satisfying (J3) extends over Σ× [0, 1]×R; we

will denote the extension by J as well.

29
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We will be interested in J-holomorphic maps

u : (S, ∂S) →
(
(Σ\z) × [0, 1] × R, (~α × {1} × R) ∪ (~β × {0} × R)

)

which extend to proper, finite-energy (in the sense of [BEH+03, Section 5.3]) J-

holomorphic u : S → Σ× [0, 1]×R for some partial compactification S of S. (Here,

S is a surface with boundary and punctures on the boundary.) It follows from

[BEH+03, Proposition 5.8] that at each puncture of S, u is asymptotic to either

x × [0, 1] at +∞ or −∞ for some x ∈ ~α ∩ ~β or to γ × {0} × {t} for some Reeb

chord γ at east infinity and t ∈ R. For a given almost complex structure J , let

M(J) denote the moduli space of all such curves. The space M(J) has different

components corresponding to different sources S, asymptotics, and homology classes

of maps, but for the time being we do not care. Let MD−flat(J) denote the subspace

of M(J) of those curves u : S → Σ × [0, 1] × R for which there is some component

of S on which πD is constant. Let MΣ−flat(J) denote the subspace of M(J) of those

curves u : S → Σ × [0, 1] × R for which there is some component of S which is not

a twice-punctured disk on which πΣ ◦ u is constant.

The following proposition is proved in exactly the same way as [Lip, Proposition

3.8].

Proposition 4.1.1 For a generic choice of J , M(J)\(MD−flat(J)∪MΣ−flat(J)) is

transversely cut out by the ∂-equation, and as such is a smooth orbifold.

We next turn to maps to ∂Σ × R × [0, 1] × R, which will appear as parts of the

limits of sequences of maps to Σ × [0, 1] × R. We begin with some notation. Let

∂Σ be a circle, which we identify with east ∞ in Σ. We will consider holomorphic

curves in (∂Σ\z) × R × [0, 1] × R with respect to the split complex structure. Let

πΣ : (∂Σ) × R × [0, 1] × R → (∂Σ) × R denote projection onto the first two factors

and πD : (∂Σ)×R×[0, 1]×R → [0, 1]×R denote projection onto the last two factors;

observe that both projections are holomorphic. We refer to ∂Σ×R× [0, 1]×{+∞}

as +∞, ∂Σ × R × [0, 1] × {−∞} as −∞, ∂Σ × {−∞} × [0, 1] × R as west ∞, and

∂Σ × {+∞} × [0, 1] × R as east ∞. Recall that b = ~β ∩ ∂Σ. Arcs in ∂Σ between

points in b specify Reeb chords at (both) east and west ∞.
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The following lemma will be useful in restricting which types of degenerations

can occur in codimension 1.

Lemma 4.1.2 Let S denote a disk with at least three boundary punctures, and

u : (S, ∂S) → (∂Σ×R× [0, 1]×R, b×R×{0}×R) a holomorphic map with respect

to the split complex structure jΣ× jD on (S1×R)× ([0, 1]×R) asymptotic to certain

Reeb chords at east and west ∞. Then the linearization Du∂ at u of the ∂-operator

is surjective.

Proof For notational convenience, let M1 = ∂Σ × R and M2 = [0, 1] × R. Recall

that

Du∂ : ΓL (u∗T (M1 × M2)) → Γ
(
Λ0,1u∗T (M1 × M2)

)
,

where Γ and ΓL denote certain weighted Sobolev spaces of sections, which in the

case of ΓL are required to be tangent to the Lagrangian planes b × R × {0} × R.

Observe that

u∗T (M1 × M2) = ((πΣ ◦ u)∗ TM1) ⊕ ((πD ◦ u)∗ TM2),

as complex vector bundles with Lagrangian subbundles over ∂S. It suffices to

prove, therefore, that both DπΣ◦u∂ : ΓL ((πΣ ◦ u)∗ TM1) → Γ (Λ0,1(πΣ ◦ u)∗ TM1)

and DπD◦u∂ : ΓL ((πD ◦ u)∗ TM1) → Γ (Λ0,1(πD ◦ u)∗ TM1) are surjective.

We check DπD◦u∂ is surjective first. Observe that since πD ◦ u is constant, (πD ◦

u)∗ TM1 is, in fact, a trivial line bundle. Let OP1 denote the trivial holomorphic line

bundle over complex projective space P1. Viewing D as half of P1, it follows from a

standard doubling argument (see for instance [HLS97, Section 4]) that the cokernel

of DπD◦u∂ embeds in coker(∂) : Γ(OP1) → Γ (Λ0,1(OP1)) . By Hodge theory, this is

the sheaf cohomology group H1(OP1) = H1(P1;C) = 0. This proves surjectivity of

DπD◦u∂.

The proof of surjectivity of DπΣ◦u∂ is similar. Again, (πΣ ◦ u)∗ TM2 doubles

to a holomorphic line bundle L over P1, so that coker(DπΣ◦u∂) is a subspace of

coker
(
∂ : Γ(L) → Γ (Λ0,1(L))

)
. This cokernel is isomorphic to H1(L). So, it suffices

to show that H1(L) vanishes, or equivalently that the degree of L is non-negative.
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By the Riemann-Roch theorem, the degree of L is
1
2
ind

(
∂ : Γ(L) → Γ(Λ0,1(L))

)
− 1 which by the nature of the doubling proce-

dure is just ind(DπΣ◦u∂) − 1. Thus, it suffices to show that for πΣ ◦ u holomorphic,

if S has at least three boundary punctures then ind(DπΣ◦u∂) ≥ 1. But it follows

from any of the standard formulas for the index of D∂ that ind(DπΣ◦u∂) is two less

than twice the number of branch points of πΣ ◦u (where branch points on ∂S count

for 1/2). This proves the result. �

Note that the only holomorphic disks in (∂Σ×R×[0, 1]×R, b×R×{0}×R) with

fewer than three boundary punctures are trivial strips, mapped homeomorphically

onto a strip in (∂Σ × R,b× R).

4.2 Compactness and gluing

In this section we discuss the most general objects into which a sequence of holo-

morphic curves in Σ× [0, 1]×R can degenerate. In the next section, we will discuss

restrictions on what degenerations can, in fact, occur in codimension 1.

Degenerations will include curves mapped to “east infinity”, and before dis-

cussing them we need appropriate notation.

By a one-story holomorphic comb in Σ × [0, 1] × R we mean

• a map u : (S0, ∂S0) → ((Σ\{z}) × [0, 1] × R, (~α × {1} × R) ∪ (~β × {0} × R)),

defined up to translation in R, and

• maps vi : (Si, ∂Si) → ((∂Σ\{z})×R× [0, 1]×R, b×R×{0}×R), i = 1, · · · , k,

defined up to translation in both R-factors1

such that the following technical conditions are satisfied.

• Each Si is a surface with boundary and punctures on the boundary.

• The map u extends to a proper map u : S0 → Σ × [0, 1] × R where S0 is a

partial compactification of S0, and u is finite-energy in the sense of [BEH+03,

Section 5.3].

1In this section, k has nothing to do with the genus of ∂Y .
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• For each i, πΣ ◦ vi and πD ◦ vi is proper.

• For each i, πD ◦ vi is contained in a compact subset of [0, 1] × R.

• The maps u and vi (i = 1, · · · , k) are stable. That is, there are no infinitesimal

automorphisms of u or vi (i = 1, · · · , k).

The technical conditions imply that u is asymptotic to certain Reeb chords at ±∞

and Reeb chords γ0,j × {(0, t0,j)}, j = 1, · · · , n0, at east ∞, and that each vi is

asymptotic to Reeb chords γ′
i,j × {(0, t′i,j)}, j = 1, · · · , n′

i at west ∞ and γi,j ×

{(0, ti,j)}, j = 1, · · · , ni at east ∞. We further require that

• for i = 0, · · · , k − 1, ni = n′
i+1 and

• for an appropriate ordering of the punctures on each Si, γi,j = γ′
i+1,j and

ti,j = t′i+1,j .

By an ℓ-story holomorphic comb in Σ×[0, 1]×R we mean ℓ one-story holomorphic

combs {u1, v1,i}, · · · , {uℓ, vℓ,i} such that the asymptotics of ui at +∞ agree with

the asymptotics of ui+1 at −∞ for i = 1, · · · , ℓ − 1. That is, if ui is asymptotic to

x1× [0, 1], · · · , xm× [0, 1] at +∞ then ui+1 is asymptotic to x1× [0, 1], · · · , xm× [0, 1]

at −∞.

Remark. The surfaces Si may be nodal. We say that the comb is smooth if all

of the Si are smooth.

The topology on the space of holomorphic combs is a straightforward generaliza-

tion of the topology on the space of multi-story holomorphic buildings described in

[BEH+03]. That is, roughly, a sequence of maps un : Sn → Σ× [0, 1]× R converges

to a holomorphic comb {ui : S0,j → Σ× [0, 1]×R, vi,j : Si,j → ∂Σ×R× [0, 1]×R} if

after adding N marked points (some N) to stabilize all of the components of all the

Si,j, one can add N marked points to each Sn so that the sources Sn converge, in

the sense of Deligne-Mumford, with the marked points and punctures, to {Si,j}. In

the process, a collection Γ of arcs and circles in the Sn collapse. The maps un should

converge uniformly on compact subsets of Sn\Γ to {ui, vi,j}. Write Γ = Γ1 ∪Γ2 ∪Γ3

where Γ1 corresponds to arcs collapsing to punctures of the S0,j mapped to ±∞, Γ2
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to arcs collapsing to punctures of the Si,j mapped to Reeb chords at east/west ∞,

and the Γ3 to nodes of the Si,j. For convenience, assume Γ3 = ∅. Then, near the Γ1,

πΣ×[0,1] ◦ un should converge uniformly, and πR ◦ un should converge uniformly on

compact sets (up to vertical translation of each un). Near the Γ2-arcs, up to vertical

translation of each un, πD ◦un should converge uniformly on compact sets, and up to

horizontal translation of each un (i.e., in the R-coordinate of a collar neighborhood

of ∂Σ), πΣ ◦ un should converge uniformly on compact sets.

A precise definition of convergence is that, after adding a sufficient number of

marked points to the Sn and Si,j,

• the πD ◦un converge in the sense of [BEH+03, Section 7.3] to {πD ◦ui, πD ◦vi,j}

• the πΣ ◦ un|(πΣ◦un)−1(Ūp) converge in the sense of [BEH+03, Section 9.1] to

{πΣ ◦ ui|(πΣ◦ui)−1(Ūp), πΣ ◦ vi,j} and

• the un|(πΣ◦un)−1(Σ\Up) converge in the sense of [BEH+03, Section 7.3] to

{ui|(πΣ◦ui)−1(Σ\Up)}.

(Here, Up is the neighborhood of the puncture of Σ fixed in chapter 4.1.)

The next proposition gives the compactness result we will need.

Proposition 4.2.1 Let {un : Sn → Σ× [0, 1]×R}∞n=1 be a sequence of holomorphic

curves in the same homology class. Then there is a subsequence {uni} converging

to a holomorphic comb. More generally, any sequence of holomorphic combs in the

same homology class has a convergent subsequence.

Proof We will prove the result for a sequence of holomorphic curves; the proof

of the result for sequences of combs is essentially the same, but notationally more

cumbersome. Actually, the definition of convergence essentially spells out how to

deduce this result from the compactness results of [BEH+03].

By [BEH+03, Theorem 10.1], we can find a subsequence of {un} for which πD ◦

un converges to some multi-story holomorphic building.2 (In the process, we add

2The compactness theorems [BEH+03, Theorems 10.1 and 10.2] are stated in the absolute case
(i.e., for curves without boundary). See Section 10.3 of that paper for the generalizations to the
relative case.
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enough marked points to the sources Sn to stabilize each component of the limit

curve.) From now on, let {un} denote this subsequence. Call the limit {πD ◦ ua,i :

Sa,i → D}ℓ
i=1; here, ui denotes the ith level of the limit.

The πΣ ◦un|(πΣ◦un)−1(Ūp) form a sequence of holomorphic curves with Lagrangian

boundary conditions ∂Up. By [BEH+03, Theorem 10.2], we can find a convergent

subsequence. (Again, more marked points are added to the sources in the process.)

Let {πΣ ◦ ub,i : Sb,i → Ūp ⊂ Σ, πΣ ◦ vb,i,j : Tb,i,j → ∂Σ × R} denote the limit; the

meaning of the indexing needs to be explained. Forgetting the new marked points

and collapsing unstable components gives a map from the source of the limit curve

(
⋃

i Sb,i)∪(
⋃

i,j Tb,i,j) to
⋃

i Sa,i. This defines the index i. The index j comes from the

level structure in Σ; as the notation indicates, the Sb,i are the components mapped

to Σ and the Tb,i,j the components mapped to east ∞.

Observe that πD ◦ua,i is naturally defined on {Sb,i, Tb,i,j}. Set ub,i|(πΣ◦ub,i)−1(Up) =

(πD ◦ ua,i, πΣ ◦ ub,i) and vb,i,j = (πD ◦ ua,i, πΣ ◦ vb,i,j) on {Sb,i, Tb,i,j}.

Turning to the rest of Σ, let Ln = {πD ◦ un ((πΣ ◦ un)−1(∂Up))}. By considering

a slightly larger neighborhood Vp ⊃ Ūp in Σ, one sees that {Ln} forms a convergent

sequence of smooth curves. Then, un|(πΣ◦u)−1(Σ\Up) is a sequence of holomorphic

curves in Σ × [0, 1] × R with Lagrangian boundary conditions (~α × {1} × R) ∪

(~β × {0} × R) ∪ (∂Up × Ln). The compactness theorem [BEH+03, Theorem 10.2]

now applies to give a convergent subsequence of the un|(πΣ◦u)−1(Σ\Up), with limit

uc,i|(πΣ◦uc,i)−1(Σ\Up).

Observe that ub,i|(πΣ◦ub,i)−1(Up) and uc,i|(πΣ◦uc,i)−1(Σ\Up) fit together to form a

smooth curve uc,i. (This follows, again, by considering the neighborhood Vp ⊃ U p.)

We are left, finally, with a sequence un so that un|(πΣ◦u)−1(Σ\Up), πD ◦ un, and

πΣ ◦ un|(πΣ◦un)−1(Ūp) all converge. This proves the result. �

We next turn to the main gluing result necessary for our theory. We need a little

more notation before stating the result. For a holomorphic map u : S → Σ×[0, 1]×R

let M(u) denote the moduli space of holomorphic maps S → Σ×[0, 1]×R homotopic

to u, modulo the R-action by translation. Similarly, for v : S → (∂Σ)×R× [0, 1]×R

holomorphic, let M(v) denote the moduli space of holomorphic maps S → (∂Σ) ×
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R × [0, 1] × R homotopic to v, modulo the R2-action by translation in both R-

factors. (We allow the asymptotics to vary continuously during the homotopy.) If u

is asymptotic to Reeb chords γ1, · · · , γℓ at east ∞ then there is an evaluation map

ev : M(u) → Rℓ/R. (Here, R acts on Rℓ by simultaneous translation.) Similarly,

if v is asymptotic to Reeb chords γw
1 , · · · , γw

ℓw
at west ∞ and γe

1, · · · , γe
ℓe

at east ∞

then there are evaluation maps evw : M(v) → Rℓw/R and eve : M(v) → Rℓe/R.

The proof of the following proposition is a trivial adaptation of the gluing argu-

ments of [Bou02, Section 5.3] to the relative case, or [Lip, Proposition A.1] to the

Morse-Bott case; the local nature of the gluing result means that the fact that our

spaces have “two infinities” does not introduce new difficulties. (There would be

new difficulties if holomorphic curves could approach both infinities at once.)

Proposition 4.2.2 Let {ui, vi,j} (i = 1, · · · , m, j = 1, · · · , ni) be a holomorphic

comb. Suppose that the linearized ∂-operator is surjective at each ui and vi,j. Suppose

further that

[d(ev)(Tui
M(ui))] ⋔

[
d(evw)(Tvi,1

M(vi,1))
]

for each i, and

[
d(eve)(Tvi,j

M(vi,j))
]

⋔
[
d(evw)(Tvi,j+1

M(vi,j+1))
]

for each i, j. Then near {ui, vi,j} the moduli space of holomorphic curves is modeled

on RN × [0, 1)M where N =
∑

i dim(Tui
M(ui))+

∑
i,j dim(Tvi,j

M(vi,j))−
∑

i,j(ki,j−

1) where ki,j is the number of Reeb chords of vi,j at west ∞, and M = m +
∑m

i=1 ni.

In words, the proposition says that if all of the pieces of the holomorphic comb

are transversely cut out by ∂, and consecutive evaluation maps are transverse to

each other then the moduli spaces can be glued.

Remark. During the invariance proof later we will be interested in holomorphic

curves in Σ × [0, 1] × R with a non-cylindrical almost complex structure or non-

cylindrical boundary conditions, and in holomorphic curves in Σ × T for T a disk

with more than two boundary punctures. There are obvious generalizations of the
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definition of a holomorphic comb and Proposition 4.2.1 to these settings. The ob-

vious generalizations of Proposition 4.2.2 to these cases are also true — though we

will actually need something slightly more general in chapter 7 when working with

Σ × T ; the necessary modifications will be discussed when needed.

4.3 The Heegaard-Floer moduli spaces

By a (height 1) decorated source S⋄ we mean

• A Riemann surface S with boundary and punctures on the boundary.

• A labeling of each puncture of S with either +∞, −∞, or e∞.

• A labeling of each puncture labeled +∞ or −∞ by a Reeb chord at ±∞ (i.e.,

a point x ∈ αi ∩ βj).

• A labeling of each puncture q labeled e∞ by a Reeb chord γ(q) at east ∞.

• A partition of each γ(q) as γ(q) = γ1(q) ⊎ · · · ⊎ γk(q)(q).

We will assume that exactly g punctures are labeled by −∞ (respectively +∞), and

that the Reeb chords corresponding to −∞ punctures (respectively +∞ punctures)

form an intersection point. Given intersection points ~x and ~y, it then makes sense

to talk about the decorated sources connecting ~x to ~y.

Notice that for each q there is an induced two-level order on the γi(q) by setting

γ1(q) <ε γ2(q) <ε · · · <ε γk(q)(q). Let γ(S⋄) = ∪q{γ1(q), · · · , γk(q)(q)}

Given a decorated source S⋄, we say that a map u : S → Σ× [0, 1] × R respects

the decorations of S⋄ if the asymptotics of u are those specified by S⋄. That is, we

assume that at each puncture labeled by +∞ and yj (respectively −∞ and xi) the

map u is asymptotic to yj × [0, 1] × {+∞} (respectively xi × [0, 1] × {−∞}), and

at each puncture q labeled by γ(q), u is asymptotic to γ(q) × {0} × {tq} for some

tq ∈ R.

Note that every map u : S⋄ → Σ × [0, 1] × R respecting the decorations belongs

to some homology class in π2(~x, ~y), as defined in Section 2.6.
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Given a map u respecting the decorations of S⋄ and a two-level order O of γ(S⋄)

we say that u is consistent with O if the macroscopic ordering of O is induced (from

the standard ordering on R) by πR◦u and the microscopic ordering of O is consistent

with the microscopic orderings γ1(q) <ε γ2(q) <ε · · · <ε γk(q)(q).

Fix a generic almost complex structure J on Σ× [0, 1]×R satisfying (J1)–(J4).

Given a homology class A ∈ π2(~x, ~y) and a two-level order O let MA,O denote the

union over all decorated sources S⋄ of the moduli space of J-holomorphic curves

u : S⋄ → Σ × [0, 1] × R, modulo vertical translation, respecting the decorations of

S⋄, consistent with O, and satisfying the following technical conditions:

• The source S of u is smooth (not nodal).

• The map u is an embedding.

• The map u extends to a map u : S → Σ × [0, 1] × R (for some partial com-

pactification S of S) such that u has finite energy in the sense of [BEH+03,

Section 5.3].

• There are no components of S on which πD ◦ u is constant.

Since we quotiented by the R-action by translation, the expected dimension of

MA,O is ind(A, O) − 1.

Given an intersection point ~x = {xi}
g
i=1, define B(~x) = {βj |∃xi ∈ βj and j ≤ 2k}

to be those β-arcs occurring in ~x.

Lemma 4.3.1 Suppose that (O, B(~x)) is admissible. Let A ∈ π2(~x, ~y), and u ∈

MA,O. Then for each αi (respectively βj) the restriction of πR◦u to u−1(αi×{1}×R)

(respectively u−1(βj × {0} × R)) is bijective (respectively injective).

Proof We know that near −∞, u is close to the g-tuple of strips ~x× [0, 1]× R. It

follows that πD◦u is a g-fold covering map. Since there are g α-circles, the statement

about u−1(αi × {1} × R) follows.

Similarly, if there are m Reeb chords at east ∞ occurring at punctures qi with

πR ◦ u(qi) < t then for βj ∈ B(~x)m, u−1(βj × {0} × {t}) 6= ∅. So, since there are k
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distinct β-arcs in B(~x)m, u−1(βj × {0} × {t}) 6= ∅ for each of the g − k β-circles βj ,

the result about u−1(βj × {1} × R) also follows. �

4.4 Embeddedness determines χ

We recall a result of [Lip]. Let (Σ, ~α, ~β) be a Heegaard diagram for a closed three-

manifold, and u : S → Σ× [0, 1]×R an embedded holomorphic curve. Given a point

x ∈ αi ∩ βj define nx(u) to be the average local multiplicity of πΣ ◦ u at x. That is,

identify a neighborhood of x with D so that α is identified with R and β with iR.

Then

nx(u) =
1

4

(
n 1

2
eπ/4(u) + n 1

2
e3π/4(u) + n 1

2
e5π/4(u) + n 1

2
e7π/4(u)

)

where n 1

2
ekπ/4(u) is the local multiplicity of πΣ ◦ u at 1

2
ekπ/4. Given an intersection

point ~x = {xi} define n~x(u) =
∑g

i=1 nxi
(u). Observe that n~x(u) depends only

on the homology class A of u, and so we may write n~x(A) to mean n~x(u) for any

representative u of A.

Given a Riemann surface D with boundary and right-angled corners, k with

internal angle π/2 and ℓ with internal angle 3π/2 define the Euler measure e(D) of

D to be e(D) = χ(D) − k
4

+ ℓ
4
∈ 1

4
Z. The number e arises naturally in the Gauss-

Bonnet theorem: for a metric on D for which the boundary is geodesic and the

corners are right angles, e(D) = 1
2π

∫
D

KdA where K denotes the Gauss curvature

of the metric.

Extend the definition of e linearly to formal sums of Riemann surfaces. Then,

since every homology class in π2(~x, ~y) corresponds to a formal sum of connected

components of Σ\(~α∪ ~β), there is a map e : π2(~x, ~y) → 1
4
Z defined by e (

∑
aiDi) =

∑
aie(Di). (The image actually lies in 1

2
Z since the number of corners of a domain

is always even.) If u is a map in the homology class A we may write e(u) to mean

e(A).

The following is [Lip, Proposition 4.2]:

Proposition 4.4.1 If u : S → Σ × [0, 1] × R is an embedded holomorphic curve



CHAPTER 4. STRUCTURE OF THE MODULI SPACES 40

connecting ~x to ~y in the homology class A then

χ(S) = g − n~x(A) − n~y(A) + e(A).

In particular, χ(S) is determined by the homology class of u.

Three remarks are in order. The first is that the result holds for u holomorphic

with respect to any (cylindrical) almost complex structure on Σ × [0, 1] × R; no

genericity is required. In fact, the result holds for curves satisfying certain topo-

logical restrictions. The second is that the proof does not use the homological

linear independence of the αi (respectively βj): it holds if the α- (respectively β-)

curves are any g-tuple of disjoint embedded circles. The precise formula does de-

pend on the fact that there are g each of α- and β-circles, but a similar formula

holds in the case of ℓ α- (respectively β-) circles, ℓ 6= g. The third remark is that

for curves with j double points, a similar formula holds, by the same argument:

χ(S) = g − n~x(A) − n~y(A) + e(A) + 2j. So,

Proposition 4.4.2 Let Σ be a closed Riemann surface, α1, · · · , αk (respectively

β1, · · · , βk) pairwise disjoint embedded circles in Σ, ~x = {xi ∈ αi ∩ βσ(i)}
k
i=1 and

~y = {yi ∈ αi ∩ βσ′(i)}
k
i=1 two k-tuples of Reeb chords in (Σ × [0, 1] × R, (α1 ∪ · · · ∪

αk) × {1} × R, (β1 ∪ · · · ∪ βk) × {0} × R). For i = 1, 2 let

ui : (Si, ∂Si) → (Σ × [0, 1] × R, [(α1 ∪ · · · ∪ αk) × {1} × R] ∪ [(β1 ∪ · · · ∪ βk) × {0} × R])

be holomorphic curves with respect to some cylindrical almost complex structure on

Σ × [0, 1] × R with the same number of double points. If u1 and u2 are homologous

then χ(S1) = χ(S2).

We next deduce a similar result for curves in a Heegaard diagram with boundary

from the closed case.

Proposition 4.4.3 Let (Σ, ~α, ~β) be a Heegaard diagram with boundary,

ui : (Si, ∂Si) →
(
Σ × [0, 1] × R, (~α × {1} × R) ∪ (~β × {0} × R)

)
,
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i = 1, 2, embedded holomorphic curves connecting ~x to ~y in MA,O. Assume u1 and

u2 are transversely cut-out by the ∂-equation. Then χ(S1) = χ(S2).

Proof Roughly, we will construct a Heegaard diagram with boundary (Σ′, ~α′, ~β ′)

so that Σ and Σ′ can be glued together to give a closed Heegaard diagram Σ ∪∂ Σ′,

and a holomorphic curve u′ : S ′ → Σ × [0, 1] × R so that u′ can be glued to each ui

to give a holomorphic curve ui ∪ u′ : Si ∪∂ S ′ → (Σ ∪∂ Σ′) × [0, 1] × R. The result

then follows from Proposition 4.4.1 or 4.4.2. (Actually, we will first perturb the ui

slightly, and will be forced to use Proposition 4.4.2.)

Let nβi
denote the number of times βi occurs as βup or βdown of a Reeb

chord in O. For convenience, we will assume nβi
> 0 for all i; the general

case is a simple adaptation of our argument. For i = 1, · · · , k, let {βi,j}
nβi
j=1 be

nβi
parallel (disjoint) copies of βi, in a small tubular neighborhood of βi. Let

~βmany = {β1,1, · · · , β1,nβi
, β2,1, · · · , β2k,nβ2k

, β2k+1, · · · , βg+k}. Deform ui to a map

ui,new : (Si, ∂Si) →
(
Σ × [0, 1] × R, (~α × {1} × R) ∪ (~βmany × {0} × R}

)

as follows. There are nβi
different arcs bj,1, · · · , bj,nβi

of ∂S mapped by ui to βj ×

{0} × R. We choose the ordering of the bj,k so that πR ◦ ui(bj,k) < πR ◦ u(bj,k+1) for

all j, k. (Lemma 4.3.1 is used here.) Then ui,new is a small deformation of ui so that

ui,new(bj,k) ∈ βj,k × {0} × R.

If ui is transversely cut out then one can choose ui,many to be holomorphic.

Let (Σ′, ~α′, ~β ′) be a Heegaard diagram with boundary with the following prop-

erties.

• In a collar neighborhood of ∂Σ′, (Σ′, ~α′, ~β ′) is diffeomorphic to a collar neigh-

borhood of ∂Σ with the opposite orientation. (The collar neighborhood of ∂Σ

should be chosen small enough not to intersect ~α.)

• Near ∂Σ′ there is an α-circle α1 and for each Reeb chord γ, points xγ,up ∈

α1 ∩ βup(γ) and xγ,down ∈ α1 ∩ βdown(γ) so that there is a holomorphic disk

Dγ in Σ′ × [0, 1]×R asymptotic to xγ,down at −∞, xγ,up at +∞ and γ at east

infinity. (The various xγ,down and xγ,up need not all be distinct.)



CHAPTER 4. STRUCTURE OF THE MODULI SPACES 42

Such (Σ′, ~α′, ~β ′) are easy to produce; see Figure 4.1.

Figure 4.1: A possible (Σ′, ~α′, ~β ′). Observe xup(γ1) = xdown(γ2) = xdown(γ5), and so
on.

Let ~α′
many be the collection of circles obtained by replacing α1 with |O| parallel

copies α1,j of α1. Let ~β ′
many be the collection of arcs and circles obtained by replacing

β ′
i with nβi

parallel copies β ′
i,j of β ′

i. Each point xγ,up corresponds to a point xγ,up,j,k ∈

α1,j ∩ βup(γ)k (and similarly for each xγ,down), and each disk Dγ to disks Dγ,j,k,k′

asymptotic to xγ,down,j,k at −∞ and xγ,up,j,k′ at +∞.

For a suitable union uO of disks Dγ,j,k,k′, depending only on ~x and O, the ordered

list of Reeb chords (between the βmany ∩∂Σ′) of uO at east ∞ is exactly the ordered

list of Reeb chords of ui,new at east ∞. Observe also that uO is transversely cut-out

by ∂.

Observe that

(
Σ′ × [0, 1] × R, (~α′

many × {1} × R) ∪ (~β ′
many × {0} × R)

)
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can be glued to

(
Σ × [0, 1] × R, (~α × {1} × R) ∪ (~βmany × {0} × R)

)

to give

(
(Σ♮Σ′) × [0, 1] × R, ((~α ∪ ~α′

many) × {1} × R) ∪ ((~βmany♮~β
′
many) × {0} × R)

)
.

Here, Σ♮Σ′ is a closed surface and ~α ∪ ~α′
many (respectively ~βmany♮~β

′
many) a union of

pairwise disjoint simple closed curves in Σ♮Σ′. Further, it follows that ui,new can be

glued to uO (i = 1, 2) to give a holomorphic curve ui,new♮uO in this glued manifold.

Observe that u1,new♮uO and u2,new♮uO have the same number of double points (all of

which correspond to double points of uO). It follows that the Euler characteristics

of the sources of ui,new♮uO agree.

The Euler characteristic of the source of ui,new♮uO is exactly χ(Si). It follows

that χ(S1) = χ(S2), as desired. �

Remark. The assumption that the ui were transversely cut-out was convenient

for the proof, but not essential. Indeed, there are much softer requirements than

holomorphicity in which the result of Proposition 4.4.3 holds; compare [Lip, Lemma

4.1]. The more general result, however, requires considerably more fuss, and for us

is unnecessary.

4.5 A formula for the index

In this section we derive a formula for the expected dimension of the moduli spaces

MA,O which extends the formula [Lip, Formula (6), Section 4.1] in the closed case.

Before doing so we introduce another ‘capping’ operation.

For the moment, view Σ as a surface with boundary. Let Σcap denote the result

of gluing a collar ∂Σ × [0, ε) to ∂Σ. Inside (∂Σ\z) × [0, ε), choose arcs connecting

every pair of (ends of) β-arcs, as shown in Figure 4.2; call the new arcs ~βcap
0 . Call the

resulting β-arcs in Σcap ~βcap. (This “caps-off” the Reeb chords at east infinity.) We
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call the result the capped Heegaard diagram. For an appropriate choice of almost

complex structure on Σcap× [0, 1]×R, stretching the neck along ∂Σ× [0, 1]×R gives

a chain of symplectic manifolds (Σ × [0, 1] × R, ∂Σ × R × [0, 1] × R).

For each Reeb chord γi there is a holomorphic disk Dγ in (∂Σ × R × [0, 1] ×

R, ~βcap
0 × {0} ×R) asymptotic to γi. Given a map u : S → Σ× [0, 1]×R consistent

with a list of Reeb chords O one can glue (really, “preglue”) u to
⋃

γ∈O Dγ in an

obvious way to obtain a map cap(u) : cap(S) → Σcap × [0, 1] × R.

Recall from Section 4.4 the definition of the Euler measure, e. Extend e to

domains going out to east infinity by viewing Σ as a surface with boundary so that

the β-arcs meet ∂Σ at right angles.

Fix a homology class A ∈ π2(~x, ~y), a two-level ordered list of Reeb chords O such

that (O, B(~x)) is admissible, a decorated source S⋄ connecting ~x to ~y, and a map

u : S → Σ× [0, 1]×R in the homology class A respecting the decorations of S⋄ and

consistent with O. Let |O| denote the number of Reeb chords in O and ε(O) the

number of <ε’s occurring in O.

Proposition 4.5.1 The expected dimension of the moduli space of holomorphic

maps S → Σ × [0, 1] × R in the homology class A respecting the decorations of

S⋄ and consistent with O is

g − χ(S) + 2e(A) + |O| − ε(O).

Proof First, suppose that ε(O) = 0. Recall ([Lip, Section 4.1, Formula (6)]) that in

the closed case the index at a map u : S → Σ×[0, 1]×R is given by g−χ(S)+2e(A).

We deduce our formula from the closed one via the capping construction; the reader

may find the details easier to produce than to read.

The closed formula applies to the linearization of the ∂-operator at cap(u), giving

ind(cap(u)) = g − χ(cap(S)) + 2e(cap(A)) = g − χ(S) + 2e(cap(A)). Observe that

the index of D∂ at Dγ is 1. It follows that the index at u is

ind(u) = g − χ(S) + 2 (e(A) + |O|/2)− |O| + |O|,
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Figure 4.2: The capping operation.
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where the |O|/2 comes from the effect of capping on the Euler measure, the −|O|

from the fact that ind(Dγ) = 1, and the +|O| comes from the matching conditions

at the punctures (because of the Morse-Bott nature of the gluing). This proves the

proposition in the case ε(O) = 0.

Now suppose ε(O) > 0. Write ε(O) = ε1 + ε2 where ε1 =
∑

punctures q k(q) − 1,

so ε1 is the number of <ε’s corresponding to partitions of punctures of S and ε2 the

number of constraints on different punctures of S. Then, we have

ind(u) = g − χ(S) + 2

(
e(A) +

|O| − ε1

2

)
− (|O| − ε1) + (|O| − ε1) − ε2

where most of the terms are as before, the −ε1 terms corresponds to the fact that

fewer punctures are being capped, and the −ε2 comes from the fact that we are

imposing ε2 point constraints in the R-direction on the punctures. �

Remark. Proposition 4.5.1 could also have been proved by adapting the gluing

argument from Section 4.4. In that argument, the computation for ε(O) = 0 would

be ind(O) = g + |O| − χ(S) + 2e(A) where the +|O| comes from the fact that the

glued curves have g + |O| ends at ±∞.

The following is immediate from Propositions 4.4.3 and 4.5.1.

Corollary 4.5.2 The expected dimension of the space of embedded holomorphic

curves in the homology class A consistent with O near a curve u depends only on A

and O. (We will denote this expected dimension ind(A, O).)

4.6 Restrictions on codimension 1 degenerations

This section brings together most of the technical results proved so far to analyze

completely the codimension 1 degenerations of our moduli spaces. Proposition 4.6.1

is the culmination of the analytic work in this paper; almost all of the rest of the

paper consists of interpreting this result algebraically.

By a join curve we mean a map S → (∂Σ) ×R× [0, 1]×R with one component

a disk with three boundary punctures, one mapped to east ∞ and two mapped to
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Figure 4.3: A join component and its image in ∂Σ × R.

west ∞, and all other components disks with two boundary punctures (one mapped

to east ∞ and one mapped to west ∞). See Figure 4.3. Such curves will correspond

to the operation join defined in Section 3.1. We may also speak of backwards join

curves, which are the reflections in the first R-factor of join curves.

We call a holomorphic curve S → (∂Σ) × R × [0, 1] × R trivial if it is a disjoint

union of disks with two boundary punctures each. Such curves are not stable, and

hence do not appear in limits of sequences of holomorphic curves.

Proposition 4.6.1 Fix intersection points ~x, ~y, a homology class A ∈ π2(~x, ~y), and

an ordered set of Reeb chords Γ. Assume ind(A, Γ) = 2. Then, for a generic choice

of J satisfying (J1)–(J4), the boundary of MA,Γ consists of the following pieces:

1. Holomorphic buildings, split at ±∞. That is,

⋃

A1 + A2 = A

Γ1 < Γ2 = Γ

MA1,Γ1 ×MA2,Γ2.

2. Holomorphic buildings split at east infinity, where the level at east infinity is

a join curve. That is,
⋃

MA,Γ′

where Γ′ is obtained from Γ by replacing some

γ = γa ⊎ γb by γb <ε γa, and Γ′ is admissible.

3. A single collapse in the ordering. That is,
⋃

MA,Γ′

where the union is over Γ′

obtained from Γ by replacing one < by a <ε.

Proof The proof is in several steps. By Proposition 4.2.1, any sequence {ui}∞i=1 of

curves in MA,Γ has a subsequence converging to some holomorphic comb {u∞
i , v∞

i,j}.
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Using Proposition 4.4.3, we will show first that all of the v∞
i,j must be topological

disks, and eve : M(v∞
i,j) → RNi,j and evw : M(v∞

i,j+1) → RNi,j are transverse. It

then follows from Lemma 4.1.2 that the linearized ∂-map is surjective at the v∞
i,j .

We know by Proposition 4.1.1 that the linearized ∂-map is surjective at the u∞
i . For

a generic choice of J , ev : M(u∞
i ) → RNi and evw : M(vi,0) → RNi are transverse.

The result will then follows from Proposition 4.2.2, an explicit computation of the

moduli spaces of disks in (∂Σ) × R × [0, 1] × R, and a few words about why cusp

degenerations are impossible.

We begin by deducing from the fact that A, Γ determine the Euler characteristic

of the source S that all of the v∞
i,j are unions of disks and, further, that if for each i

one glues the v∞
i,j (in the obvious way) the components are still unions of disks. Let

vi denote a curve obtained by gluing the v∞
i,j at east/west ∞. There is a curve v′

i in

∂Σ × [0, 1] × R all of whose components are disks and with the same asymptotics

as vi at east and west ∞. By Lemma 4.1.2 and Proposition 4.2.2 can glue the vi to

the u∞
i at east/west ∞, and glue the resulting curves at ±∞, to give a new curve in

MA,Γ. If the components of the vi were not all disks then the Euler characteristic of

the new curve will not be the same as that of the old ones, contradicting Proposition

4.4.3.

Note in particular that this means that for each component C of vi,j and C ′ of

vi,j+1, the west ∞ of C ′ meets the east ∞ of C in at most one Reeb chord. It follows

that the evaluation maps evw from M(vi,j+1) and eve from M(vi,j) are transverse.

Now, for a map v : S → ∂Σ × R × [0, 1] × R, the dimension of M(v) is

−2 + (#components of v) + 2(#of branch points ofπΣ ◦ v)

(The −2 comes from the fact that curves in ∂Σ×R× [0, 1]×R are only defined up to

translation in the two R-factors. Boundary branch points count for 1/2.) Observe

also that evw(v) is contained in a subset of codimension

(#of Reeb chords of v at east∞) − (#of components ofv).

Using Lemma 4.1.2 and Proposition 4.2.2 and the fact that the v∞
i,j are unions of
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disk components, it follows that at most one of the v∞
i,j is nontrivial, and that one

is either a join curve or a backwards join curve.

It also follows that if any v∞
i,j is nontrivial then the comb has only one story, and

that the comb never has more than two stories.

Observe that the appearance of a backwards join curve corresponds to a collapse

of Γ (item 3 above). If γi < γj appears in Γ with βup(γi) = βdown(γj) this is the only

way a collapse can occur. If βup(γi) 6= βdown(γj) then collapses can still occur but

do not split off backwards join curves.

A sequence splitting into two stories corresponds to item 1.

A sequence splitting off a join curve corresponds to item 2. Forgetting the new

component at east ∞ gives an element of MA,Γ′

where Γ′ is obtained from Γ by

replacing the east infinity of the join component γ = γa ⊎ γb by its west infinity

γb <ε γa. For this splitting to occur, by Lemma 4.3.1, the new ordered list of Reeb

chords Γ′ must be admissible.

Bubbling of disks or spheres is ruled out since π2(Σ) = π2(Σ, ~α) = π2(Σ, ~β) =

0. Deligne-Mumford degenerations in the interior of S are codimension 2.Cusp

degenerations (not corresponding to splitting curves at ±∞ of east ∞) could occur.

This is, however, ruled-out by Lemma 4.3.1. (Compare [Lip, Proposition 7.1].) �



Chapter 5

Heegaard-Floer invariants of

bordered 3-manifolds

5.1 Definition of the Heegaard-Floer differential

module

Given a pointed Heegaard diagram with boundary (Σ, α, β, z), let A denote the

differential algebra associated to the boundary of Σ. To the Heegaard diagram with

boundary we will associate a left differential A-module CF. In later sections we will

show that CF depends only on the bordered three-manifold specified by (Σ, α, β, z).

Let CF0 be the free F2-module on the intersection points in Σ. Then CF0 is

naturally a left A0-module: define

(∅, B) · ~x =

{
0 ifB 6= B(~x)

~x ifB = B(~x)
.

Let CF = A⊗A0
CF0, a left A-module. Observe that CF is spanned by elements of

the form (O, B) ⊗ ~x where B(~x) = B|O|. We define a map d : CF0 → CF by

d~x =
∑

~y

∑

A ∈ π2(~x, ~y)

ind(A, O) = 1

(
#MA,O

)
(O, B(x)) ⊗ ~y.

50
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Extend d to a map d : CF → CF by requiring that d satisfy the Leibniz rule, i.e.,

d ((O, B) ⊗ ~x) = (d(O, B)) ⊗ ~x + (O, B) ⊗ d~x.

Lemma 5.1.1 If the pointed Heegaard diagram with boundary (Σ, ~α, ~β, z) is weakly

admissible then the sum defining d~x is finite.

Proof This follows from Corollary 2.7.3 and the fact that for q ∈ Σ, {q}× [0, 1]×R

is J-holomorphic. �

Proposition 5.1.2 d2 = 0.

Proof Since

d2 [(O, B)~x] =
[
d2(O, B)

]
~x + 2 [d(O, B)] [d~x] + (O, B)[d2~x],

it suffices to show that d2~x = 0 for ~x an intersection point. This will follow from

Proposition 4.6.1.

d2~x =
∑

~z

∑

~y

∑

A1 ∈ π2(~x, ~y)

A2 ∈ π2(~y, ~z)

ind(Ai, Oi) = 1

#
(
MA1,O1 ×MA2,O2

)
[(O1O2, B(x))~z]

+
∑

~z

∑

A ∈ π2(~x, ~z)

ind(A, O) = 1

(
#MA,O(~x, ~z)

)
[(d(O, B(x)))~z] .

So, we need to check that for given ~z and O with (O, B(~x)) admissible,

∑

A ∈ π2(~x, ~z)

O ∈ decol(O′) ∪ join(O′)

ind(A, O′) = 1

(
#MA,O′

(~x, ~z)
)

+
∑

~y

∑

A1 ∈ π2(~x, ~y)

A2 ∈ π2(~y, ~z)

O1O2 = O

ind(Ai, Oi) = 1

#
(
MA1,O1 ×MA2,O2

)
= 0.



CHAPTER 5. INVARIANTS OF BORDERED 3-MANIFOLDS 52

To see this, observe

∑

A ∈ π2(~x, ~z)

O ∈ decol(O′) ∪ join(O′)

ind(A, O′) = 1

(
#MA,O′

(~x, ~z)
)

+
∑

~y

∑

A1 ∈ π2(~x, ~y)

A2 ∈ π2(~y, ~z)

O1O2 = O

ind(Ai, Oi) = 1

#
(
MA1,O1 ×MA2,O2

)

=
∑

A ∈ π2(~x, ~y)

ind(A, O) = 2

#
(
∂M

A,O
(~x, ~z)

)

= 0.

Here, the first equality follows from Proposition 4.6.1. �

Lemma 5.1.3 The differential module CF decomposes, as a differential module, as

a direct sum over SpinC-structures on Y ,

CF = ⊕s∈SpinC(Y ) CFs .

Proof Clear from Lemmas 2.6.2 and 2.6.3. �

Observe that the filtration H on A by total homology class induces a filtration

on CF. Let CF∧ = Â ⊗A CF denote the completion of CF with respect to the

filtration H by the total homology class of the Reeb chords at east infinity. For

some computations it is easier to work with CF∧ than with CF.

Remark. As in traditional Heegaard-Floer homology, there are twisted versions of

CF, keeping track of the homology classes A. The totally twisted version, from which

all other versions can be reconstructed, is defined as follows. Fix s ∈ SpinC(Y ).

Let Atw = F2[H2(Y, ∂Y )] ⊗F2
A, with differential induced by the differential on

A, and as a module let CFs
tw = Atw ⊗A CF. To define a differential on CFs

tw, fix

an intersection point ~x0 ∈ CFs
0. For each intersection point ~x ∈ CFs

0, choose an

element A~x ∈ π2(~x0, ~x). These choices identify π2(~x, ~y) with π2(~x0, ~x0), which in

turn is identified with H2(Y, ∂Y ) (Lemma 2.6.1). Now define for ~x ∈ CFs
0, define
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dtw~x ∈ CFs
tw by

dtw~x =
∑

~y

∑

A ∈ π2(~x, ~y)

ind(A, O) = 1

(
#MA,O

)
[(A) ⊗ (O, B(x))] ⊗ ~y

where (A) denotes the image of A in H2(Y, ∂Y ) under the identification induced by

the A~x. Extend this definition to a map CFs
tw → CFs

tw.

Note that since both A and H2(Y, ∂Y ) keep track of the total homology class of

the Reeb chords of a domain at east ∞, there is some redundancy in CFs
tw.

One can check that this chain complex is independent of the choices of the A~x.

Further, the proof of invariance of CF given below extends to prove that CFs
tw

depends only on (Y, s). That said, we will not discuss CFs
tw further in this thesis.

5.2 Remarks on the convergence of spectral se-

quences

To compute the homology of CF we would like to exploit the filtrations by total

homology class and number of Reeb chords. Unfortunately, convergence of these

spectral sequences is somewhat subtle. To illustrate, consider the following toy

example, which captures the spirit of the issues involved.

Consider the differential algebra F2[x, y]/(x2) with differential specified by

d(xyk) = yk+1 + yk+2 and d(yk) = 0. On the one hand, the homology of

(F2[x, y]/(x2), d) is F2, generated by y. On the other hand, there is a filtration

F 0 ⊃ F 1 ⊃ · · · of F2[x, y]/(x2) where F s is generated by all monomials of total

degree at least s. The homology of the associated graded module is zero, so the

spectral sequence associated to the filtration F s converges to zero, not F2. Ob-

serve, however, that if one completes F2[x, y]/(x2) with respect to F s then the

homology is also zero: the completion is just (F2[x]/x2) JyK, and in (F2[x]/x2) JyK,

y = d [(1 + y + y2 + · · · )x].

The convergence results we need are contained in [Boa99].



CHAPTER 5. INVARIANTS OF BORDERED 3-MANIFOLDS 54

Definition 5.2.1 Let (C, d) denote a differential module and · · · ⊃ F s−1 ⊃ F s ⊃

F s+1 ⊃ · · · a decreasing filtration of C.

• The filtration F is exhaustive if
⋃∞

s=−∞ F s = C.

• The filtration F is left-boring if for some s0, F s = F s0 for s < s0.

(The terminology left-boring is not standard.)

Proposition 5.2.2 Let (C, d) be a differential module and F an exhaustive, left-

boring filtration of (C, d). Let (Ĉ, d) denote the completion of (C, d) with respect

to F . Let Es
r denote the sth graded part in the rth page of the spectral sequence

associated to (C, d, F ), and ds
r : Es

r → Es+r
r the differential on the rth page. Assume

that for each s there are finitely many r for which ds
r is nonzero. Then the spectral

sequence Es
r converges strongly to the homology of (Ĉ, d).

Proof Unwinding the definitions, this is immediate from [Boa99, Theorem 9.3] and

[Boa99, Theorem 7.1]. (See also the remark following [Boa99, Theorem 7.1].) �

Corollary 5.2.3 Let (C, d) be a differential module and F an exhaustive, left-boring

filtration of (C, d). Let (Ĉ, d) denote the completion of (C, d) with respect to F .

Suppose that the spectral sequence associated to (C, d, F ) collapses at some stage.

Then the spectral sequence converges strongly to the homology of (Ĉ, d).

5.3 Examples

Consider first the Heegaard diagram with boundary H0 shown in Figure 5.1. (Here,

opposite sides of the square are identified and the corners of the square deleted.)

Observe that this diagram is weakly admissible as in Definition 2.7.1. Let γ1, γ2 and

γ3 denote the irreducible Reeb chords indicated in the figure, and let γ4 = γ1 ⊎ γ2,

γ5 = γ2 ⊎ γ3 and γ6 = γ1 ⊎ γ2 ⊎ γ3. There are three intersection points, r, s and t.

Let D1, D2 and D3 denote the three regions indicated in the figure (so, for instance,

D2 ∈ π2(r, s)).
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Figure 5.1: The Heegaard diagram H0 for D2 × S1.

The admissible pairs consisting of a single Reeb chord are (γ1, β1), (γ2, β2),

(γ3, β1), (γ4, β1), (γ5, β2) and (γ6, β1). This will be important for our calculation

of the homology.

We have differential

d(r) = 0

d(s) = r + (γ2, β2)t + (γ2 <ε γ3, β2)r + (γ5, β2)r

d(t) = (γ3, β1)r.

We can check directly that d2 = 0: certainly d2r = d2t = 0, while

d2s = d[r + (γ2, β2)t + (γ2 <ε γ3, β2)r] = 0 + (γ2, β2) · (γ3, β1)r + (γ2 < γ3, β2)r = 0.

It is easier to compute the homology of CF∧(H0) than CF(H0) because for

CF∧(H0) we can use the spectral sequences associated to the filtrations by homol-

ogy class and number of Reeb chords. Let grH(CF) denote the graded complex

associated to the filtration of CF(H0) by the homology class of the Reeb chords

at east infinity. There is a spectral sequence with E1-term H∗ (grH(CF)), which
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converges, by Proposition 5.2.2, to the homology of CF∧(H0).

To compute H∗ (grH(CF)), notice that, as a differential module, H∗ (grH(CF)) =

(A⊗A0
F2〈r, s〉) ⊕ (A⊗A0

F2〈t〉). The homology of A⊗A0
F2〈t〉 is just

F2〈(β1, ∅)t, (β2, γ2)t, (β1, γ5)t〉.

On each graded piece of A⊗ F2〈r, s〉 there is a finite filtration by the number of

Reeb chords appearing. Let gr#(A⊗F2〈r, s〉) denote the associated graded complex;

there is a spectral sequence with E1-term gr#(A⊗F2〈r, s〉) converging to the homol-

ogy of A⊗ F2〈r, s〉. On gr#(A⊗ F2〈r, s〉) there is a further filtration by minus the

number of <ε appearing. Let grε

(
gr#(A⊗ F2〈r, s〉)

)
denote the associated graded

complex. There is a spectral sequence with E1-term H∗

(
grε

(
gr#(A⊗ F2〈r, s〉)

))

converging to H∗

(
gr#(A⊗ F2〈r, s〉)

)
.

In grε

(
gr#(A⊗ F2〈r, s〉)

)
the internal differential of A has been completely elim-

inated, so d (Γr) = 0 and d(Γs) = Γr. It follows that H∗

(
grε

(
gr#(A⊗ F2〈r, s〉)

))
=

0, so H∗(gr#(A ⊗ F2〈r, s〉)) = 0 so H∗(A ⊗ F2〈r, s〉) = 0, so H∗(grH(CF)) =

F2〈(β1, ∅)t, (β2, γ2)t, (β1, γ5)t〉. It is now clear that there are no higher differentials

in the spectral sequence converging to H∗(CF∧(H0)), so

H∗(CF∧(H0)) = F2〈(β1, ∅)t, (β2, γ2)t, (β1, γ5)t.〉

Next, consider the Heegaard diagram with boundary H1 shown in Figure 5.2.

This is another Heegaard diagram for a solid torus, but with a different framing

(parameterization) of the boundary. As before, let let γ4 = γ1 ⊎ γ2, γ5 = γ2 ⊎ γ3

and γ6 = γ1 ⊎γ2 ⊎γ3. The module CF(H1) is generated by {a, b, c, d, e, f}; it is easy
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Figure 5.2: The Heegaard diagram H1 for D2 × S1.

to check that the differential is given by

da = (γ3, β1)f

db = 0

dc = b + (γ1, β1)d + (γ4, β1)a + (γ1 <ε γ2, β1)a + (γ6, β1)f

+(γ1 <ε γ5, β1)f + (γ4 <ε γ3, β1)f + (γ1 <ε γ2 <ε γ3, β1)f

dd = (γ2, β2)a + (γ5, β2)f + (γ2 <ε γ3, β2)f

de = f + (γ2, β2)b

df = 0.

Let us compute the homology of CF∧(H1). In grε(gr#(grH(CF(H1)))), d(Γc) =

Γb and d(Γe) = Γf ; all other differentials are zero. So, the homology

of grε(gr#(grH(CF(H1)))) is generated by a and d. Next, the homology of

gr#(grH(CF(H1))) is

F2〈(∅, β1)a, (γ2, β2)a, (γ4, β1)a, (∅, β2)d, (γ1, β1)d, (γ3, β1)d, (γ5, β1)d, (γ6, β1)d〉.
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Figure 5.3: The Heegaard diagram H∞ for D2 × S1.

The homology of grH(CF(H1)) is the same. Finally, the homology of CF(H1) is

F2〈(∅, β1)a, (γ12, β1)a, (γ1, β1)d, (γ3, β1)d, (γ23, β1)d, (γ123, β1)d〉.

since now d((∅, β2)d) = (γ2, β2)a. This verifies the (unremarkable) fact that

CF(Y, ∂Y ) is indeed sensitive to the parameterization of ∂Y .

(Another way to prove the same would have been to consider the change of

coefficient homomorphism A → F2 which takes (O, B) → 0 unless O = ∅, and

(∅, B) → 1. It is obvious that H∗(F2⊗ACF(H′)) = F∈〈⊔〉, which is one-dimensional,

while H∗(F2 ⊗A CF(H1)) = F2〈a, d〉, which is two-dimensional.)

Finally, consider the Heegaard diagram with boundary H∞ shown in Figure 5.3.

This is yet another Heegaard diagram for the solid torus. Here, the module CF(H∞)

is generated by {w, x, y}, and the differential is given by

dw = 0

dx = w + (γ1, β1)y + (γ4, β1)w + (γ1 <ε γ2, β1)w

dy = (γ2, β2)w.
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Observe that there is a short exact sequence of A-modules

0 −→ CF(H0)
Φ

−→ CF(H1)
Ψ

−→ CF(H∞) −→ 0 (5.1)

where Φ and Ψ are given by

Φ(r) = f Ψ(a) = w

Φ(s) = d + e Ψ(b) = w

Φ(t) = a + b Ψ(c) = x

Ψ(d) = y

Ψ(e) = y

Ψ(f) = 0

It is easy to check that Φ and Ψ give chain maps.

Recall ([OS04c, Theorem 9.12]) that if Y is a 3-manifold, K →֒ Y a knot, µ

the meridian of K, and λ ∈ H1(∂ nbd(K)) any longitude of K (i.e., µ · λ = 1 in

H∗(∂ nbd(K))), there is an exact triangle relating ĤF(Yλ(K)), ĤF(Yλ+µ(K)) and

ĤF(Yµ(K)) = ĤF(Y ). (Here, Yλ(K) denotes surgery along K with framing λ, and

so on.) This surgery exact triangle is obviously closely related to the short exact

sequence (5.1) above. Indeed, if Conjecture 8.1.1 holds, then the surgery sequence

for ĤF follows from the short exact sequence (5.1).



Chapter 6

Isotopy and stabilization

invariance

We have associated to the data
(
Σ, ~α, ~β, z

)
, together with an almost complex struc-

ture J on Σ × [0, 1] × R, a filtered differential module CF over the algebra A. In

this section and the next we show that CF, up to chain homotopy equivalence, de-

pends only on the bordered manifold (Y, ∂Y ) specified by
(
Σ, ~α, ~β, z

)
. The proof is

a modification of the one given in [Lip, Section 9] to the relative case; the reader

may find it helpful to read the proof in the closed case first.

Definition 6.0.1 Two differential A-modules M and N are homotopy equivalent if

there are maps Φ : M → N and Φ′ : N → M of A-modules such that

• The maps Φ and Φ′ are chain maps, i.e., d◦Φ+Φ◦d = 0 and d◦Φ′+Φ′◦d = 0

and

• There are maps HM : M → M and HN : N → N of A-modules such that

Φ′ ◦ Φ = d ◦ HM + HM ◦ d and Φ ◦ Φ′ = d ◦ HN + HN ◦ d.

Proposition 6.0.2 Suppose that
(
Σ, ~α, ~β, z, J

)
and

(
Σ, ~α′, ~β ′, z′, J ′

)
are related by

• isotopies ~αt and ~βt, t ∈ [0, 1], of the α- and β-arcs, constant near ∂Σ, not

crossing z, with every intermediate Heegaard diagram weakly admissible, and

60
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• a homotopy Jt of complex structures, constant near ∂Σ.

Then CF
(
Σ, ~α, ~β, z, J

)
and CF

(
Σ, ~α′, ~β ′, z′, J ′

)
are homotopy equivalent A-

modules. The homotopy equivalence respects the decomposition of CF into SpinC-

structures.

As a first step in the proof, observe that we can assume the isotopies of the α- and

β-arcs are Hamiltonian: any isotopy can be broken up as a sequence of Hamiltonian

isotopies introducing or eliminating pairs of intersection points between α- and β-

circles (i.e., finger moves) and a deformation of the almost complex structure; see

[OS04d, Theorem 7.3] or [Lip, Section 9]. The proofs of both parts of Proposition

6.0.2 are essentially the same, so from now on, we will assume that ~αt and ~βt are

Hamiltonian deformations.

Fix almost complex structures Ji, i = 1, 2, on Σ× [0, 1]×R satisfying (J1)–(J4)

and achieving transversality for index ≤ 1 holomorphic curves in

(
(Σ\z) × [0, 1] × R, (~αi × {1} × R) ∪ (~βi × {0} × R)

)

respectively. Choose a g-tuples Cα (respectively Cβ) of Lagrangian cylinders in

Σ × {1} × R (respectively Σ × {0} × R) agreeing with ~α0 × {1} × R (respectively

~β0 × {0} × R) near −∞ and ~α1 × {1} × R (respectively ~β1 × {0} × R) near +∞,

and constant near ∂Σ.

Choose an almost complex structure J on Σ × [0, 1] × R agreeing with J0 near

−∞, J1 near +∞, such that J is split near ∂Σ, tamed by the split symplectic form,

and the fibers of both πΣ and πD are J-holomorphic.

Given an intersection point ~x0 in (Σ, ~α0, ~β0) and ~x1 in (Σ, ~α1, ~β1), the set of ho-

mology classes of curves π2(~x
0, ~x1) connecting ~x0 and ~x1 has an obvious meaning.

Given an admissible pair Γ, and A ∈ π2(~x
0, ~x1), we let MA,O denote the moduli space

of J-holomorphic curves in
(
(Σ\z) × [0, 1] × R, (~α × {1} × R) ∪ (~β × {0} × R)

)
sat-

isfying the same conditions as the corresponding object in Section 5.1. The new fea-

ture is that since J is not translation invariant, MA,O may be generically nonempty

even if ind(A, O) = 0; the expected dimension of MA,O is now ind(A, O), not
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ind(A, O) − 1. We assume that J is chosen so that the MA,O are transversely cut

out; this can easily be arranged (cf. Section 4.1).

Define a map Φ : CF(~α0, ~β0) → CF(~α1, ~β1) by

Φ(~x0) =
∑

A ∈ π2(~x0, ~x1)

(O, B(~x0))admissible

ind(A, O) = 0

(
#MA,O

)
(O, B(~x0)) ⊗ ~x1.

Extend Φ to a map Φ : CF(~α0, ~β0) → CF(~α1, ~β1) by Φ(Γ~x0) = ΓΦ(~x0).

Lemma 6.0.3 The map Φ is a chain map.

Proof As usual, the proof proceeds by considering the boundary of the index 1

moduli spaces. The obvious analogs of Propositions 4.2.1 and 4.2.2 imply that this

boundary consists of level splittings, collapses in the order, and splitting a join curve.

This implies d ◦ Φ(~x) + Φ ◦ d(~x) = 0. Consequently,

d ◦ Φ(Γ~x) + Φ ◦ d(Γ~x) = d (Γ · Φ(~x)) + Φ ((dΓ)~x + Γ · Φ(d~x)

= (dΓ)Φ(~x) + ΓdΦ(~x) + (dΓ)Φ(~x) + ΓΦ(d~x)

= 0

as desired. �

Similarly, choosing a family of Lagrangian cylinders C ′
α (respectively C ′

β) agree-

ing with ~α1 × {1} × R (respectively ~β1 × {0} × R) near −∞ and ~α0 × {1} × R

(respectively ~β0 ×{0}×R) near +∞, together with an appropriate almost complex

structure J ′ on Σ× [0, 1]×R, we have a map Φ′ : CF(~α1, ~β1) → CF(~α0, ~β0) defined

in exactly the same way as Φ. We will check that Φ′ ◦ Φ is chain homotopic to the

identity; the proof that Φ◦Φ′ is chain homotopic to the identity is symmetric. This

will, of course, immediately imply Proposition 6.0.2.

Let R ≫ 0 be large; we will say exactly how large presently. Let t be the R-

coordinate on Σ×[0, 1]×R. Translate the Cα, Cβ and J so that Cα (respectively Cβ,

J) agrees with ~α1 ×{1}×R (respectively ~β1 ×{0}×R, J1) for t > 0. Translate the
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C ′
α, C ′

β and J ′ so that C ′
α (respectively C ′

β, J ′) agrees with ~α1×{1}×R (respectively

~β1 × {0} × R, J1) for t < R. Define

C1
α =

{
Cα ift ≤ R

C ′
α ift ≥ R

and C1
β =

{
Cβ ift ≤ R

C ′
β ift ≥ R

and J1 =

{
J ift ≤ R

J ′ ift ≥ R
.

Given intersection points ~x0 and ~y0 in (Σ, ~α0, ~β0), A ∈ π2(~x, ~y) and a two-

level ordered list O, let MA,O
1 denote the moduli space of holomorphic curves in(

Σ × [0, 1] × R, C1
α ∪ C1

β

)
satisfying the conditions from Section 5.1 in the homology

class A with asymptotics O at east ∞. For R sufficiently large, MA,O
1 is homeomor-

phic to ⋃

~x1an intersection point of(Σ, ~α1, ~β1)

A1 ∈ π2(~x0, ~x1), A2 ∈ π2(~x1, ~y)

O1O2 = O, A1 + A2 = A

MA1,O1 ×MA2,O2.

(This statement uses analogs of Propositions 4.2.1 and 4.2.2 in the case of splitting

along a hypersurface.) Let C0
α = ~α0 ×{1}×R, C0

β = ~β0 ×{0}×R and J0 = J0. Let

Ct
α (respectively Ct

β), t ∈ [0, 1], be a family of Lagrangian cylinders interpolating

between C0
α and C1

β (respectively C0
β and C1

β). Let J t be a generic almost complex

structure interpolating between J0 and J1. We assume that Ct
β and J t are constant

near east ∞. For t ∈ (0, 1), define MA,O
t in exactly the same way as MA,O

1 , with

respect to Ct
α, Ct

β and J t.

Given A and O with ind(A, O) = −1, there is a finite list of ti for which MA,O
ti 6=

∅. So, it makes sense to define a map H : CF0(Σ, ~α0, ~β0, z) → CF(Σ, ~α0, ~β0, z) by

H(~x0) =
∑

A ∈ π2(~x0, ~y0)

(O, B(~x0))admissible

ind(A, O) = −1

#


 ⋃

t∈[0,1]

MA,O
t


 (O, B(~x0)) ⊗ ~y0.

Extend H to a map CF → CF by setting H(Γ~x0) = ΓH(~x0).

Lemma 6.0.4 Φ′ ◦ Φ − Id = d ◦ H + H ◦ d.
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Proof This follows by considering the boundary of

⋃

A ∈ π2(~x0, ~y0)

(O, B(~x0))admissible

ind(A, O) = 0

⋃

t∈[0,1]

MA,O
t .

The parameter R was chosen large enough that the boundary at t = 1 corresponds

to Φ′ ◦Φ. The boundary at t = 0 consists entirely of trivial disks ~x0 × [0, 1]×R, and

so corresponds to the identity map. Boundary components occurring at t ∈ (0, 1)

correspond to either collapses of the order, level splitting, or splitting a “join curve”

at east ∞. The sum of these phenomenon is, clearly, d ◦ H + H ◦ d. �

As we remarked earlier, Proposition 6.0.2 is now immediate.

Next we turn to stabilization. By a stabilization we mean taking the connect sum

of (Σ, ~α, ~β) with the standard (genus one) Heegaard diagram for S3. A stabilization

occurs in some component of Σ\(~α ∪ ~β).

Proposition 6.0.5 If the Heegaard diagrams
(
Σg, ~α, ~β, z

)
and

(
Σg+1, ~α

′ = ~α ∪ {αg+1}, ~β ′ = β ∪ {βg+1}, z
′
)

differ by a stabilization in the component of Σ\(~α ∪ ~β) containing z then

CF
(
Σg, ~α, ~β, z

)
and CF

(
Σg+1, ~α

′, ~β ′, z′
)

are isomorphic differential A-modules.

Proof Let xnew = αg+1 ∩ βg+1. Define a map

Φ : CF
(
Σg, ~α, ~β, z

)
→ CF

(
Σg+1, ~α

′, ~β ′, z′
)

by sending Γ⊗~x to Γ⊗(~x∪{xnew}). This is obviously an isomorphism of A-modules.

There is an obvious correspondence between πΣ
2 (~x, ~y) and πΣ′

2 (~x∪{xnew}, ~y∪{xnew}).

Further, since the holomorphic curves we considered are not allowed to cover z, for

A ∈ πΣ
2 (~x, ~y)=πΣ′

2 (~x ∪ {xnew}, ~y ∪ {xnew}), the moduli spaces MA,O
Σ and MA,O

Σ′ are

homeomorphic. �

Recall from Lemma 2.2.2 that this is all the stabilization invariance we need.



Chapter 7

Holomorphic triangles and

handleslide invariance

In this section we adapt the holomorphic triangle construction of [OS04d, Section

8] and [Lip, Section 10] to prove invariance of the Heegaard Floer complex under

handleslides. The proof of invariance under handleslides between the α-circles is the

same as in the closed case ([OS04d, Section 9], [Lip, Section 11]), so we omit it. The

proof of invariance under handleslides between β-circles or of a β-arc over a β-circle

involves a few new complications; after some preliminary definitions about triangles

in Section 7.1, we prove this handleslide invariance in Section 7.2.

7.1 Generalities on triangles

In this section, let Σ be a surface of genus g with a single boundary component, which

we still sometimes view as a puncture. Let α1, · · · , α2k1
(respectively β1, · · · , β2k2

,

γ1, · · · , γ2k3
) be a 2k1- (respectively 2k2-, 2k3-) tuple of arcs with boundary on

∂Σ, and α2k1+1, · · · , αg+k1
(respectively β2k2+1, · · · , βg+k2

, γ2k3+1, · · · , γg+k3
) be a

(g − k1)- (respectively (g − k2)-, (g − k3)-) tuple of circles in Σ. We assume that

the αi (respectively βi, γi) are pairwise disjoint, that αi ⋔ βj, βj ⋔ γk, αi ⋔ γk, and

αi∩βj∩∂Σ = βj∩γk∩∂Σ = αi∩γk∩∂Σ = αi∩βj∩γk = ∅. We call such a quadruple

(Σ, ~α = {αi}, ~β = {βj}, ~γ = {γk}) a Heegaard triple. As before, we choose a point

65
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z ∈
(
∂Σ\(~α ∪ ~β ∪ ~γ)

)
. The quintuple (Σ, ~α, ~β,~γ, z) is a pointed Heegaard triple.

There are obvious generalizations of various definitions introduced for pointed

Heegaard diagrams to pointed Heegaard triples. By a intersection point between ~α

and ~β we mean a g-tuple of points {xi ∈ ασ(i) ∩ βτ(i)} such that exactly one xi lies

on each α-circle and β-circle, and no two distinct xi lie on the same α-arc or the

same β-arc. There are obvious corresponding notions of intersection points between

~β and ~γ and intersection points between ~α and ~γ. If it is clear from context, we may

not specify which circles an intersection point is between.

By a α Reeb chord we mean an arc in ∂Σ\z with endpoints on ~α∩ ∂Σ; there are

corresponding notions of β Reeb chord and γ Reeb chord. We will be interested in

two-level ordered lists of Reeb chords. Let O be a two-level ordered list of α Reeb

chords and B a set of k1 α-arcs. Then the definition of (O, B) being an a admissible

pair carries over from Section 3.1; the same is true for β Reeb chords and β-arcs,

and γ Reeb chords and γ-arcs.

Let T denote a disk with three punctures on the boundary. Let e1, e2 and e3

denote the three arcs on ∂T , enumerated clockwise, and pij the puncture between

ei and ej. Given intersection points ~x between ~α and ~β, ~y between ~β and ~γ and ~z

between ~α and ~γ let π2(~x, ~y, ~z) denote the homology classes of maps

(S, ∂S) →
(
Σ × T, (~α × e1) ∪ (~β × e2) ∪ (~γ × e3)

)

asymptotic to ~x at p12, ~y at p23 and ~z at p13.

Fix almost complex structures Jα,β, Jβ,γ and Jα,γ on Σ × [0, 1] × R satisfying

properties (J1)–(J4). Fix an almost complex structure J on Σ × T such that

(JT1) πt : Σ × T → T is J-holomorphic

(JT2) the fibers of πΣ : Σ × T → Σ are J-holomorphic

(JT3) J is split near the puncture p of Σ and

(JT4) J agrees with Jα,β near p12, with Jβ,γ near p23 and with J̄α,γ near p13.
There is an obvious generalization of the definition of decorated sources from

Section 4.3 to the context of triangles, as well as the notion of respectful holomorphic

maps S⋄ → Σ × T consistent with ordered lists (O1, O2, O3). Let A ∈ π2(~x, ~y, ~z)
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and (O1, B(~x)), (O2, B(~y)) and (O3, B(~z)) be admissible pairs of α-, β- and γ-Reeb

chords respectively. Let MA,O1,O2,O3 denote the union over all decorated sources

S⋄ consistent with (O1, O2, O3) of the moduli space of smooth, embedded, finite-

energy holomorphic maps u : (S⋄, ∂S⋄) →
(
Σ × T, (~α × e1) ∪ (~β × e2) ∪ (~γ × e3)

)

in the homology class A without components on which πT ◦u is constant. (Compare

Section 4.3.)

Given a homology class A and ordered lists of Reeb chords O1, O2 and O3, it

follows from the arguments in Section 4.4 that for (u : S → Σ × T ) ∈ MA,O1,O2,O3,

the Euler characteristic of S is determined by (A, O1, O2, O3). It follows that there is

a well-defined expected dimension ind(A, O1, O2, O3) of MA,O1,O2,O3 depending only

on (A, O1, O2, O3).

If any of ~α∩ ∂Σ, ~β ∩ ∂Σ or ~γ ∩ ∂Σ is empty then we will omit the corresponding

(necessarily empty) list of Reeb chords from the notation. So, for instance, if k1 = 0

then we write MA,O2,O3 to mean MA,∅,O2,O3.

7.2 Handleslide invariance

We will focus on invariance under sliding a β-arc over a β-circle; the proof of in-

variance when sliding a β-circle over a β-circle is similar but slightly easier. (As

noted earlier, invariance under handleslides between α-circles is essentially the same

as in [OS04d] or [Lip].)

As always, fix a pointed Heegaard diagram with boundary (Σ, ~α, ~β, z). To ~β =

{β1, · · · , β2k, β2k+1, · · · , βg+k} we associate a lists ~β ′ = {β ′
1, · · · , β ′

g+k} and ~βH =

{βH
1 , · · · , βH

g+k} of arcs and circles as follows. For i = 1, · · · , 2k, let β ′
i be a small

perturbation of βi, intersecting βi transversely in one point θ′i, disjoint from βj for

i 6= j, so that there are two holomorphic disks D′
i,± in

(Σ × [0, 1] × R, (βi × {1} × R) ∪ (β ′
i × {0} × R))

asymptotic to θ′i × [0, 1] at −∞ and a Reeb chord γ′
i,± between βi and β ′

i at +east

infinity; see Figure 7.1. For i = k +1, · · · , g + k, let β ′
i be a small perturbation of βi



CHAPTER 7. TRIANGLES AND HANDLESLIDES 68

intersecting βi transversely in two points. Let θ′i be the intersection point between

βi and β ′
i so that there are two holomorphic disks D′

i,± in

(Σ × [0, 1] × R, (βi × {1} × R) ∪ (β ′
i × {0} × R))

asymptotic to θ′i × [0, 1] at −∞; see Figure 7.1. For B′ a k element subset of

{1, · · · , 2k}, let Θ′ = {θ′i|i ∈ B′} ∪ {θ′2k+1, · · · , θ′g+k}.

Figure 7.1: The β- and β ′-arcs and circles. β2 and β ′
2 are omitted.

For i = 2, · · · , k, let βH
i be a small perturbation of βi so that

• βH
i and βi intersect transversely in a single point θH

i .

• βH
i and β ′

i intersect transversely in a single point θH
i

′
.
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• there are two holomorphic disks DH
i,± in

(
Σ × [0, 1] × R, (βi × {1} × R) ∪ (βH

i × {0} × R)
)

asymptotic to θH
i × [0, 1] at −∞.

• there are two holomorphic disks DH
i,±

′
in

(
Σ × [0, 1] × R, (βH

i × {1} × R) ∪ (β ′
i × {0} × R)

)

asymptotic to θH
i

′
× [0, 1] at −∞.

See Figure 7.2. Let βH
1 be a circle obtained by handlesliding β1 over βk+1, disjoint

Figure 7.2: Two regions in Σ.

from the βi and β ′
i for i 6= 1, intersecting β1 in a single point θH

1 and β ′
1 in a single

point θH
1

′
, so that there is a unique holomorphic disk DH

1,+ in

(
Σ × [0, 1] × R, (~β1 × {1} × R) ∪ (βH

1 × {0} × R)
)

(respectively DH
1,+

′
in

(
Σ × [0, 1] × R, (~βH

1 × {1} × R) ∪ (β ′
1 × {0} × R)

)
) asymp-

totic to θH
1 × [0, 1] (respectively θH

1
′
× [0, 1]) at −∞ and γH

1,+ (respectively γH′

1,+)
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at +east infinity. See Figure 7.3. For i = 2k + 1, · · · , g + k, let βH
i be a small

Figure 7.3: Yet another region in Σ. Capital letters label components of Σ\(~β∪ ~β ′∪
~βH).

perturbation of βi intersecting βi and β ′
i transversely in two points each. Let θH

i

be the intersection point between βi and βH
i so that there are two holomorphic

disks DH
i,± in

(
Σ × [0, 1] × R, (βi × {0} × R) ∪ (βH

i × {1} × R)
)
. Let θH

i
′
be the in-

tersection point between βH
i and β ′

i so that there are two holomorphic disks DH
i,±

′
in(

Σ × [0, 1] × R, (βH
i × {0} × R) ∪ (β ′

i × {1} × R)
)
. See Figure 7.2. For BH and B

k element subsets of {1, · · · , 2k}, let ΘH
BH = {θH

i |i ∈ BH} ∪ {θH
2k+1, · · · , θH

k+g} and

ΘH
B

′
= {θH

i
′
|i ∈ B} ∪ {θH

2k+1
′
, · · · , θH

k+g
′
}.

Let CF(α, β), CF(α, β ′) and CF(α, βH) denote the Heegaard-Floer differential

modules associated to (Σ, ~α, ~β, z), (Σ, ~α, ~β ′, z) and (Σ, ~α, ~βH , z) respectively.

Notice that there are obvious identifications between the algebras A associated

to (∂Σ, ~β ∩ ∂Σ), (∂Σ, ~β ′ ∩ ∂Σ) and (∂Σ, ~βH ∩ ∂Σ), and we will denote each of these

three algebras by A.

We first define a map Fα,β,β′ : CF(α, β) → CF(α, β ′). Given an intersection
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point ~x ∈ CF0(α, β), define

Fα,β,β′(~x) =
∑

~y

∑

B′ ⊂ {1, · · · , 2k}

A ∈ π2(~x, Θ′

B′
, ~y)

(O, B(~x)) ∈ A

∑

O = O1 · O2

ind(A, O1, O2) = 0

[
#

(
MA,O1,O2

)
(O, B(~x))

]
~y

Define Fα,β,β′ ((O, B)~x) = (O, B)Fα,β,β′(~x).

Observe that Fα,β,β′ respects the decomposition of CF into SpinC-structures.

Lemma 7.2.1 The map Fα,β,β′ is a chain map, i.e., d ◦ Fα,β,β′ = Fα,β,β′ ◦ d.

Proof In the closed case, this is a special case of [Lip, Lemma 10.18]. In our setting,

the proof is more involved. As one would expect, the proof involves an analysis of

the one-dimensional moduli spaces. As we will see, while these moduli spaces can

degenerate in new and interesting ways, they do so an even number of times.

Suppose that A ∈ π2(~x, Θ′
B′ , ~y) and ind(A, O1, O2) = 1. Then MA,O1,O2 poten-

tially has four kinds of ends:

1. Degenerations at p1 (i.e., ~x), corresponding to MA′,O′
1,O2 ×MB,O′′

1 where B ∈

π2(~x, ~x′), A′ ∈ π2(~x
′, Θ′, ~y), and O1 = O′′

1 ·O
′
1. These correspond to Fα,β,β′◦d(~x).

2. Degenerations at p2 (i.e., Θ′
B′). These will require further consideration.

3. Degenerations at p3 (i.e., ~y), corresponding to MA′,O1,O′
2 ×MB,O′′

2 where B ∈

π2(~y
′, ~y), A′ ∈ π2(~x, Θ′, ~y′), and O2 = O′

2 ·O
′′
2 . These correspond to the part of

d ◦ Fα,β,β′(~x) coming from differentiating the generator of CF0.

4. Degenerations at east ∞, not at p2. These correspond to the other part of

d ◦ Fα,β,β′(~x), coming from differentiating the coefficient in A.

Except for 2, this would prove that Fα,β,β′ is a chain map. We will show that

degenerations at p2 come in pairs. (Essentially, type 2 degenerations correspond to

Reeb chords passing from Γ1 to Γ2.)

A degeneration at p2 yields a curve u in

(
Σ × [0, 1] × R, (~β × {1} × R) ∪ (~β ′ × {0} × R)

)



CHAPTER 7. TRIANGLES AND HANDLESLIDES 72

and a curve v in Σ×T . Inspecting (Σ, ~β, ~β ′), the only such curves u consist of disjoint

unions of some of the disks D′
i,± and some trivial disks. For simplicity, assume for

the moment that v consists of a single nontrivial component. (Generically, this will

be the case if O has no nontrivial microscopic partitions. To prove this requires the

remark on gluing a few paragraphs below.) Without loss of generality, assume the

nontrivial component is D′
i,+.

If the nontrivial component D′
i,+ is contained in the interior of Σ (i.e., i > k),

then there is also a family degenerating to (D′
i,−, v), so such degenerations come in

pairs.

If the nontrivial component D′
i,+ touches east infinity (i.e., i ≤ k) then in u

there is Reeb chord γ between ~β and ~β ′ mapped by v to p2 and east ∞. Either

βdown(γ) = βi or βup(γ) = β ′
i. In the former case, let βup(γ) = β ′

j . Then u can be

glued to one of D′
j,± to produce a family of curves converging to the chain (D′

j,−, u).

(See the remark on gluing a few paragraphs below.) (This has the effect of passing

a Reeb chord from O2 to O1.) In the latter case, let βdown(γ) = βk. Then u can

be glued to one of D′
k,± to obtain a family of holomorphic curves converging to

(D′
k,±, u). (This has the effect of passing a Reeb chord from O1 to O2.) It follows

that type 2 degenerations at a single Reeb chord occur in pairs, as desired. See

Figure 7.4 for an example illustrating this phenomenon.

If there is more than one nontrivial component, the preceding discussion applies,

but with a microscopic partition of Reeb chords rather than a single Reeb chord γ.

Remark on gluing. The argument appears to require a new gluing lemma, but in

fact does not: one can fill-in the puncture of Σ so that the βi meet the β ′
i transversely

at p. The result then follows from the obvious non-cylindrical analog of Proposition

4.2.2. �

Lemma 7.2.2 The map Fα,β,β′ is an isomorphism of differential A-modules.

Proof The analogous statement in the closed case is [OS04d, Proposition 9.8] or

[Lip, Proposition 11.4]. The proofs of these two results given in the closed case are

somewhat different; we will adapt the former to our setting. The idea, which goes

back at least to Floer ([Flo95, Lemma 3.6]), is that the map Fα,β,β′ preserves the
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Figure 7.4: Part of a Heegaard diagram illustrating a pair of degenerations. The
curves with domain A+B +C degenerate to (A+B, C). The triangle with domain
C+D+E degenerate to (D+E, C). Observe that A+B = D′

1,± and D+E = D′
2,±.

ω-energy filtration, and the lowest filtered part is an isomorphism; this is enough

to imply Fα,β,β′ is a homotopy equivalence. (This is analogous to the statement

that an upper triangular matrix with nonzero entries on the diagonal is invertible.)

Formally, we will use the following algebraic lemma, which is [OS04d, Lemma 9.10],

the proof of which is left (by both them and us) to the reader.

Lemma 7.2.3 Let F : A → B be a map of filtered groups, which is decomposed as a

sum F = F0 + ℓ, where F0 is a filtration-preserving isomorphism and ℓ has (strictly)

lower order than F0. Suppose that the filtration on B is bounded below. Then F is

an isomorphism of groups.

Remark. If A and B have additional structure, i.e., belong to some category C

with a forgetful map to the category of groups, and isomorphisms in C are bijective
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morphisms, then the lemma obviously implies that if F is a morphism in C then F

is an isomorphism in C. This applies, in particular, if C is the category of differential

A-modules.

Turning to the proof proper, choose an area form on Σ as in Proposition 2.7.2

so that every domain in πα,β
2 (~x, ~x) has zero signed area. Further arrange that

Area(D+
i ) = Area(D−

i ) for i = 1, · · · , g + k; this is easy to do. It follows that

every domain in πα,β′

2 (~x, ~x) has zero signed area.

Now, for each SpinC-structure s ∈ SpinC(Y ) we define a filtration F on CFs(α, β).

We will define F by giving a map F : CFs
0(α, β) → R with discrete (in fact, finite)

image, extending F to a map F : CFs(α, β) → R by F(Γ~x) = F(~x), and then

inducing a filtration on CFs(α, β) from the filtration R = ∪t∈R{s ∈ R|s < t} of R.

Choose a generator ~x of CFs
0(α, β), and define F(~x) = 0. For ~y any other

generator of CFs
0(α, β) let A ∈ πα,β

2 (~x, ~y) and define F(~y) = −Area(A). Since the

area of any element of π2(~x, ~x) is zero, the definition of F(~y) is independent of the

choice of A. If the coefficient of ~z in d~y is nonzero then there is some A ∈ π2(~y, ~z)

with non-negative coefficients, and hence positive area. This implies that F does in

fact induce a filtration. Extend F to CFs(α, β) by F(Γ~x) = F(~x).

Define a filtration F ′
0 on CFs(α, β ′) in exactly the same way as F on CFs(~α, ~β),

using the same area form and some intersection point ~x′ in CFs
0(α, β ′). Let A~x,~x′ ∈

π2(~x, ~x′, Θ′) and let F ′ be the filtration F shifted by Area(A~x,~x′). That is, F ′(~y′) =

F ′
0(~y

′)+Area(A~x,~x′). Since elements of π2(~x, ~x) and π2(~x
′, ~x′) have zero signed area,

the definition of F ′ is independent of the choice of A~x,~x′.

We check that Fα,β,β′ respects the filtrations F and F ′. Fix intersection points

~y ∈ CFs(α, β) and ~y′ ∈ CFs(α, β ′) and B ∈ π2(~x, ~y). Then F(~y) = −Area(B).

For any positive A ∈ π2(~y, ~y′, Θ′), A + B − A~x,~x′ ∈ π2(~x
′, ~y′) and Area(A + B −

A~x,~x′) > Area(B) − Area(A~x,~x′). It follows that if ~y′ occurs with nonzero coefficient

in Fα,β,β′(~y) then F ′
0(~y

′) < F(~y) + Area(A~x,~x′) so F ′(~y′) < F(~y) as desired.

Since there are only finitely many intersection points, both F and F ′ are finite,

and so in particular bounded below.

For convenience, choose a Riemannian metric on Σ inducing the chosen area

form. If the β- and β ′-curves are sufficiently close with respect to this metric then
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for every point x ∈ αi∩βj there is a closest point x′ ∈ αi∩β ′
j and a small embedded

triangle Tx in Σ with ∂Tx ⊂ (αi ∪ βj ∪ β ′
j and corners at x, x′, and θ′j . (The triangle

Tx is characterized by these properties and being entirely contained in the isotopy

region between βj and β ′
j .) See Figure 7.4, in which regions A and E are both

examples of such triangles. If the β- and β ′-curves are close enough then each Tx

has smaller area than any region in Σ\(~α ∪ ~β) or Σ\(~α ∪ ~β ′).

Given an intersection point ~x = {xi} ∈ CFs
0(α, β) let ~x′ = {x′

i}, the “closest

intersection point in CFs
0(α, β ′) to ~x”. It follows that given ~x = {xi}, the domain

∑
i Txi

∈ π2(~x, ~x′) has smallest area among positive domain in π2(~x, ~y′) (for all ~y′).

So, Fα,β,β′ = F0 + ℓ where F0({xi}) = {x′
i} and ℓ has strictly lower order than F0.

Obviously CFs(~α, ~β, z) → CFs(~α, ~β ′, z) is an isomorphism of filtered groups. Thus

Lemma 7.2.3 implies the result. �

Next, we define and study a map Fα,β,βH : CF(α, β) → CF(α, βH). Given an

intersection point ~x ∈ CF0(α, β), define

Fα,β,βH(~x) =
∑

~y

∑

BH ⊂ {1, · · · , 2k}

A ∈ π2(~x, ΘH
BH

, ~y)

(O, B(~x)) ∈ A

∑

O = O1 · O2

ind(A, O1, O2) = 0

[
#

(
MA,O1,O2

)
(O, B(~x))

]
~y

(This formula should look familiar: it is the same formula we used to define Fα,β,β′(~x)

with ΘH
BH in place of Θ′

B′ .) Define Fα,β,βH ((O, B)~x) = (O, B)Fα,β,βH(~x). Observe

that again Fα,β,βH respects the decomposition of CF into SpinC-structures.

Lemma 7.2.4 Fα,β,βH is a chain map.

Proof The proof is the same as the proof of Lemma 7.2.1, except that the analysis of

the curves occurring in
(
Σ × [0, 1] × R, (~β × {1} × R) ∪ (~βH × {0} × R)

)
is some-

what more complicated than for
(
Σ × [0, 1] × R, (~β × {1} × R) ∪ (~β ′ × {0} × R)

)
.

Fortunately, this analysis was already carried out in the closed case, so we need only

quote relevant results.

Notice that in (Σ, ~β, ~β ′) there is an annular region A1 from θH
1 with boundary

on β1, β2 and βH
1 asymptotic to γH

1,− at east infinity and a second annular region A2
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from θH
1 with boundary on β1, βH

1 and βH
2 asymptotic to γH

1,− at east infinity.

We must check that the homology classes of DH
i,± each admit (algebraically) one

representative in
(
Σ × [0, 1] × R, (~β × {1} × R) ∪ (~βH × {0} × R)

)
, and one of the

regions A1 or A2 admits one representative (algebraically) and the other zero rep-

resentatives (algebraically). The statement about the DH
i,± is clear. The statement

about A1 and A2 follows from the proof of [OS04d, Lemma 9.4]. The rest of the

proof is the same as the proof of Lemma 7.2.1. �

There is also a map Fα,βH ,β′ : CF(α, βH) → CF(α, β ′) defined in the same way

as Fα,β,βH .

Lemma 7.2.5 The composition Fα,βH ,β′ ◦ Fα,β,βH is chain homotopic to Fα,β,β′.

Proof The proof involves considering maps to Σ ×R where R is a rectangle. The

idea, which is the same as in [OS04d] or [Lip], is the following. The moduli space

of conformal structures on a rectangle is an interval, whose endpoints correspond to

the two possible degenerations of a rectangle into two triangles glued at one point.

Up to chain homotopy, the map defined by counting holomorphic curves in Σ × R

is independent of the choice of conformal structures on R. It follows that the two

compositions of triangle maps corresponding to the degenerations of R are chain

homotopic. One composition is obviously Fα,βH ,β′ ◦ Fα,β,βH while it is not hard to

check the other is Fα,β,β′ . More details follow.

The argument decomposes naturally into two parts: generalities on holomorphic

rectangles and a detailed study of holomorphic curves in

(
Σ × T, (~β × e1 ∪ ~βH × e2 ∪ ~β ′ × e3)

)
.

We discuss the second first.

We need to understand index 0 holomorphic curves

u : (S, ∂S) →
(
Σ × T, (~β × e1 ∪ ~βH × e2 ∪ ~β ′ × e3)

)

asymptotic to ΘH
BH and ΘH

B
′
at p12 and p23 respectively. Inspecting the diagram, if

BH 6= B then no such curve exists. Further, for j 6= j′, j, j′ 6∈ {1, k}, the punctures
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mapped by u to θH
j and θH

j
′
must lie on different connected components of S. It

follows again from inspection that for j 6∈ {1, k} the component asymptotic to θH
j

must be the small triangles with corners at θH
j , θH

j
′
and θj

′ (see Figure 7.2; this is

slightly more obvious for j > k than for 1 < j < k). By the Riemann mapping

theorem, each of these regions has a unique holomorphic representative in Σ × T

with respect to any split almost complex structure.

The components asymptotic to θH
1 , θH

1
′
θH

k and θH
k

′
require a more complicated

analysis. Again, inspecting the diagram there are three annular domains which

might support index zero holomorphic curves: the domains A + D + E + 2F + G,

A+B +E +F , and A+B +C +2F +G in Figure 7.3. We will show by a somewhat

indirect argument that, for a generic perturbation of the β-, β ′- and βH-curves (or

generic complex structure J on Σ × T ), the total number of holomorphic curves

among these three domains is (algebraically) one. (Presumably this also follows

directly from a sufficiently clever conformal mapping argument.)

One can choose another Heegaard triple-diagram with boundary

(Σ0, ~β0, ~βH
0 , ~β ′

0) so that Σ and Σ0 glue to a closed Heegaard diagram

(Σ♮Σ0, ~β♮~β0, ~βH♮~βH
0 , ~β ′♮~β ′

0) which corresponds to a single handleslide in the

standard Heegaard diagram (Σ♮Σ0, ~β♮~β0, ~β ′♮~β ′
0) for #(2g + 2k)S1 × S2.

Let Θ′
B′♮Θ′

0 (respectively ΘH
BH ♮ΘH

0 , ΘH
B

′
♮ΘH

0
′
) denote the top-dimensional

generator of ĈF(Σ♮Σ0, ~β♮~β0, ~β ′♮~β ′
0) = ĈF(#(2g + 2k)S1 × S2) (respectively

ĈF(Σ♮Σ0, ~β♮~β0, ~βH♮~βH
0 ), ĈF(Σ♮Σ0, ~βH♮~βH

0 , ~β ′♮~β ′
0)). It is proved in [OS04d, Lemma

9.7] that Fβ♮β0,βH♮βH
0

,β′♮β′
0
(ΘH

BH ♮ΘH
0 , ΘH

B
′
♮ΘH

0
′
) = Θ′

B′♮Θ′
0. (They prove this for a

slightly different Heegaard diagram, but the result for this Heegaard diagram follows

since the differentials vanish and the triangle maps in homology are invariants of

the bordism specified by the Heegaard triple diagram.) It follows that algebraically

exactly one of the three annular domains under consideration must support a

holomorphic curve.

In summary, there is algebraically a single holomorphic curve u with index 0

connecting Θ′
B′ , ΘH

BH and ΘH
B

′
. The image of πΣ ◦ u is contained in a compact
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subregion of Σ. There are no other index 0 holomorphic curves in

(
Σ × T, (~β × e1 ∪ ~βH × e2 ∪ ~β ′ × e3)

)

asymptotic to ΘH
BH at p12 and ΘH

B
′
at p23.

Now that we understand holomorphic curves in (Σ, ~β, ~βH, ~β ′) we return to the

main argument. Let R denote a topological rectangle (disk with four boundary

punctures), with edges f1, · · · , f4 (enumerated clockwise). For consecutive edges fi

and fj, let wij be the vertex between fi and fj. Let a ∈ (0, 1) denote a parameter for

the moduli space of conformal structures on R so that as a → 0 (R, ja) degenerates

along an arc connecting f1 and f3 and as a → 1 (R, ja) degenerates along an arc

connecting f2 and f4. See Figure 7.5.

Figure 7.5: The conformal structures on a rectangle R, and boundary conditions for
maps to Σ × R.
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Fix almost complex structures JαββH , Jαββ′ , JαβHβ′ and JββHβ′ satisfying (JT1)–

(JT4) and achieving transversality for index 0 holomorphic curves in Σ × T with

the obvious corresponding boundary conditions.

Fix a family {Ja}a∈R of almost complex structures on Σ × R so that for each

a, Ja satisfies the obvious analogs of Properties (JT1)–(JT4), with respect to the

almost complex structure ja on R. Further assume that

• As a → 0 the family Ja degenerates to JαββH on (Σ×T, ~α×e1∪~β×e2∪~βH×e3)

and JαβHβ′ on (Σ×T, ~α×e′1∪
~βH×e′2∪

~β ′×e′3). Here, e1 and e′1 each corresponds

to “half of” f1; e2 to f2; e3 and e′2 to half of f3 each; and e′3 to f4.

• As a → 1 the family Ja degenerates to Jαββ′ on (Σ×T, ~α×e1∪ ~β×e2∪ ~β ′×e3)

and JββHβ′ on (Σ× T, ~β × e′1 ∪
~βH × e′2 ∪

~β ′ × e′3). Here, e1 corresponds to f1;

e2 and e′1 to f2; e′2 to f3; and e3 and e′3 to f4.

See Figure 7.5.

Given intersection points ~x ∈ CFs
0(α, β), ~y ∈ CFs

0(α, β ′), and BH , B ⊂

{1, · · · , 2k} let π2(~x, ΘH
BH , ΘH

B
′
, ~y) denote the homology classes of maps to (Σ ×

R, ~α × e1 ∪ · · · ) asymptotic to ~x at w12, ΘH
BH at w23, ΘH

B
′
at w34 and ~y at w14.

Given a homology class A ∈ π2(~x, ΘH
BH , ΘH

B
′
, ~y) and two-level ordered lists of

Reeb chords O1, O2 and O3 let MA,O1,O2,O3
a denote the moduli space of embedded,

finite-energy Ja-holomorphic curves in the homology class A from sources with dec-

orations consistent with (O1, O2, O3), for which no components have πD ◦u constant.

(Compare Section 4.3.) Let MA,O1,O2,O3 =
⋃

a∈[0,1] M
A,O1,O2,O3

a .

By the index ind(u) of a map u : (S, ∂S) → (Σ × T, ~α × f1 ∪ · · · ) we mean the

expected dimension of the component of MA,O1,O2,O3

a containing u. By essentially the

same argument as given in Section 4.4, ind(u) depends only on the homology class A

and the asymptotics (O1, O2, O3) at east infinity, and so for A ∈ π2(~x, ΘH
BH , ΘH

B
′
, ~y)

and (O1, O2, O3) ordered lists of Reeb chords we may write ind(A, O1, O2, O3) to

denote this expected dimension.

Choose the family Ja so that it achieves transversality, as a family, for index ≤ 0

holomorphic curves in (Σ × R, ~α × f1 ∪ ~β × f2 ∪ ~βH × f3 ∪ ~β ′ × f4). Define a map
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H : CF0(α, β) → CF0(α, β ′) by

H(~x) =
∑

~y

∑

BH , B ⊂ {1, · · · , 2k}

A ∈ π2(~x, ΘH
BH

, ΘH
B

′
, ~y)

(O, B(~x)) ∈ A

∑

O = O1 · O2 · O3

ind(A, O1, O2, O3) = −1

[
#

(
MA,O1,O2,O3

)
(O, B(~x))

]
~y.

If (Σ, ~α, ~β, z) was admissible then this expression makes sense. Extend H to a map

H : CF(α, β) → CF(α, β ′) by setting H(Γ~x) = ΓH(~x).

We will show that

Fα,βH ,β′ ◦ Fα,β,βH + Fα,β,β′ = d ◦ H + H ◦ d.

This follows by considering the boundary of

⋃

BH , B ⊂ {1, · · · , 2k}

A ∈ π2(~x, ΘH
BH

,ΘH
B

′
, ~y)

(O, B(~x)) ∈ A

⋃

O = O1 · O2 · O3

ind(A, O1, O2, O3) = 0

MA,O1,O2,O3.

This space has several kinds of ends, corresponding to different degenerations of the

holomorphic curves:

• Ends corresponding to degenerations into two-level curves at w12. These cor-

respond to H ◦ d.

• Ends corresponding to degenerations into two-level curves at w14. These cor-

respond to part of d ◦ H(~x).

• Ends corresponding to degenerations into two-level curves at w23 or w34. These

cancel in pairs, as in the proof of Lemma 7.2.1.

• Ends corresponding to degenerations at east ∞, not at any wij. These corre-

spond to the rest of d ◦ H(~x).

• Ends corresponding to {0, 1} ⊂ [0, 1]. These correspond to Fα,βH ,β′ ◦Fα,β,βH(~x)

and Fα,β,β′(~x) respectively.
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This proves that Fα,βH ,β′ ◦ Fα,β,βH is chain homotopic to Fα,β,β′. �

Observe that if the β- and β ′-curves are sufficiently close then CF(α, β) and

CF(α, β ′) are exactly the same differential A-module.

Proposition 7.2.6 If the β- and β ′-curves are sufficiently close then the maps

Fα,βH ,β′ and Fα,β,βH are homotopy inverses to each other, and in particular, CF(α, β)

and CF(α, βH) are chain homotopy equivalent differential A-modules.

Proof From Lemma 7.2.5 we know that Fα,βH ,β′ ◦ Fα,β,βH is chain homotopic to

Fα,β,β′, which by Lemma 7.2.2 is an isomorphism of differential A-modules.

We could define a fourth set of curves βH ′
, isotopic to the βH , and intersecting

the βH- and β ′-curves in the same way the β ′-curves intersect the β- and βH-curves.

We would then have an isomorphism Fα,βH ,βH ′ : CF(α, βH) → CF(α, βH ′
) and chain

maps Fα,βH ,β′ : CF(α, βH) → CF(α, β ′) and Fα,β′,βH ′ : CF(α, β ′) → CF(α, βH ′
) so

that Fα,β′,βH ′ ◦Fα,βH ,β′ is chain homotopic to Fα,βH ,βH ′ , which is also an isomorphism

of differential A-modules.

If the β- and β ′-curves are sufficiently close then CF(α, β) and CF(α, β ′) are

exactly the same differential A-module. Similarly, if the βH- and βH ′
-curves are

sufficiently close then CF(α, βH) and CF(α, βH ′
) are exactly the same differential

A-modules. Further, the maps Fα,β′,βH ′ and Fα,β,βH are exactly the same. It follows

that Fα,β,βH and Fα,βH ,β′ are homotopy inverses to each other, proving the result. �

The fact that, up to chain homotopy, CF is independent of the choice of Heegaard

diagram follows immediately from Lemma 2.2.2 and Propositions 6.0.2, 6.0.5 and

7.2.6.



Chapter 8

Topics for further study

8.1 The gluing conjecture

The main reason to introduce invariants of bordered 3-manifolds is to be able to

study the Heegaard-Floer homology of closed manifolds by cutting and gluing. We

conjecture that the invariant introduced in this paper is strong enough to compute

ĤF of a glued manifold. We make this conjecture precise presently. Fix, for now, a

closed, oriented surface S and a Morse function f : S → R (with a single index 2

and a single index 0 critical point). Let A be the algebra associated to f : S → R

in chapter 3, and let A denote the algebra associated to f : (−S) → R, where

−S denotes S with the opposite orientation. Let A − Mod denote the category

of finitely generated, free differential A-modules, and F2 − Mod the category of

differential F2-modules.

Conjecture 8.1.1 There is a covariant functor G : (A − Mod) × (A − Mod) →

F2 − Mod with the following properties:

1. The functor G is exact in each factor.

2. The functor G descends to a map of homotopy categories.

3. Given ∂Y 3
1 = S and ∂Y 3

2 = −S, ĈF(Y1 ∪∂ Y2) is chain homotopy equivalent to

G (CF(Y1), CF(Y2)).

82
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In the rest of this section, we describe a program for proving the gluing conjec-

ture. We start by precisely describing how to define the F2-vector space G(M1, M2).

Let I be the ideal of A generated by all (O, B) with O 6= ∅, so A0 = A/I. This

makes A0 into an A-algebra. Observe that there is an obvious isomorphism A0
∼= A0;

identify A0 with A via this isomorphism.. Define a pairing P : A0 ⊗F2
A0 → F2 by

P ( (∅, B1), (∅, B2)) =

{
1 if B1 ∩ B2 = ∅

0 otherwise
.

This makes F2 into a (A0 ⊗F2
A0)-algebra.

Now, define

G(M1, M2) = F2 ⊗A0⊗F2
A0

((A0 ⊗A M1) ⊗F2
(A0 ⊗A M2)) .

If M1 = CF(Σ1, ~α1, ~β1) and M2 = CF(Σ2, ~α2, ~β2) it is easy to see that G(M1, M2) =

ĈF(Σ1 ∪∂ Σ2, ~α1 ∪∂ ~α2, ~β1 ∪∂
~β2)as a F2-vector space.

Next we discuss how one might define a differential on G(M1, M2). Given Hee-

gaard diagrams with boundary (Σ1, ~α1, ~β1, z1) and (Σ2, ~α2, ~β2, z2) with

∂(Σ1, ~α1, ~β1, z1) = −∂(Σ2, ~α2, ~β2, z2),

let Σ = Σ1∪∂ Σ2, ~α = ~α1∪~α2, ~β = ~β1∪∂
~β2 and z = z1 = z2. Suppose that ~x = ~x1∪~x2

and ~y = ~y1 ∪ ~y2. Given A1 ∈ π2(~x
1, ~y1) and an ordered list of Reeb chords O1 there

is an evaluation map

ev : MA1,O1 → R|O|/R

given by recording the R-coordinates of the various Reeb chords at east ∞. Here,

R|O|/R is the quotient with respect to the diagonal action by addition, and R|O|/R

is a compactification this quotient obtained by allowing the distance between Reeb

chords to go to zero or infinity. (Topologically, R|O|/R is a cube of dimension

|O| − ε(O).) It is not hard to show that for A ∈ π2(~x, ~y), and an appropriate choice
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of complex structure on Σ × [0, 1] × R,

MA =
⋃

A = A1 +∂ A2

Ocompatible withA1

MA1,O ×ev M
A2,Ō. (8.1)

Here, O corresponds to the map A → A given by (O, B) 7→ (−O, B|O|), where −O

is obtained from O by completely reversing the order. (This decomposition of MA

requires a compactness and a gluing theorem, but both can be deduced easily from

standard results.)

Observe that even though A may have index 1, the (A1, O) and (A2, O) into which

A decomposes may have high index. On the other hand, the invariant CF(Yi, ∂Yi)

takes into account only the index 1 moduli spaces. Therefore, to prove the gluing

conjecture, one wants to reconstruct the higher index moduli spaces from the index

1 moduli spaces.

The MA1,O satisfy the relation

∂MA1,O =
∑

A1 = A′
1

+ A′′
1

O = O′ · O′′

MA′
1,O′

×MA′′
1 ,O′′

+
∑

O=F (O′)

F (MA,O′

) +
∑

O∈decol(O′)

MA,O′

.

(8.2)

Here, F corresponds to maps induced by gluing-in curves at east ∞; the simplest

instance of such is gluing-in a join-curve; in this case, F is essentially just the

operation join.

Via the evaluation map ev, MA1,O represents some chain in R|O|/R; by formula

(8.1) this chain is all we care about. Since R|O|/R is contractible, up to homology,

this chain is determined by its boundary. By formula (8.2), the boundary is deter-

mined by simpler chains. Inductively, one can see that up to homology, all chains

are determined by (counts of) the zero-dimensional moduli spaces.1

1The attentive reader may object that homologous chains have the same boundary. What we
really mean is some kind of iterated homology, deforming first the zero-dimensional corners, then
the one-dimensional corners, and so on up. These homologies can be chosen to enjoy certain
coherence properties for different moduli spaces. In particular, they can be chosen so that formula
(8.2) remains true.
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It remains to check two things.

1. Changing the moduli spaces by (coherent) homology changes the glued chain

complex by chain homotopy equivalence.

2. Changing the differential A-module CF by chain homotopy equivalence

changes the glued chain complex by chain homotopy equivalence.

If both of these hold, one would have proved at least parts (2) and (3) of the gluing

conjecture. The proof of at least the first point is likely to proceed along relatively

standard lines.

Note that if this description of gluing is correct, it is explicit enough to be

computed combinatorially. Recall that R|O|/R is a cube. One could deform the

MA,O so that their images are affine linear subspaces of this cube with specified

corners. The gluing problem, then, reduces to linear arithmetic.

8.2 The relationship with knot Floer homology

This section assumes familiarity with knot Floer homology; see [OS04b] otherwise.

In Section 2.4 we showed how to obtained a Heegaard diagram with boundary

(Σ, ~α = {α1, · · · , αg}, ~β = {β1, · · · , βg−1, λ, µ}) for the complement of a knot K →֒

S3. Fix such a Heegaard diagram. Choose the basepoint z ∈ ∂Σ so that γ1 runs from

λ to µ. Fix also a point w ∈ γ2 ⊂ ∂Σ. Let Σ denote Σ with the puncture filled-in;

λ and µ specify circles in Σ. The points z and w specify connected components of

Σ\(~α∪ ~β); we will sometimes view z and w as points in these connected components.

Let γ4 = γ1 ⊎ γ2, γ5 = γ2 ⊎ γ3 and γ6 = γ1 ⊎ γ2 ⊎ γ3.

Let S3
0(K) denote zero surgery along K. Let ~βλ = {β1, · · · , βg−1, λ} and

~βµ = {β1, · · · , βg−1, µ}. Observe that (Σ, ~α, ~βµ, z, w) is a doubly pointed Heegaard

diagram for (S3, K) and (Σ, ~α, ~βλ, z, w) is a doubly pointed Heegaard diagram for

(S3
0(K), K).

Let CF = CF(Σ, ~α, ~β, z) denote the Heegaard-Floer differential module associ-

ated to S3 \ K. As discussed in Section 8.1, there is an algebra map A → A0 =

F2⊕F2. The differential in CF⊗AA0 counts only provincial curves, i.e., curves with
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multiplicity zero near the puncture. It is easy to see, therefore, that the homology

of CF⊗AA0 is ĤFK(S3, K) ⊕ ĤFK(S3
0(K), K).

More generally, the entire filtered chain complex ĈFK(S3, K) is contained in CF.

For ~x, ~y ∈ ĈFK(S3, K) ⊂ CF, terms of the form (γ5 < γ5 < · · · < γ5, µ)~y in d~x

correspond to the filtered differential on ĈFK(S3, K) of d~x. However, it does not

seem possible to extract just these terms in a homotopy-invariant way.

Let Θµ,λ (respectively Θλ,µ, Θλ,λ, Θµ,µ) denote a top-dimensional generator of

ĈF(Σ̄, ~βµ, ~βλ, z) = F
g−1
2 (respectively ĈF(Σ̄, ~βλ, ~βµ, z) = F

g−1
2 , ĈF(Σ̄, ~βλ, ~βλ, z) = F

g
2,

ĈF(Σ̄, ~βµ, ~βµ, z) = F
g
2). For ~x ∈ ĈFK(S3, K), terms of the form (γ2, µ)~y in d~x

correspond to the triangle map F (~x⊗Θµ,λ) induced by the Heegaard triple-diagram

(Σ̄, ~α, ~βµ, ~βλ, z, w). For ~x ∈ ĈFK(S3
0(K), K), terms of the form (γ1, λ)~y or (γ3, λ)~y

in d~x correspond to the triangle map F (~x ⊗ Θλ,µ) induced by the Heegaard triple-

diagram (Σ̄, ~α, ~βλ, ~βµ, z, w). To determine which triangles correspond to (γ1, λ) and

which to (γ3, λ) would require an appropriate twisted coefficient system. Higher

order terms in d~x should correspond to considering n-gons, for n > 3, with one

puncture mapped to ~x, the next puncture mapped to ~y, and all other punctures

mapped to Θ∗,∗. In this case, in addition to the issue of twisted coefficients, some

technical discussion of appropriate perturbations of the β-circles is necessary. It

would be nice to have these details completely understood.

It would be interesting to know whether our invariant of S3 \ K is completely

determined by ĈFK(S3, K). In light of the discussion in this section together with

the arguments in [OSc], this seems plausible, but not obviously true. There are,

fortunately or unfortunately, a dearth of small knots with isomorphic Heegaard-

Floer invariants, so there is no computational evidence one way or the other.

8.3 Future directions

Assuming the gluing conjecture is correct, or perhaps even if it is incorrect, there are

a number of potential applications and generalizations of the invariant developed in

this thesis. We mention some of them here.
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8.3.1 Other homologies, disconnected boundary

It would be nice to generalize our invariant to include analogs of HF+, HF− and

HF∞. While the geometric picture is clear — one would still study curves in Σ ×

[0, 1] × R with certain asymptotics — how to algebrize that picture is less obvious.

In this picture, there would be infinitely many Reeb chords (as one would allow

them to cover z), as well as closed Reeb orbits. Reeb orbits could split into Reeb

chords, and Reeb chords could coalesce into Reeb orbits. The algebra should make

allowances for these phenomena.

In another direction, this theory should generalize to Heegaard diagrams with

more than one boundary component. If one places basepoints zi on all of the bound-

ary components, the generalization is obvious. However, for some applications one

might want to have many boundary components but a single basepoint; in this case,

difficulties similar to those for HF+, HF− and HF∞ are likely to arise.

8.3.2 Contact structures

It is likely that one can imitate the construction in [OS05a] to define an invariant

of contact structures on manifolds with boundary; it seems reasonable to expect

that this invariant would take the form of an element c(ξ) ∈ CF(Y ) associated to

a contact structure ξ on Y , and that this invariant would glue to give the invariant

of a closed manifold. This might allow one to relate the Heegaard-Floer contact

invariant with the technique of cutting contact manifolds along convex surfaces.

One conjecture one might hope to be able to prove using a relative contact

invariant is the following, due to P. Lisca and A. Stipsicz ([LS, Conjecture 1.4]):

Conjecture 8.3.1 Suppose that the closed contact 3-manifold (Y, ξ) admits a con-

tact embedding of

(
T 2 × [0, 1], ker (cos(2π nz) dx− sin(2π nz) dy)

)
.

(Here, x and y are coordinates on T 2 and z on [0, 1].) Then the Heegaard-Floer

contact invariant c(Y, ξ) vanishes.
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As noted by Lisca and Stipsicz, this conjecture has as a corollary the follow-

ing conjecture of Eliashberg, recently proved by D. Gay using completely different

methods in [Gay]:

Theorem 8.3.2 (Gay) If the closed contact 3-manifold (Y, ξ) admits a contact em-

bedding of (
T 2 × [0, 1], ker (cos(2π nz) dx− sin(2π nz) dy)

)

then (Y, ξ) is not strongly fillable.

8.3.3 Knots

As mentioned at various points earlier, in [OS04b] and [Ras03], Ozsváth and Szabó

and, independently, Rasmussen, used Heegaard-Floer homology to define a knot

invariant. Briefly, their invariant is defined as follows. Fix a Heegaard diagram

(Σ, ~α, ~β) for S3 coming from some Morse function f and metric g on Y . Fix also

points z, w ∈ Σ\(~α ∪ ~β). The point z (respectively w) lies on a flow line ℓz (respec-

tively ℓw) between the index 0 and 3 critical points. Then ℓz ∪ ℓw is a knot K in

S3; any knot can be obtained this way for an appropriate choice of Heegaard dia-

gram. Recall that ĤF(S3) is defined by counting curves in (Σ\{z})× [0, 1]×R. The

Heegaard-Floer knot invariant is defined by counting curves in (Σ\{z, w})×[0, 1]×R.

More generally, replacing f by a Morse function with k index 0 and 3 critical points

and choosing points z1, · · · , zk and w1, · · · , wk in Σ one can obtains an invariant of

links with k components; see [OSa].

It should be possible to combine their construction with ours in at least two

ways. The first was suggested to me by Hedden. Choose a Morse function on

D2 × S1 with one index 0 (respectively 3) critical point on (∂D2)× S1 and a second

index 0 (respectively 3) critical point in the interior of D2 × S1. Associated is a

(generalized) Heegaard diagram with boundary (Σ, ~α, ~β). Let z be a point in ∂Σ\~α,

and z1, w1 points in int(Σ)\(~α ∪ ~β). For appropriate choices of z1 and w1, these

points specify a knot P in D2 × S1. (P stands for “pattern.”)

Suppose we are interested in the knot Floer homology of a satellite knot, with



CHAPTER 8. TOPICS FOR FURTHER STUDY 89

pattern P and companion K. (K stands for “kompanion.”) Assuming the glu-

ing conjecture, this homology should be completely determined by CF(S3 \K) and

CFK(D2 ×S1, P ), where the second differential module denotes the obvious modifi-

cation of CF taking into account the new basepoints z1 and w1. This result should

be particularly useful for the many patterns in D2 ×S1 admitting genus 1 Heegaard

diagrams, for which computations can presumably be carried-out relatively easily.

The second way to combine the two ideas seeks to produce invariants of tangles.

Choose a Morse function on S2 × [0, 1] with ki + 1 index 0 (respectively 3) critical

points on the boundary component S2 × {i}, and k index 0 (respectively 3) critical

points in the interior of S2 × [0, 1]. This gives a generalized Heegaard diagram

(Σ, ~α, ~β) with two boundaries ∂1Σ and ∂2Σ. Fix a point zi on ∂iΣ. Choosing

k1 + k2 + 2k basepoints wi appropriately in Σ then specifies a tangle in S2 × [0, 1]

with k1 + k2 arcs and k circles.

Imitating the construction of chapter 3, one can associate to ∂iΣ a differential

algebra Ai. Imitating Section 5.1, one can associate an (A0,A1)-bimodule CF to

(Σ, ~α, ~β). Assuming the (appropriate) gluing conjecture holds in this setting as well,

one can then view CF as a functor from A0-modules to A1-modules. (This would be

analogous to the functor-valued invariant of tangles associated in [Kho02] to Kho-

vanov homology.) In particular, the invariant of a knot would be determined by the

bimodules associated to elementary tangles. If the proof of the gluing construction

is sufficiently explicit, this would presumably lead to a combinatorial algorithm for

computing knot Floer homology.

One could apply similar ideas to studying the Heegaard-Floer homology of the

branched double cover of a link. Let D(L) denote the double cover of S3 branched

over L. In [OS05c], Ozsváth and Szabó show that ĤF(D(L)) is an invariant of L

with remarkably similar properties to the Khovanov homology Kh(L). Using these

similarities, they construct a spectral sequence from Kh(L) to ĤF(D(L)). Using

Heegaard diagrams with two boundary components, it should be possible to extend

this invariant to a (functor-valued) invariant of tangles. It would be interesting to

know, then, how the spectral sequence would generalize to this context. Again,

assuming an explicit gluing theorem, this should make combinatorial computation
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of ĤF(D(L)) possible.

8.3.4 Other potential applications

Several other applications of the invariant of bordered manifolds suggest themselves.

Heegaard-Floer homology detects the genus of a knot or link ([OS04a], [Nic]) and,

in fact, the Thurston norm on H2(Y ) for Y closed or Y a link complement ([OSe],

[Nib]). It would be interesting to know, therefore, what the bordered invariant has

to say about the minimal genus problem in 3-manifolds with boundary.

Another conceivable application, suggested to me by I. Agol, is to try to use the

bordered invariant to bound the Heegaard genus of a manifold. In [Gar98], S. Garo-

ufalidis shows that any unitary (2 + 1)-dimensional TQFT gives a Heegaard genus

bound for 3-manifolds. It seems plausible that by “categorifying” his arguments one

could use our bordered invariant to obtain a, presumably stronger, Heegaard genus

bound.

Finally, Heegaard-Floer invariants of sutured 3-manifolds have recently been

of substantial interest ([Juh], [Ni06], [Ghi]), leading ultimately to a proof of the

remarkable fact that knot Floer homology detects fibered knots ([Nia]). Although

perhaps unlikely to lead to new topological applications, it would be nice to know

how these results relate to the invariants introduced in this thesis.



Index

+∞, 12

−∞, 12

B(~x), 16, 36

Cα, 12

Cβ, 12

H(O), 25

Up, 27

mathbbm N, 26

z, 9

βdown, 10

βup, 10

A0, 26

ind(A, O), 44

ind, 65

Σ, 27

πΣ, 12, 28

πD, 12, 28

≺, 23

b, 9

⊎, 12

ε(O), 43
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invariants for closed three-manifolds. Ann. of Math. (2), 159(3):1027–

1158, 2004.
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