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Abstract. The Heegaard Floer chain complexes are defined by
counting embedded curves in Σ×[0, 1]×R. In [Lip06], it was shown
that the chain complex ĈF can be elaborated by taking into ac-
count curves with double points. In this note, we extend results of
Manolescu-Ozsváth-Sarkar and Sarkar-Wang on computing CFK

and ĈF to this elaborated complex. The extension has a partic-
ularly nice form for grid diagrams: while the original Heegaard
Floer differential counts “empty” rectangles in the grid diagram,
the elaborated differential also counts rectangles containing some
of the xi.

1. Introduction.

In [OS04a], [Ras03] and [OS05], Ozsáth-Szabó and Rasmussen con-
structed certain “categorifications” of the Alexander polynomial called
knot Floer homology. These invariants, which come in various flavors,
take the form of chain complexes, well defined up to homotopy equiv-
alence. Their original definitions were in terms of holomorphic curves.
In [MOS06], Manolescu-Ozsváth-Sarkar showed that these chain com-
plexes have simple combinatorial descriptions in terms of toroidal grid
diagrams (see Figure 1). For instance, in an n×n toroidal grid diagram

the complex C̃FK is generated over F2 by matchings, i.e., n-tuples of
intersection points between the horizontal and vertical circles with no
two points on the same circle. (The generators are, thus, in one-to-one
correspondence with permutations of {1, · · · , n}, though the correspon-
dence depends on a choice of where one cuts the diagram.) If x and y
are matchings, the coefficient of y in d(x) is zero unless all but two of
the points of x and y are the same. If x and y differ at exactly two
points then the coefficient of y in d(x) is the number of rectangles with
corners at x and y not containing any xi, yi, wi or zi. (See Figure 1
for an example of such a rectangle.)

It is natural to try to elaborate the complex by counting more rect-
angles. As discussed in [MOS06], relaxing the condition that rectangles
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Figure 1. Left: A toroidal grid diagram for the figure
8 knot. (Opposite edges of the diagram are identified.)
Center: two generators x (empty circles) and y (solid

squares) of C̃FK, and a rectangle (shaded) contributing
to the coefficient of y in d(x). Right: different generators
x, y and a rectangle contributing to the coefficient of y
in d′(x) but not in d(x).

not cover wi or zi leads to other variants of knot Floer homology de-
fined in [OS04a], [Ras03] and [OS05]. In this paper, we discuss what
happens if one relaxes instead the condition that rectangles not cover

xi or yi, giving a new differential d′ on C̃FK. (The homological grad-

ing on (C̃FK, d) becomes a filtration on (C̃FK, d′).) It turns out that,
in this case, one is essentially computing a chain complex defined by
the author in [Lip06, Section 14.1], originally constructed by counting
holomorphic curves with prescribed singularity. This result, one of the
goals of the paper, is Proposition 9.

Knot Floer homology is, roughly, a relative version of the three-
manifold invariant Heegaard Floer homology. As discussed by Sarkar-
Wang in [SW], the essential feature of grid diagrams which allows one
to compute the Heegaard Floer differential is that all of the regions
in the grid diagram have non-negative Euler measure, i.e., are bigons
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or rectangles (in particular, rectangles).1 For one variant of Heegaard-

Floer homology, ĈF , only regions not containing “basepoints” matter,

so one can compute the differential on ĈF for more general diagrams
than grid diagrams. In particular, a diagram is called nice if all regions
in it not containing basepoints are bigons or squares. It was shown

in [SW] that in a nice diagram, the differential on ĈF corresponds to
counting embedded bigons and rectangles in the diagram. (They also
showed that, remarkably, every 3-manifold admits a nice diagram.) As
with grid diagrams, there is an analogous result for holomorphic curves
with double points in nice diagrams, so we work in this setting for
most of the paper. The main result on computability of the elaborated

differential on ĈF is Proposition 8.
It remains unknown whether the elaborated complexes contain more

information than ordinary Heegaard Floer homology. On the one hand,

in every example know to the author, (C̃FK, d′) and (C̃FK, d) are
filtered chain homotopy equivalent. On the other hand, the computa-
tional complexity of the Manolescu-Ozsváth-Sarkar algorithm and the
Sarkar-Wang algorithm are such that finding examples in which the

(C̃FK, d′) and (C̃FK, d) are not filtered chain homotopy would re-
quire some insight. (In particular, for knots which are HFK-thin, or
close to being HFK-thin, as all knots with small crossing number are,

(C̃FK, d′) and (C̃FK, d) are necessarily chain homotopy equivalent.)
This paper is organized as follows. In Section 2, we begin by review-

ing the cylindrical formulation of the Heegaard Floer homology group

ĈF (Y ), as described in [Lip06]. Following this, we re-introduce the

elaborated chain complex ĈF big(Y ) of a closed 3-manifold. This is fol-
lowed by a discussion of the corresponding elaboration of the link Floer
homology groups and a discussion of invariance. In Section 3 we turn
to the main results of this paper, on holomorphic curves with double
points in “nice diagrams,” generalizing [SW, Theorem 3.2]. We con-
clude by specializing these results to toroidal grid diagrams, justifying
the claims made in the introduction.

Throughout the paper there are a number of remarks, which may be
of interest to the reader but are not necessary for the main narrative.

Acknowledgments. I thank Anthony Licata and Peter Ozsváth for
many interesting, detailed discussions related to this paper. I also
thank Ciprian Manolescu, Dylan Thurston and Zoltán Szabó for clari-
fying and encouraging conversations, and the referee for several helpful

1Actually, at least in some situations, a weaker and seemingly more natural
condition suffices; see [Bel07].
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comments. The main result of this paper (Proposition 8) has been
discovered independently by Sucharit Sarkar.

The idea to consider holomorphic curves with double points in Hee-
gaard Floer homology, as well as a great many of the other ideas in the
background of this paper, was suggested to me by my patient thesis
advisor, Yasha Eliashberg.

2. Curves with double points...

2.1. The cylindrical setting. We begin by recalling the “cylindri-
cal formulation” of Heegaard-Floer homology from [Lip06]; for omitted
details, we refer the reader there. Fix a closed, oriented 3-manifold
Y , a Riemannian metric on Y , and a self-indexing Morse-Smale func-
tion f : Y → R with k index 0 critical points and k index 3 critical
points. Let n be the number of index 1 critical points of f , which is also
the number of index 2 critical points of f . Then Σ = f−1(3/2) is an
orientable surface of genus g = n − k + 1. The ascending spheres
α1, · · · , αn of the index 1 critical points of f are pairwise disjoint
embedded circles in Σ, as are the descending spheres β1, · · · , βn of
the index 2 critical points of f . Choose also k flow lines γ1, · · · , γk
of ∇f from the index 0 to the index 3 critical points, so that one
flow line originates at each index 0 critical point and one terminates
at each index 3 critical point. The flow lines {γi} intersect Σ in
k points z1, · · · , zk, none of which lie on α- or β-circles. The data
(Σg,α = {α1, · · · , αn},β = {β1, · · · , βn}, z = {z1, · · · , zk}) is called
a k-pointed Heegaard diagram for Y . See [OS05] for more details, or
Figure 2 (page 12) for an example. Abusing notation slightly, we will
also use α to denote α1 ∪ · · · ∪ αn, and β to denote β1 ∪ · · · ∪ βn.

If one specifies a second, completely different set of k flow lines
η1, · · · , ηk then γ1 ∪ · · · ∪ γk ∪ η1 ∪ · · · ∪ ηk is a link L in Y . Letting
wi = ηi ∩Σ and w = {w1, · · · , wk}, we call (Σ,α,β, z,w) a 2k-pointed
Heegaard diagram for L. Again, see [OS05] for more details, or Figure 3
(page 15) for an example.

From now on, we fix a k-pointed Heegaard diagram (Σ,α,β, z) for
Y ; we will comment on the extension to link invariants in Section 2.3.
We will associate to (Σ,α,β, z), together with a little additional data,

a chain complex ĈF (Σ,α,β, z) = ĈF (Y, k); as the notation suggests,
up to chain homotopy, the chain complex depends only on the three-
manifold Y and the integer k, and not on the particular Heegaard

diagram. We denote ĈF (Y, 1) by ĈF (Y ). (The chain complex ĈF (Y )

and ĈF (Y, k) are essentially the same as in [OS04b]. In Section 2.2,

we will introduce the elaborations of ĈF (Y ) which will be our main
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objects of study.) In fact, ĈF (Y, k) decomposes as a direct sum of
subcomplexes indexed by spinc-structures on Y ,

ĈF (Y, k) = ⊕s∈spinc(Y )ĈF (Y, k, s),

and the elaborated complexes decompose in the same way. We shall,
however, usually suppress this fact.

In order to define the chain complexes, we need to fix one piece of
auxiliary data: an almost complex structure J on the manifold Σ ×
[0, 1]×R. We require that J satisfy certain properties, as described in
[Lip06, Section 1]; in particular,

(J1) J is invariant under R-translation,
(J2) the projection map πD : Σ × [0, 1] × R → [0, 1] × R ⊂ C is (J, i)-

holomorphic and
(J3) the fibers of the projection map πΣ : Σ × [0, 1] × R → Σ are J-

holomorphic.

By a matching we mean an n-tuples of points x = {xi}ni=1 ⊂ (α∩β)
such that (exactly) one xi lies on each αi and one lies on each βj. In this

note, we are interested in the Heegaard-Floer chain complex ĈF , which

is generated over F2 by the set of matchings. The differential d : ĈF →
ĈF is defined by counting holomorphic curves in Σ × [0, 1] × R, with
asymptotics specified by matchings. More precisely, we consider J-
holomorphic maps

(1) u : (S, ∂S)→ (Σ× [0, 1]× R, (α× {1} × R) ∪ (β × {0} × R))

where S is a (smooth) Riemann surface with boundary and punctures
on the boundary. We impose several conditions on these maps:

(M1) the map u is asymptotic to x×[0, 1]×R near−∞ and y×[0, 1]×R
near +∞ for some matchings x and y,

(M2) the map u is proper,
(M3) For each i, exactly one component of ∂S is mapped to αi×{1}×R

and exactly one component of ∂S is mapped to βi × {0} × R,
(M4) the source S has no closed components and
(M5) the map u is an embedding.

We do not require that S be connected – in general, S will have many
connected components. Note that these conditions are somewhat re-
dundant. For instance, conditions (M5) and (M1) imply condition
(M3). Note also that conditions (M4) and (M2) imply that πD ◦ u is
nonconstant on every component of S.

Every topological map u as in Formula (1) satisfying properties (M1)
and (M2) has a well-defined (relative) homology class in H2(Σ,α∪β),
also referred to (unfortunately) as the domain D(u) of the map u. For
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fixed asymptotics (matchings) x and y, these relative homology classes
form a subset of H2(Σ,α ∪ β) which we denote π2(x,y). It turns out
that π2(x,y) is either empty or an affine copy of Z⊕H2(Y ); see [Lip06,
Section 2]. (The notation π2 is used for consistency with the original
formulation [OS04b].)

By definition, each homology class A ∈ π2(x,y) can be written as
a linear combination of connected components of Σ \ (α ∪ β) (i.e., a
linear combination of regions in (Σ,α,β)). We let π̂2(x,y) ⊂ π2(x,y)
denote the set of those homology classes such that all regions containing
elements of z occur with coefficients 0. We call homology classes in
π̂2(x,y) unpunctured.

The fact that π2(x,y) can be empty corresponds to the fact, men-

tioned earlier, that the complex ĈF (Y, k) which we will define decom-
poses as a direct sum of subcomplexes. This also will mean that there is
no obvious grading between generators of different subcomplexes. The
situation is simpler in the case that Y has the same integral homology
as S3, in which case π̂2(x,y) always consists of a single element. The
reader unfamiliar with Heegaard Floer homology may wish to focus on
this case.

Now, given matchings x and y and a homology class A ∈ π2(x,y)
we can form the moduli space MA(x,y) of holomorphic curves u as
in Formula (1) satisfying conditions (M1)–(M5). These moduli spaces
depend on the complex structure J we have chosen; for a generic choice
of J (subject to the conditions (J1)–(J3)), the moduli spacesMA(x,y)
will be smooth manifolds, transversely cut out by the ∂-equation. Each
moduli space MA(x,y) comes with an action by R, induced by the
translation action on Σ× [0, 1]× R.

Choosing a generic J , we can define the differential d : ĈF → ĈF
by

(2) dx =
∑
y

∑
A∈π̂2(x,y)

dim(MA(x,y))=1

#
(
MA(x,y)/R

)
y.

In principle, since π̂2(x,y) is infinite if b1(Y ) > 0, this may be an in-
finite sum. In Heegaard Floer homology, this is typically resolved by
assuming an admissibility condition on the Heegaard diagram. In par-
ticular, we will always assume that our Heegaard diagrams are weakly
admissible, in the sense of [OS04b, Definition 4.10]. This is enough to
ensure that the sums in Formula 2 are finite; see [OS04b, Lemma 4.13]
or [Lip06, Lemma 5.4].

It is shown in [Lip06] that Formula (2) does, indeed, define a dif-
ferential. Further, it is shown that this definition is equivalent to the



DOUBLE POINTS AND NICE DIAGRAMS 7

original one (in terms of disks in Symg(Σ).) Indeed, if one chooses the
complex structures appropriately then the two chain complexes are iso-
morphic. (This is a relative version of the tautological correspondence
discussed, say, in [Smi03] or [Ush04].)

Given a map u : S → Σ × [0, 1] × R satisfying conditions (M1)–
(M4), let ind(u) denote the expected dimension of the moduli space of
holomorphic curves near u, i.e., the index of the linearized ∂-operator
at u. As explained in [Lip06, Section 4.1], a simple doubling argument
shows that if u lies in the homology class A then

(3) ind(u) = n− χ(S) + 2e(A) =: ind(A, S)

Here, e(A) denotes the Euler measure of A. That is: the homology
class A is a linear combination of regions of (Σ,α,β). Each region C
is a surface with corners. We set

e(C) = χ(C)− 1

4
(number of corners of C)

and extend the definition of e linearly to elements of H2(Σ,α ∪ β).
(The number e occurs in the Gauss-Bonnet theorem for surfaces with
90◦ corners – the reason for its name.) Note that formula (3) holds
even if u is not an embedding.

Remark 1. It is straightforward to deduce Formula (3) from Ras-
mussen’s formula [Ras03, Theorem 9.1] and the Riemann-Hurwitz for-
mula.

It is shown in [Lip06, Section 4.2] that the Euler characteristic of
an embedded holomorphic curve in a homology class A ∈ π2(x,y) is
determined by A, by the formula

(4) χ(S) = n− nx(A)− ny(A) + e(A).

Here, nx(A) is the sum over the xi ∈ x of the average multiplicity of A
at xi. Combining Formulas (3) and (4) implies that, for an embedded
holomorphic curve u,

ind(u) = e(A) + nx(A) + ny(A).

Actually, the exact form that this formula takes will be unimportant for
our purposes: all we need is that there is some combinatorial formula
for ind(u) at an embedded curve u.

2.2. The elaborated chain complex ĈF big. In this section, we will

define an elaboration of ĈF by relaxing condition (M5). Before we
do so, a few more words about expected dimensions are in order. Let
MA

p (x,y) denote the moduli space of holomorphic curves u : S → Σ×
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[0, 1]×R satisfying conditions (M1)–(M4) with exactly p double points
(and no other singularities).2 As noted above, on the one hand, the
expected dimension ofMA

p near a curve u is still given by Formula (3).
On the other hand, general results on holomorphic curves imply that
the expected dimension of MA

p is 2p less than the expected dimension

of MA
0 . (Roughly, near each double point the holomorphic curve is

modeled on {zw = 0} ⊂ C2. This can be deformed to {zw = ε} (ε ∈ C,
small) – a two-dimensional family of deformations.) Consequently, if
u ∈MA

p then

(5) ind(u) = e(A) + nx(A) + ny(A)− 2p.

(Alternately, this can be proved directly by imitating the proof of For-
mula (4) in [Lip06, Section 4.2].) In particular, if u : S → Σ× [0, 1]×R
is a holomorphic curve in some fixed homology class A, from any one
of the three numbers

• ind(u),
• the number of double points of u and
• χ(S)

it is easy to compute the other two.

Now, we define a chain complex (ĈF big, dbig) over F2[[t]] as follows.

As a module, let ĈF big = ĈF ⊗F2 F2[[t]]. (That is, ĈF big is generated
over F2[[t]] by the set of matchings.) If x is a matching and p is a
non-negative integer, define

dp(x) =
∑
y

∑
A∈π̂2(x,y)

dim(MA
p )=1

#
(
MA

p (x,y)
)
y

dbig(x) =
∞∑
p=0

tpdp(x) = d0(x) + td1(x) + t2d2(x) + · · · .

Again, assuming weak admissibility, the sum defining dp(x) is finite.

Proposition 1. The map dbig is a differential, i.e., d2
big = 0.

Proof. This is explained in [Lip06, Section 14.1]. One considers the
ends of the one-dimensional (ind = 2) moduli spaces of curves with p
double points. Using the compactness result [BEH+03, Theorem 10.1],
together with an appropriate gluing result (see, e.g., [Lip06, Appendix
A]), the ends of the one-dimensional moduli space correspond to two-
story holomorphic buildings, the analogue of Morse theory’s broken

2For a treatment of singularities of pseudoholomorphic curves, see [McD94]
and [MW95].
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flow lines. In a two-story building, the double points will be distributed
between the two levels, but it is not hard to show that the total number
of double points will be p. The proposition then follows from the usual
arguments in Morse theory or Floer homology. �

Note that the fact that d2
big = 0 corresponds to a list of relations

among the di, the first two being that d0 is a differential – which we

already knew – and that d1 is a chain map on ĈF . As we will see in

Proposition 2, the chain homotopy type, over F2[[t]], of ĈF big is an in-
variant of the 3-manifold Y together with the integer k; this essentially
follows from results in [Lip06, Section 14.1].

Remark 2. Suppose that the manifold Y is a rational homology sphere,
or more generally that we are working with a torsion spinc-structure. In
this case, we may replace F2[[t]] by F2[t]. Also, there is a well-defined

relative Z-grading on (ĈF (Y ), d) (in each spinc-structure). Setting

t = 1 in ĈF big, we obtain a differential d′ : ĈF (Y ) → ĈF (Y ). In

other words, d′ : ĈF (Y )→ ĈF (Y ) is defined by

d′(x) =
∑
y

∑
A∈π̂2(x,y)

dim(MA
p )=1

#
(
MA

p (x,y)/R
)
y.

The relative Z-grading by the index (the “Maslov grading”) becomes a

relative Z-filtration of (ĈF , d′). If we define ĈF big over F2[t] rather

than F2[[t]] then the filtered chain complex (ĈF , d′) contains the same

information as (ĈF big, dbig).

Remark 3. The reader may find it interesting to compare the definition
of dbig with the “Taubes series” as defined by Ionel-Parker in [IP97,
Section 2]. This was the original motivation for the definition of dbig.

Remark 4. As noted above, in the original formulation of Heegaard
Floer homology, instead of counting holomorphic curves in Σ×[0, 1]×R
one counts holomorphic disks in Symg(Σ). Working with appropriate
(but still sufficiently generic) almost complex structures on Σ×[0, 1]×R
and Symg(Σ), there is a “tautological” bijective correspondence between
holomorphic curves in Σ×[0, 1]×R and holomorphic disks in Symg(Σ);
see [Lip06, Section 13]. For these complex structures, the diagonal
∆ ⊂ Symg(Σ) is an almost complex submanifold. With respect to the
tautological correspondence, a double point of a curve in Σ× [0, 1]×R
corresponds to a simple tangency to the top-dimensional stratum of the
diagonal in Symg(Σ). This interpretation suggests forming even larger
chain complexes by taking into account intersections with or tangencies
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to other strata of the diagonal, and/or higher order tangencies to the
top-dimensional stratum of the diagonal. It might be interesting to
study these elaborations; the techniques of this paper do not seem to
apply to them.

2.3. Links. To a 2k-pointed Heegaard diagram (Σ,α,β, z,w) for an
`-component nullhomologous link L in a manifold Y one can associate

various refinements of ĈF (Y ). We will focus on the one denoted C̃FK
in [MOST06]; in the case that k = `, this is also the invariant denoted

ĈFK in [OS04a].3

For the moment, assume that Y is a homology sphere. The com-

plex C̃FK(Σ,α,β, z,w) is obtained from C̃FK(Σ,α,β, z) as follows.
Given a domain A ∈ π2(x,y) let nwi

(A) denote the coefficient in A

of the region containing wi. Let nw(A) =
∑k

i=1 nwi
(A). Since we

assume the link L is null-homologous, it is not hard to show that
given two domains A,A′ ∈ π̂2(x,y), nw(A) = nw(A′). Further, since
the fibers of πΣ are J-holomorphic, if A admits a holomorphic rep-
resentative then nw(A) > 0. Consequently, w induces a relative Z-

filtration F on ĈF (Σ,α,β, z), given by F(x,y) = nw(A), where A
is any element of π̂2(x,y). (More generally, if Y is not a homol-
ogy sphere, π2(x,y) may be empty, so we instead obtain a filtra-

tion F on each (spinc-) summand of ĈF (Σ,α,β, z).) Then, we let

C̃FK(Y, L, k) = C̃FK(Σ,α,β, z,w) be the associated graded com-

plex to the filtered complex (ĈF (Σ,α,β, z),F). That is, as a module

C̃FK is the same as ĈF ; the differential on C̃FK counts only holo-

morphic curves which do not cover any of the wi. We set C̃FK(Y, L) =

ĈFK(Y, L) = C̃FK(Y, L, `).

3Recall that for links there are two different constructions of the invariant
ĈFK. The first construction, used in [OS04a], replaces an `-component link
in Y with a knot K in Y #(` − 1)S1 × S2, and defines ĈFK(Y,L) to be
ĈFK(Y #(`− 1)S1×S2, K). The second construction, used in [OS05], works with
multi-pointed Heegaard diagrams for L in Y . It is a nontrivial theorem ([OS05,
Theorem 1.1]) that for appropriate choices of diagram and almost complex struc-
ture, the resulting complexes are isomorphic. When we talk about the knot Floer
complex for a link, we will generally mean the construction from [OS05], using
multi-pointed Heegaard diagrams. The only exceptions are towards the end of Sec-
tion 2.4, where we use the fact that the two constructions are equivalent in order
to prove invariance, and in Remark 5, where we discuss generalizations to other
flavors on knot Floer homology.
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There is, then, an obvious extension of the elaboration dbig to C̃FK:

the map F also gives a filtration on CFbig, and we let C̃FKbig be the
associated graded complex.

Our main reason for introducing the link invariants is because of
the special case Y = S3. In this case, as described in [MOS06], one
can take the Heegaard diagram to be a toroidal grid diagram – i.e., a
diagram for L in which Σ is a torus and each αi intersects each βj in a
single point. (For example, a toroidal grid diagram of the figure 8 knot
is shown in Figure 1.) In this case, as noted in Remark 2, without loss
of information one can specialize t = 1, giving a new differential d′ on

the complex C̃FK. The Z-grading given by the index (the “Maslov” or
“homological” grading) becomes a Z-filtration instead. We will see in
Proposition 9 that in a grid diagram, the differential d′ is a particularly
natural extension of d.

Remark 5. There are several fancier versions of ĈFK or C̃FK. One

of these is the (relatively) Z-filtered chain homotopy type of ĈF , where
the filtration is the map F defined above. The filtration F obviously in-

duces a filtration on ĈF big as well. In the case k = 1, the arguments in

Section 2.4 will apply to prove that the filtered homotopy type of ĈF big

is an invariant of the knot K in Y . (As discussed in [OS04a, Section
2.1], this gives a link invariant, as well, which is Z-filtered rather than
Z|L|-filtered.) Proving either invariance of the link invariant CFL− or
of the filtered knot invariant for k > 1 would require additional work.
It seems unlikely, however, that either invariance would fail.

2.4. Invariance. The complexes we have introduced would not be of
much interest if they were not topological invariants. Fortunately, they
are, as the next three propositions show:

Proposition 2. Let (Σ,α,β, z) and (Σ′,α′,β′, z′) be 1-pointed Hee-
gaard diagrams for Y . Let J be an almost complex structure on Σ ×
[0, 1]×R and J ′ an almost complex structure on Σ′×[0, 1]×R satisfying

conditions (J1)–(J3). Then the chain complexes ĈF big(Σ,α,β, z) and

ĈF big(Σ,α
′,β′, z′), computed with respect to J and J ′ respectively, are

homotopy equivalent over F2[[t]]. If Y is a rational homology sphere

then the complexes (ĈF (Σ,α,β, z), d′) and (ĈF (Σ′,α′,β′, z′), d′) de-
fined in Remark 2 are homotopy equivalent as relative Z-filtered com-
plexes over F.

Proof. As explained in [Lip06, Section 14.1], this proposition follows

from the same arguments used in [OS04b] to prove invariance of ĤF (Y ).
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z1
z2

α1

α2
β1

β2 z

Figure 2. Left: a 2-pointed, genus 1 Heegaard diagram
(Σ,α,β, z) for S3. The two shaded ovals are the feet
of a 1-handle, itself shown in translucent gray. Right:
the corresponding 1-pointed, genus 2 Heegaard diagram
(Σ#,α#,β#, z) for S3#(S1×S2). There are now two 2-
handles, whose feet are two pairs of shaded ovals. Note
that the only differences between the two diagrams are in

the regions containing z’s, so the chain complexes ĈF big

are the same for the two diagrams.

In particular, one associates a chain homotopy equivalence to each of
the three Heegaard moves (isotopies, handleslides and stabilizations),
as well as to change of almost complex structure.

It is routine to adapt these maps to ĈF big. The hardest part to
check is that the handleslide map is well-defined and gives a homotopy
equivalence. The proof of handleslide invariance ([OS04b, Section 9];
see [Lip06, Section 11] for the proof in the cylindrical setting) leverages
the special case of a particular handleslide for (S1 × S2)#(S1 × S2) to
prove invariance in general. The form of the argument remains the
same, but we must check that there are no unwanted holomorphic
triangles with double points. It turns out ([Lip06, p. 1068]) that there
are thirteen domains to check. Seven can not have representatives with
double points because no region has multiplicity greater than one. The
remaining six can be ruled out by considering the Euler characteristic
of a representative with double points. �

We are now justified in writing ĈF big(Y ) to denote the chain ho-

motopy type of ĈF big(Σ,α,β, z) for any 1-pointed Heegaard diagram
(Σ,α,β, z) for Y .
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We next argue that the invariance of ĈF big in the 1-pointed case
implies the appropriate kind of invariance in the multi-pointed case.

Proposition 3. Let (Σ,α,β, z) by a k-pointed Heegaard diagram for

Y . Then ĈF big(Σ,α,β, z) is homotopy equivalent (over F[[t]]) to

ĈF big(Y )⊗F2[[t]]

(
H∗(S

1; F2[[t]])⊗k
)
,

where H∗(S
1; F2[[t]]) denotes the ordinary homology of S1 with coeffi-

cients in F2[[t]]. If Y is a rational homology sphere then

(ĈF (Σ,α,β, z), d′) ' (ĈF (Y ), d′)⊗F
(
H∗(S

1; F2)⊗k
)
,

as relatively Z-filtered complexes. In particular, the homotopy types of

ĈF big(Σ,α,β, z) and (ĈF (Σ,α,β, z), d′) depend only on Y and k.

Proof. From the k-pointed Heegaard diagram (Σ,α,β, z) one can ob-
tain a 1-pointed Heegaard diagram (Σ#,α#,β#, z) for Y#(k−1)(S1×
S2) by gluing a handle to Σ between zi and z1 for i = 2, . . . , k; see
Figure 2 for an example. (Gluing a handle to Σ, not intersecting
any of the α- or β-curves corresponds to surgering D3 × S0 from Y
and replacing it with S2 × D1.) It is immediate from the definition

that ĈF (Σ,α,β, z) ∼= ĈF (Σ#,α#,β#, z) and ĈF big(Σ,α,β, z) ∼=
ĈF big(Σ#,α#,β#, z). Consequently, it follows from invariance of ĈF big

for 1-pointed diagrams that if (Σ′,α′,β′, z′) is another Heegaard dia-

gram for Y with |z| = |z′| then ĈF big(Σ,α,β, z) and ĈF big(Σ,α,β, z)
are chain homotopy equivalent over F2[[t]].

Now, recall that given 3-manifolds Y1 and Y2,

ĤF (Y1#Y2) ∼= ĤF (Y1)⊗F2 ĤF (Y2).

This is proved by choosing a Heegaard diagram (Σ,α,β, z) for Y1#Y2

which itself decomposes as a connect sum Σ = Σ1#Σ2, α = α1

∐
α2,

β = β1

∐
β2, and then placing the basepoint z in the region of Σ where

the connect sum occurs. For such a diagram,

ĈF (Σ,α,β, z) ∼= ĈF (Σ1,α1,β1, z)⊗F2 ĈF (Σ2,α2,β2, z), and

ĈF big(Σ,α,β, z) ∼= ĈF big(Σ1,α1,β1, z)⊗F2[[t]] ĈF big(Σ2,α2,β2, z).

Putting this together with the fact that ĈF big(Σ,α,β, z) is isomorphic

to ĈF big(Σ#,α#,β#, z) one obtains that ĈF big(Σ,α,β, z) is chain ho-
motopy equivalent to

ĈF big(Y )⊗F2[[t]]

(
k−1⊗
i=1

ĈF big(S
1 × S2)

)
.
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It is straightforward to check that ĈF big(S
1 × S2) is (chain homotopy

equivalent to) H∗(S
1; F2[[t]]) ∼= F2[[t]] ⊕ F2[[t]]. This proves the first

part of the result. The second part follows by the same argument. �

Finally, we turn to link Floer homology.

Proposition 4. Let (Σ,α,β, z,w) be a 2k-pointed Heegaard diagram
for an l-component link L in Y . Then the chain homotopy type, over

F2[[t]], of ĈFKbig(Y,K, k) = ĈFKbig(Σ,α,β, z,w) depends only on
Y , K and k. Further,

ĈFKbig(Y,K, k) ' ĈFKbig(Y,K, l)⊗F[[t]]

(
H∗(S

1; F[[t]])⊗k−l
)
.

Analogous statements hold for the filtered theory (ĈFK(Y,K, k), d′).

Proof. In the case k = 1, i.e., the case treated in [OS04a], invariance of

C̃FK = ĈFK follows from the same argument used to prove invariance

of ĈF . That is, one can move between different 2-pointed Heegaard
diagrams of the same knot via isotopies, handleslides, and stabilizations
/ destabilizations – and one can choose the isotopies and handleslides
to be supported in the complement of {z, w}; see [OS04a, Proposition

3.5]. It is straightforward to check that the maps induced on ĈF
by these moves respect the filtration F , and in fact induce homotopy
equivalences on the filtered complexes. The same holds for the maps

induced on ĈF big.
To pass from k = 1 to general k, we adapt the handle attaching con-

struction we used before; see also [OS05, Section 10]. Let (Σ,α,β, z,w)
be a 2k-pointed Heegaard diagram for a link L in Y . Attaching a han-
dle to Σ between zi and wi+1 (i = 1, · · · , k − 1) gives a Heegaard
diagram (Σ#,α#,β#, z, w), where z = zk and w = w1, for a link L
in Y#(k − 1)(S1 × S2); see Figure 3 for an example. It is not obvi-

ous that ĈFK(Σ,α,β, z,w) ∼= ĈFK(Σ#,α#,β#, z, w): in the latter
chain complex, holomorphic curves can, in principle, cover the regions
which used to contain zi (i = 1, · · · , k−1) and wj (j = 2, · · · , k). How-
ever, it is proved in [OS05, Section 10, proof of Theorem 1] that for
suitable choices of (equivalent) Heegaard diagram (Σ,α,β, z,w) and
suitable complex structures on Σ#× [0, 1]×R, the two chain complexes
are, in fact, isomorphic. In fact, for these choices, no holomorphic
curves in (Σ# \ {z, w})× [0, 1]×R cover any of the regions which used
to contain zi (i = 1, · · · , k − 1) and wj (j = 2, · · · , k). Consequently,

the same proof applies to our elaborated chain complexes C̃FKbig.
If k = ` then the knot Floer homology of (Σ#,α#,β#, z, w) is, by

definition, the knot Floer homology of (Y, L), as defined in [OS04a]. In
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z1
z2 w1 w2

α1

α2
β1

β2

z w

A

Figure 3. Left: a 4-pointed, genus 1 Heegaard diagram
(Σ,α,β, z,w) for the Hopf link in S3. The shaded ovals
are the feet of a 1-handle, itself shown in translucent gray.
Right: the corresponding 2-pointed, genus 2 Heegaard
diagram (Σ#,α#,β#, z, w) for the corresponding knot
in S3#(S1 × S2). Note that, unlike in Figure 2, not
all of the difference occurs in regions containing z’s: in
principle, curves could cover the region labeled A in the
diagram on the right.

general, as was the case for ĈF (Y, k), up to chain homotopy equivalence

one has ĈFK(Σ#,α#,β#, z, w) ∼= ĈFK(Y,K)⊗F2 (H∗(S
1))⊗k−`, and

ĈFKbig(Σ#,α#,β#, z, w) ∼= ĈFKbig(Y,K)⊗F2[[t]](H∗(S
1; F2[[t]]))⊗k−`.

The proposition follows. �

3. ...in nice diagrams.

Recall from [SW, Section 3] that a pointed Heegaard diagram (Σ,α,β, z)
is called nice if every component of Σ \ (α ∪ β) not containing an el-
ement of z is either a bigon or a square. In other words, in a nice
diagram, all unpunctured regions have non-negative Euler measure, as
defined at the end of Section 2.1.

The following is [SW, Theorem 3.2], stated in our language:

Proposition 5. Fix a nice pointed Heegaard diagram (Σ,α,β, z) and
a generic almost complex structure J on Σ× [0, 1]×R satisfying (J1)–
(J3). Let u : S → Σ × [0, 1] × R be a J-holomorphic curve satisfying
Properties (M1)–(M5), in an unpunctured homology class. Suppose
that ind(u) = 1. Then:
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(1) There is a unique component S0 of S on which πΣ ◦ u is non-
constant.

(2) The component S0 is either a bigon or a rectangle.
(3) The map (πΣ ◦ u) |S0 : S0 → Σ is an embedding.
(4) If S1 is any component of S other than S0 then πΣ ◦ u(S1) is

disjoint from πΣ ◦ u(S0).

Consequently, the domain D(u) ∈ π2(x,y) of u is an embedded bigon
or rectangle in Σ, with no xi or yj lying in the interior of D(u). Con-
versely, any such domain has a unique J-holomorphic representative
satisfying Properties (M1)–(M5).

Remark 6. Point (1) of Proposition 5 is true for any generic, index
1 holomorphic curve in Σ × [0, 1] × R, whether or not the diagram is
nice. Indeed, if πΣ ◦ u were nonconstant on two components of S then
the R-action on each component would give a 2-dimensional family of
holomorphic curves near u – a contradiction.

The main result of this section generalizes Proposition 5 to curves
with double points. Before stating the generalization, we give a tech-
nical lemma which will allow us to work with split almost complex
structures:

Lemma 6. Let (Σ,α,β, z) be a nice multi-pointed Heegaard diagram
and J an almost complex structure on Σ × [0, 1] × R satisfying (J1)–
(J3). Fix an unpunctured homology class A and a surface S such that
ind(A, S) = 0. Let u : S → Σ× [0, 1]×R be a J-holomorphic curve in
the homology class A. Then πΣ ◦ u is constant.

Note. We do not assume that J is generic.

Proof. Since the fibers of πΣ are J-holomorphic, all of the coefficients of
components of Σ\(α∪β) in the domain D(u) of any holomorphic curve
u are non-negative. Consequently, since the coefficients of the regions
containing elements of z are zero, e(D(u)) ≥ 0. So, by Formula (3),
χ(S) ≥ n, with equality if and only if e(D(u)) = 0. However, by Prop-
erties (M3) and (M4), S can have at most n connected components.
Hence S consists of n bigons, and also e(D(u)) = 0.

Let S ′ denote the union of those components of S on which πΣ ◦ u
is nonconstant. Since the fibers of πΣ are J-holomorphic, πΣ ◦ u|S′ is a
branched map. By the Riemann-Hurwitz formula, e(S) = e(D(u))− r,
where r is the total ramification degree of πΣ ◦u. In particular, e(S ′) ≤
e(D(u)) = 0. Since S ′ consists entirely of bigons, S ′ must in fact be
empty. �
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Corollary 7. For any matchings x and y, homology class A ∈ π̂2(x,y),
and integer p ≥ 0, the mod 2 count of MA

p (x,y)/R is independent of
the choice of generic almost complex structure J .

Proof. This follows by a standard continuation argument, which we re-
call. Fix generic almost complex structures J0 and J1, and a generic
path of almost complex structures Js between them. LetMA

p (x,y; Js)
denote the moduli space computed with respect to Js. It follows
from the compactness theorem (in the cylindrical setting, [BEH+03,
Theorem 10.1]), together with standard transversality and gluing ar-
guments, that

⋃
s∈[0,1]MA

p (x,y; Js)/R has a natural compactification⋃
s∈[0,1]MA

p (x,y; Js)/R is a compact one-manifold with boundary. The

spacesMp(x,y; J0)/R andMA
p (x,y; J1)/R form part of the boundary

of
⋃
s∈[0,1]MA

p (x,y; Js)/R. The rest of the boundary consists of two-
story holomorphic buildings, i.e., pairs of curves

(u1, u2) ∈MA1
p1

(x,w; Js)/R×MA2
p2

(w,y; Js)/R
where A = A1 + A2 and p = p1 + p2. (This is not quite automatic: we
must rule-out bubbling and other boundary degenerations. Doing so
reduces to elementary complex analysis; see [Lip06, Proposition 7.1].)

The index is additive, so ind(u1)+ind(u2) = 1. Hence either ind(u1) ≤
0 or ind(u2) ≤ 0. For generic paths of almost complex structures,
all moduli spaces of negative index (expected dimension ≤ −2) will
be empty. Thus, Lemma 6 implies that either MA1

p1
(x,w; Js)/R or

MA2
p2

(w,y; Js)/R is empty. Thus, the only ends of
⋃
s∈[0,1]MA

p (x,y; Js)/R
are Mp(x,y; J0)/R and MA

p (x,y; J1)/R. The result follows. �

Proposition 8. Fix a nice pointed Heegaard diagram (Σ,α,β, z) and
a generic almost complex structure J on Σ× [0, 1]×R satisfying (J1)–
(J3). Let u : S → Σ × [0, 1] × R be a J-holomorphic curve satisfying
Properties (M1)–(M4) with p double points (and no other singularities),
in an unpunctured homology class. Suppose that ind(u) = 1. Then:

(1) There is a unique component S0 of S on which πΣ ◦ u is non-
constant.

(2) The component S0 is either a bigon or a rectangle.
(3) The map (πΣ ◦ u) |S0 : S0 → Σ is a local diffeomorphism.

Consequently, the domain D(u) ∈ π2(x,y) of u is the image under an
orientation-preserving local diffeomorphism of a (not necessarily em-
bedded) bigon or rectangle in Σ, and by Formula 5 satisfies e(D(u)) +
nx(D(u)) + ny(D(u)) = 2p + 1. Conversely, any such domain has
an odd number of J-holomorphic representatives satisfying Properties
(M1)–(M4) with exactly p double points.
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Proof. The proof we will give is somewhat different from the original
proof of Proposition 5 in [SW]. It is similar to, but easier than, the
proof of [LMW06, Proposition 2.3].

As noted in Remark 6, Point (1) of the proposition is true for generic
index 1 curves in any Heegaard diagram.

The proof of the Point (2) of the proposition is similar to the proof
of Lemma 6. Since the fibers of πΣ are J-holomorphic, all of the co-
efficients of components of Σ \ (α ∪ β) in the domain D(u) of any
holomorphic curve u are non-negative. Consequently, since the coeffi-
cients of the regions containing elements of z are zero, e(D(u)) ≥ 0.
Thus, by Formula (3), χ(S) ≥ n−1. However, by Properties (M3) and
(M4), S can have at most n connected components. Consequently, S
consists of either n or n − 1 topological disks, perhaps together with
some annuli. By Property (M1), S has 2n punctures on its boundary.
A holomorphic annulus must have at least 4 boundary punctures, and
hence is prohibited. Consequently, either S consists of n bigons or S
consists of n − 2 bigons and one rectangle. This implies Point (2) of
the proposition. Note that we have also shown that e(D(u)) is either
0 or 1/2.

We next show that πΣ ◦ u|S0 is a local diffeomorphism. Recall that,
since the fibers of πΣ are J-holomorphic, πΣ ◦ u|S0 is a branched map.
By the Riemann-Hurwitz formula, e(S0) = e(D(u)) − r, where r is
the total ramification degree of πΣ ◦ u. (Here, a branch point on the
boundary contributes 1/2 to r.) Since e(D(u)) ≤ 1/2, the only case in
which r 6= 0 is if S0 is a rectangle and πΣ ◦ u|S0 has a single boundary
branch point. It is not hard to see that, in this case, a split complex
structure on Σ × [0, 1] × R achieves transversality. But then varying
the branch point of πΣ ◦ u gives a family of holomorphic curves near u
– a contradiction. This proves Point (3) of the proposition.

Finally, for the existence statement (converse), one must show that
any domain which is the image of an orientation-preserving local diffeo-
morphism from a bigon or rectangle has a unique holomorphic repre-
sentative with the specified number of double points. Let us assume, for
definiteness, that the domain is the image of a rectangle. We work first
with a split almost complex structure jΣ×jD on Σ× [0, 1]×R. Let S be
the disjoint union of one rectangle and n−2 bigons. There is an obvious
map uΣ : S → Σ sending the rectangle by the orientation-preserving
local diffeomorphism to the domain and the bigons by constant maps.
Requiring that uΣ be holomorphic induces a complex structure on the
rectangle. It then follows by elementary complex analysis that there
is a unique holomorphic map uD : S → [0, 1] × R so that the corre-
sponding map u = (uΣ, uD) : S → Σ × [0, 1] × R satisfies Properties
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x 1

y1
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x 2

Figure 4. Top: a cylinder (top and bottom edges are
identified). The curves on the cylinder represent a (hy-
pothetical) part of a Heegaard diagram. The numbers in
the regions correspond to a domain in that Heegaard di-
agram, connecting x = {x1, x2, · · · } to y = {y1, y2, · · · }.
(All regions without numbers have coefficient 0.) This
domain is represented by a non-embedded, rigid holo-
morphic rectangle with a single double point. Bottom:
the same cylinder, curves and domain, drawn differently
to help with visualization of the rectangle.

(M1)–(M4); see, for instance, [Ras03, Section 9.5]. It follows, say, from
Oh’s “boundary injectivity” criterion ([Oh96]) as discussed in [Lip06,
Proposition 3.9] or in the proof of [OS04b, Proposition 3.9] that the
linearized ∂-operator is surjective at u. The map u is rigid, so by For-
mula (5), u has p double points. This proves the result for the split
complex structure. For general J , the result then follows from Corol-
lary 7. �

Remark 7. Note that if πΣ ◦u|S0 is an embedding then exactly p of the
xi ∈ x lie in the interior of the domain of u. It is not hard to show that
if S0 is a bigon then, in fact, πΣ ◦ u|S0 is an embedding. On the other
hand, it is not true that πΣ ◦ u|S0 is necessarily an embedding if S0 is
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a rectangle; see Figure 3. We will show below that, in a grid diagram,
πΣ ◦ u|S0 is always an embedding.

Remark 8. In [Sar06] and [LMW06], Proposition 5 is extended to
the “holomorphic triangles” needed to define cobordism maps. These
methods readily extend to prove the analog of Proposition 8, i.e., that
rigid holomorphic triangle with double points in a nice Heegaard triple
diagram correspond to domains which are the images of n triangles
each mapped orientation-preserving diffeomorphically to Σ. However,
without substantial effort, the methods from [LMW06] do not compute
the number of double points of the corresponding holomorphic map. For
this, applying Sarkar’s combinatorial formula for the index of triangles
from [Sar06] is much easier.

As discussed in the introduction, in a grid diagram the differential
dbig or d′, as defined in Section 2.3, is somewhat simpler. It follows from
Proposition 5 that, in a grid diagram, the coefficient of y in d(x) counts
rectangles between x and y whose interiors do not contain points of
x, y, z or w. The following proposition implies that the differential d′

is obtained simply by dropping the condition that rectangles may not
contain points of x or y.

Proposition 9. Let (Σ,α,β, z,w) be a grid diagram for a link L in
S3. Suppose that u : S → (Σ \ z) × [0, 1] × R is a rigid holomorphic
curve connecting x and y, with p double points, not covering any zi.
Then the domain of u is an embedded rectangle in Σ whose interior
contains exactly p elements of x. Conversely, any such domain has a
unique rigid holomorphic representative with p double points.

Proof. By Proposition 8, it suffices to prove: if u is a holomorphic
curve with p double points and S0 is the (unique) component of u on
which πΣ ◦ u is nonconstant then πΣ ◦ u|S0 is an embedding. (Then, all
double points of u must correspond to intersections of u|S0 and other
components of u, which implies p of the xi must lie in the domain of
u.) But since πΣ ◦ u|S0 is a local diffeomorphism and there is one zi
in every row and column of the grid diagram, πΣ ◦ u|S0 must be an
embedding. �
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