MATH V1201 PROBLEM SET 3 DUE SEPTEMBER 29, 2009.

INSTRUCTOR: ROBERT LIPSHITZ

(1) In the textbook:

- $(\S12.5)$ 37, 56, 60, 66, 76.
- $(\S12.6)$ 10, 21–28 (they're short), 46, 49.
- (2) Any three points in \mathbb{R}^3 lie on a plane, but four randomly-chosen points won't. Here's a way of testing if four points $p_1, p_2, p_3, p_4 \in \mathbb{R}^3$ are co-planar. Let $\vec{v}_1 = p_2 p_1$ be the vector from p_1 to p_2 , \vec{v}_2 the vector from p_1 to p_3 and \vec{v}_3 the vector from p_1 to p_4 . Then p_1, p_2, p_3, p_4 are coplanar if and only if $\vec{v}_1 \cdot (\vec{v}_2 \times \vec{v}_3) = 0$.
 - (a) Use the test to determine if the points (1,0,1), (2,1,0), (0,2,0) and (1,1,1) are coplanar?
 - (b) Use the test to determine if the points (1, 0, 0), (0, 1, 0), (0, 0, 1) and (2/3, 1/6, 1/6) are coplanar?
 - (c) Explain briefly why this test for coplanarity works. (There are lots of possibly explanations, none of which should take more than a few sentences.) Suggestion. Explain this out loud to one of your friends or fellow classmates before writing it up.
- (3) Consider the function $f(x, y, z) = x^2 + y^2 + z^2 (x^2 + y^2 + z^2)^3$.
 - (a) What do the level sets f(x, y, z) = c look like for c = 0? c = -1? c = 3? (You're welcome to use a computer if it helps. Or, doing (3b) first might help.)
 - (b) Write f as a function of spherical coordinates, $f(\rho, \theta, \phi)$.
 - (c) Find the maximum value of f. (Hint: use (3b) and one-variable calculus.)

If you had trouble with	Do problems
12.5.37	12.5.33–12.5.38
12.5.56	12.5.53-12.5.53, 12.5.57, 12.5.58
12.5.60	12.5.59
12.5.66	12.5.19 - 12.5.22, 12.5.65
12.5.76	12.5.75
12.6.10	12.6.9
12.6.21–28	12.6.3 - 12.6.8, 12.6.11 - 12.6.20.
	And play with plugging some equations into a computer
12.6.46	12.6.45
12.6.49	12.6.50?

E-mail address: r12327@columbia.edu