MATH W4052 PROBLEM SET 5 DUE FEBRUARY 23, 2011.

INSTRUCTOR: ROBERT LIPSHITZ

- (1) Let X_{\bullet} and Y_{\bullet} be simplicial complexes. Define the disjoint union $X_{\bullet} \amalg Y_{\bullet}$ of X_{\bullet} and Y_{\bullet} . (Hint: this is easy.) What is $H_n(X_{\bullet} \amalg Y_{\bullet})$? Briefly explain why.
- (2) Let X_{\bullet} and Y_{\bullet} be simplicial complexes. Define the wedge sum $X_{\bullet} \lor Y_{\bullet}$ of X_{\bullet} and Y_{\bullet} , the result of gluing X_{\bullet} to Y_{\bullet} at a single vertex. (The result depends somewhat on the choice of vertex.) What is $H_n(X_{\bullet} \lor Y_{\bullet})$? Briefly explain why.
- (3) Prove that the geometric realization of a simplicial map is well-defined, i.e., respects the equivalence relation \sim .
- (4) In this exercise you will prove invariance of simplicial homology under *simple homotopy equivalence*. (Most (probably all) of the homotopy equivalences you've seen are simple homotopy equivalences, so this is pretty good.)

We start with a definition. Let X_{\bullet} be a simplicial complex. An *n*-simplex $\{v_0, \ldots, v_n\} \in X_n$ is free if it is the face of exactly one (n + 1) simplex $\{v_0, \ldots, v_n, v_{n+1} \in X_{n+1}\}$ (i.e., there is a unique vertex v_{n+1} so that $\{v_0, \ldots, v_n, v_{n+1}\} \in X_{n+1}$). Let Y_{\bullet} be the simplicial complex given by $Y_i = X_i$ if $i \neq n, n+1, Y_n = X_n \setminus \{\{v_0, \ldots, v_n\}\}$ and $Y_{n+1} = X_{n+1} \setminus \{\{v_0, \ldots, v_{n+1}\}\}$. Then we say that Y_{\bullet} is gotten from X_{\bullet} by an elementary collapse, and that X_{\bullet} is gotten from Y_{\bullet} by an elementary expansion.

Some examples of elementary collapses:

If you can get from X_{\bullet} to Y_{\bullet} by a sequence of elementary collapses and elementary expansions then we say that X_{\bullet} and Y_{\bullet} are *simple homotopy equivalent*. For example, any tree is simple homotopy equivalent to a single point.

- (a) Let S_n^1 denote the simplicial complex for a circle with *n* vertices. Show that S_n^1 is simple homotopy equivalent to S_{n+1}^1 . (A sequence of pictures is enough.)
- (b) Show that the following pair of simplicial complexes are simple homotopy equivalent:

(Again, a sequence of pictures suffices.)

(c) Show that the following pair of simplicial complexes are simple homotopy equivalent:

(Again, a sequence of pictures suffices.)

- (d) Suppose that Y_{\bullet} is obtained from X_{\bullet} by an elementary collapse. Then there is an obvious simplicial map $f: Y_{\bullet} \to X_{\bullet}$. Prove that $f_*: H_n(Y_{\bullet}) \to H_n(X_{\bullet})$ is an isomorphism for each n. Conclude that simplicial homology is invariant under simple homotopy equivalence.
- (5) Prove the "simplicial Brouwer fixed point theorem": if X_{\bullet} is a simplicial complex so that $|X_{\bullet}|$ is homeomorphic to \mathbb{D}^n and $f: X_{\bullet} \to X_{\bullet}$ is a simplicial map then |f|has a fixed point. You may assume that simplicial homology is independent of the triangulation and that $H_n(S^n) \cong \mathbb{Z}$ (for any n).

E-mail address: rl2327@columbia.edu