MATH G4307 PROBLEM SET 2 DUE SEPTEMBER 20, 2011.

INSTRUCTOR: ROBERT LIPSHITZ

Exercises to turn in:

- (E1) Hatcher 1.1.5 (p. 38). Be careful about basepoints.
- (E2) Hatcher 1.1.7 (p. 38).
- (E3) Hatcher 1.1.9 (p. 38).
- (E4) Hatcher 1.1.18 (p. 39).
- (E5) In class, we defined π_1 by using maps

$$\Delta \colon S^1 \to S^1 \lor S^1 \qquad r \colon S^1 \to S^1 \qquad \ell \colon S^1 \lor S^1 \to S^1.$$

We asserted that

$$\ell \circ (\mathbb{I} \otimes r) \circ \Delta = \iota \circ \epsilon = \ell \circ (r \otimes \mathbb{I}) \circ \Delta.$$

Prove this.

- (E6) Using the previous problem, verify that every element of $\pi_1(X, x_0)$ has an inverse.
- (E7) Let $H^1(X) = [X, S^1]$ denote the set of homotopy classes of continuous maps from X to S^1 . (There are no basepoints around here.)
 - (a) Recall that S^1 is a topological group. Use the group structure on S^1 to make $H^1(X)$ into a group. Note that this group is abelian for any X.
 - (b) Compute $H^1(\{pt\})$. (This should be easy.)
 - (c) Compute $H^1(S^1)$. (Use the fact that $\pi_1(S^1) \cong \mathbb{Z}$.)
 - (d) Show that H^1 is functorial in the following sense: if $f: X \to Y$ is continuous then there is an induced map $f^*: H^1(Y) \to H^1(X)$. Moreover, if $g: Y \to Z$ then $(g \circ f)^* = f^* \circ g^*: H^1(Z) \to H^1(X)$. (This should be easy.)
 - (e) Show that if $f \sim g$ then $f^* \sim g^*$. Conclude that if $X \simeq Y$ then $H^1(X) \cong H^1(Y)$. (This should be easy.)
 - (f) Use H^1 to prove that there is no retraction $\mathbb{D}^2 \to S^1$, the key step in proving the Brouwer fixed point theorem.

Problems to think about but not turn in:

- (P1) Here is an alternate approach to proving that homotopy equivalences induce isomorphisms on π_1 . Suppose $f: (X, x_0) \to (Y, y_0)$ is a homotopy equivalence (not necessarily relative to x_0). Let $X' = X \amalg [0, 1]/(0 \sim x_0)$ and $Y' = Y \amalg [0, 1]/(0 \sim y_0)$. Let $x_1 = 1 \in X'$ and $y_1 = 1 \in Y'$. Observe that f extends in an obvious way to a map $f': (X', x_1) \to (Y', y_1)$.
 - (a) Show that (X', x_1) satisfies the homotopy extension property.
 - (b) Show that X' deformation retracts to X.

- (c) Show that (X', X) satisfies the homotopy extension property. (The previous part might help.) Conclude that f' is a homotopy equivalence.
- (d) Use the previous parts, and Hatcher Proposition 0.19 to prove that f_* : $\pi_1(X, x_0) \to \pi_1(Y, y_0)$ is an isomorphism.
- (P2) Find other based spaces (X, x_0) so that $[(X, x_0), (Y, y_0)]$ is a group for any based space (Y, y_0) .
- (P3) If you haven't seen it before, read the definition of a *category* and a *functor*. Think about what categories and functors we have seen so far in this course.
- (P4) Read through the remaining problems in this section, and do any that seem difficult or surprising.

E-mail address: lipshitz@math.columbia.edu