
MATH G4307 FINAL EXAM
FALL 2011

INSTRUCTOR: ROBERT LIPSHITZ

V2: Problem 3(a) corrected.

Instructions. This exam is due (in my mailbox or e-mail box) by 5:00 p.m. on
Monday, December 19. Please work on it by yourself. You are welcome to use Hatcher,
but do not use other references (including the Internet). You are welcome to ask me
or Kristen if you have questions or need a hint (but we may or may not answer). If
you accidentally receive help from some other source, note that on your exam.

Problems. The ordering represents my impression of increasing difficulty.

(1) (Hatcher, 3.3.32, p. 260): Show that a compact manifold with boundary does
not retract onto its boundary.

(2) For a topological space X and basepoint x0 ∈ X, πn(X, x0) is the set of homo-
topy classes of maps from Sn to X sending the north pole N ∈ Sn to x0 ∈ X.
The co-group structure on Sn given by pinching a circle through N (a map
Sn → Sn ∨ Sn) makes πn(X, x0) into a group.
(a) Show that for n ≥ 1, the identity map I : Sn → Sn generates a subgroup of

πn(Sn) isomorphic to Z. (Hint: this should be fairly easy using the tools
we have learned.)

The Hurewicz theorem states that πn(Sn) is exactly this Z; you may assume
this for the rest of the problem. Also, let [S2] ∈ H2(S2) denote a generator
(i.e., the dual of the fundamental class, or the Poincaré dual of the point
class).

(b) Let X be a 3-dimensional CW complex. Show that for any element c ∈
H2(X) there is a map f : X → S2 so that f ∗[S2] = c. (Hint: reduce to
the case that X has a unique 0-cell and no 1-cells, and use the Hurewicz
theorem.)

(c) The following is false: For any connected 3-dimensional CW complex and
any element α ∈ H2(X) there is a map f : S2 → X so that α = f∗[S

2]
(where now [S2] ∈ H2(S

2) is a generator). Give a counterexample, and
prove it is a counterexample.

(d) The following is also false: for X any 4-dimensional CW complex and
c ∈ H2(X) there is a map f : X → S2 so that f ∗[S2] = c. Give a coun-
terexample, and prove it is a counterexample.

(3) Let S denote the 2-dimensional analogue of the Hawaiian earring,

E∞ =
∞⋃
n=1

{(x, y, z) ∈ R3 | (x− 1/n)2 + y2 + z2 = 1/n2}.
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Let h : S3 → S2 denote the Hopf map (which is the attaching map for the

4-cell in CP 2). There is a continuous map h̃ : S3 → E∞ so that the projection

of h̃ to any S2 in E∞ is homotopic to the Hopf map. (You don’t have to prove
that, but it should be clear and easy to prove.)

Let Ch̃ denote the mapping cone of h̃.
(a) Prove that H2(Ch̃) contains an infinitely-generated subgroup Z〈ξ1, ξ2, . . . 〉

and H4(Ch̃) ∼= Z〈η〉 where

ξi ∪ ξi = η and ξi ∪ ξj = 0 if i 6= j.

(b) Let [S3] denote the fundamental class of S3. Suppose that h̃∗[S
3] = 0 ∈

H3(E∞). Then there is a finite simplicial complex X with boundary S3

so that h̃ extends to a map k : X → E∞. (You don’t have to prove that.)
Let Y = X ∪ D4, where the D4 is glued to S3 in the obvious way. Then k
extends to a map ` : Y → Ch̃, sending the B4 to the cone S3× [0, 1]/S3×1.
Prove that `∗(η) is a nontrivial element of H4(Y ).

(c) Prove that the (infinitely many) elements `∗(ξi) are all linearly indepen-
dent. (Hint: use naturality of the cup product.)

(d) Since Y was a finite CW complex, H2(Y ) is finitely generated. So, you
have a contradiction. What (counter-intuitive) result that I mentioned
several times in class have you proved?

(4) Suppose that K1 and K2 are embedded circles in S3 (i.e., knots), and K1 and
K2 are disjoint. We can define the linking number of K1 and K2 in two different
ways:
(a) By Alexander duality, H1(S3 \K1) ∼= H1(K1) ∼= Z. Let ` be a generator

of H1(S3 \ K1). The knot K2 gives a class i∗[K2] ∈ H1(S
3 \ K1), where

i : K2 → S3 denotes inclusion. The linking number of K1 and K2 is

lk(K1, K2) = c(i∗[K2]).

(b) Let π : R3 → R2 be projection onto the xy-plane. Deforming K1 and K2

if necessary, we can arrange that K1, K2 ⊂ R3 ⊂ S3, π(K1) is transverse
to π(K2), and π(K1) and π(K2) meet only in double points. So, we can
record K1 and K2 by a link diagram, as in Figure 1; the breaks indicate
which strand is lower (has small z-coordinate). Orient K1 and K2. Then
each crossing has one of the two forms shown in Figure 2. Given a crossing
c, define ε(c) as in Figure 2. Then

lk ′(K1, K2) =
∑

Crossings c between K1 and K2

ε(c).

(Note that this sum does not include places K1 crosses over itself or K2

crosses over itself.)
Prove that these definitions of linking number agree, at least up to a sign. (You
do not have to prove that the second definition is well-defined, though you
probably get that as a byproduct.)
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Figure 1. Link diagrams. (a) A link with linking number 1. The
crossings contributing to the linking number (according to the second
definition) are highlighted. (b) The Whitehead link, which has linking
number 0.

Figure 2. Local contributions of crossings. Only crossings in which
the two strands are from different link components contribute to the
linking number.

Remark. The example in Problem (3) is a special case of Barratt-Milnor, “An Example
of Anomalous Singular Homology”, Proceedings of the AMS 13 (2), 1962, 293–297. The
simplified proof in this case was explained to me by Greg Brumfiel.

E-mail address: lipshitz@math.columbia.edu


