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R. Lipshitz, P. Ozsváth and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 1 / 50



1 Review of Heegaard Floer

2 Basic properties of bordered HF

3 Bordered Heegaard diagrams

4 The algebra

5 Gradings

6 The cylindrical setting for Heegaard Floer

7 The module ĈFD
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Review of Heegaard Floer

It’s like HM or ECH with different names.

We’ll focus on ĤF = H∗(ĈF), the mapping cone of U : CF+ → CF+.

Conjecturally, HF+ =

̂

HM = ECH∗.
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We’ll focus on ĤF = H∗(ĈF), the mapping cone of U : CF+ → CF+.

Conjecturally, HF+ =

̂

HM = ECH∗.
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Roughly, bordered HF assigns...

To a surface F , a (dg) algebra A(F ).

To a 3-manifold Y with boundary F , a

right A-module ĈFA(Y )

left A-module ĈFD(Y )

such that

If Y = Y1 ∪F Y2 then

ĈF(Y ) = ĈFA(Y1)⊗A(F ) ĈFD(Y2).
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Precisely, bordered HF assigns...

To which is a
Marked a connected, closed, A differential graded
surface oriented surface, algebra A(F )
F + a handle decompos. of F

+ a small disk in F
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Marked a connected, closed, A differential graded
surface oriented surface, algebra A(F )
F + a handle decompos. of F

+ a small disk in F

Bordered Y 3, a compact, oriented
∂Y 3 = F 3-manifold with

connected boundary,
orientation-preserving
homeomorphism F → ∂Y
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Precisely, bordered HF assigns...

To which is a
Marked a connected, closed, A differential graded
surface oriented surface, algebra A(F )
F + a handle decompos. of F

+ a small disk in F

Bordered Y 3, compact, oriented Right A∞-module

∂Y 3 = F 3-manifold with ĈFA(Y ) over A(F ),
connected boundary, Left dg -module

orientation-preserving ĈFD(Y ) over A(−F ),
homeomorphism F → ∂Y well-defined up to

homotopy.
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Satisfying the pairing theorem:

Theorem

If ∂Y1 = F = −∂Y2 then

ĈF(Y1 ∪∂ Y2) ' ĈFA(Y1)⊗̃A(F )ĈFD(Y2).
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Further structure (in progress):

To an φ ∈ MCG(F ), bimodules ĈFDA(φ), ĈFAD(φ).

ĈFA(φ(Y )) ' ĈFA(Y )⊗̃A(F )ĈFDA(φ)

ĈFD(φ(Y )) ' ĈFAD(φ)⊗̃A(−F )ĈFD(Y ).

To F , bimodules ĈFDD and CFAAa, such that

ĈFD(Y ) ' ĈFA(Y )⊗̃A(F )ĈFDD

ĈFA(Y ) ' ĈFAA⊗̃A(−F )ĈFD(Y ).
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R. Lipshitz, P. Ozsváth and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 7 / 50



Bordered Heegaard diagrams

Let (Σg , α
c
1, . . . , α

c
g−k , β1, . . . , βg ) be a Heegaard diagram for a Y 3

with bdy.

Let Σ′ be result of surgering along αc
1, . . . , α

c
g−k .

Let αa
1, . . . , α

a
2k be circles in Σ′ \ (new disks intersecting in one point

p, giving a basis for π1(Σ′).
These give circles αa

1, . . . , α
a
2k in Σ.

R. Lipshitz, P. Ozsváth and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 8 / 50



Bordered Heegaard diagrams

Let (Σg , α
c
1, . . . , α

c
g−k , β1, . . . , βg ) be a Heegaard diagram for a Y 3

with bdy.
Let Σ′ be result of surgering along αc

1, . . . , α
c
g−k .

Let αa
1, . . . , α

a
2k be circles in Σ′ \ (new disks intersecting in one point

p, giving a basis for π1(Σ′).
These give circles αa

1, . . . , α
a
2k in Σ.
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Let Σ = Σ \ Dε(p).

Σ, αc
1, . . . , α

c
g−k , α

a
1, . . . , α

a
2k , β1, . . . , βg ) is a bordered Heegaard

diagram for Y .

Fix also z ∈ Σ near p.
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R. Lipshitz, P. Ozsváth and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 9 / 50



A small circle near p looks like:

This is called a pointed matched circle Z.
This corresponds to a handle decomposition of ∂Y .
We will associate a dg algebra A(Z) to Z.
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Where the algebra comes from.

Decomposing ordinary (Σ,α,β) into bordered H.D.’s
(Σ1,α1,β1) ∪ (Σ2,α2,β2), would want to consider holomorphic
curves crossing ∂Σ1 = ∂Σ2.

This suggests the algebra should have to do with Reeb chords in ∂Σ1

relative to α ∩ ∂Σ1.

Analyzing some simple models, in terms of planar grid diagrams,
suggested the product and relations in the algebra.
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So...

Let Z be a pointed matched circle, for a genus k surface.

Primitive idempotents of A(Z) correspond to k-element subsets I of
the 2k pairs in Z.

We draw them like this:
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A pair (I , ρ), where ρ is a Reeb chord in Z \ z starting at I specifies
an algebra element a(I , ρ).

We draw them like this:

From:
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More generally, given (I ,ρ) where ρ = {ρ1, . . . , ρ`} is a set of Reeb chords
starting at I , with:

i 6= j implies ρi and ρj start and end on different pairs.

{starting points of ρi ’s} ⊂ I .

specifies an algebra element a(I ,ρ).

From:

These generate A(Z) over F2.
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That is, A(Z) is the subalgebra of the algebra of k-strand, upward-veering
flattened braids on 4k positions where:

no two start or end on the same pair

Not allowed.

Algebra elements are fixed by “horizontal line swapping”.

= +
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Multiplication...

...is concatenation if sensible, and zero otherwise.

=

=

=0
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Double crossings

We impose the relation

(double crossing) = 0.

e.g.,

= =0

R. Lipshitz, P. Ozsváth and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 17 / 50



The differential

There is a differential d by

d(a) =
∑

smooth one crossing of a.

e.g.,

d
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Algebra – summary

The algebra is generated by the Reeb chords in Z, with certain
relations. e.g.,

Multiplying consecutive Reeb chords concatenates them.
Far apart Reeb chords commute.

The algebra is finite-dimensional over F2, and has a nice description
in terms of flattened braids.
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Gradings

One can prove there is no Z-grading on A.

This bothered us.
Tim Perutz suggested we think about the geometric grading on HM.
It was a good suggestion.
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HM(Y ) is graded by homotopy classes of nonvanishing vector fields on Y .
So A(F ) should be graded by homotopy classes of nonvanishing vector
fields v on F × [0, 1] such that

v |F×∂[0,1] = v0

for some given v0.
(Think of F × [0, 1] as a collar of ∂Y .)

This is a group G under concatenation in [0, 1].
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It is easy to see that G ∼= [ΣF ,S2].

It follows that G is a Z-central extension of H1(F ),

0→ Z→ G → H1(F )→ 0.
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R. Lipshitz, P. Ozsváth and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 22 / 50



G is not commutative, but has a central element λ.

There is a map gr : {gens. of A(F )} → G such that:

gr(a · b) = gr(a) · gr(b)

gr(d(a)) = λ · gr(a).

The modules ĈFD and ĈFA are graded by G -sets.

Note: in the end, we define these gradings combinatorially, not
geometrically.
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The cylindrical setting for classical ĈF:

Fix an ordinary H.D. (Σg ,α,β, z). (Here, α = {α1, . . . , αg}.)
The chain complex ĈF is generated over F2 by g -tuples
{xi ∈ ασ(i) ∩ βi} ⊂ α ∩ β. (σ ∈ Sg is a permutation.)
(cf. Tα ∩ Tβ ⊂ Symg (Σ).)

The differential counts embedded holomorphic maps

(S , ∂S)→ (Σ× [0, 1]× R, (α× 1× R) ∪ (β × 0× R))

asymptotic to x× [0, 1] at −∞ and y × [0, 1] at +∞.

For ĈF , curves may not intersect {z} × [0, 1]× R.
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A useless schematic of a curve in Σ× [0, 1]× R.
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For (Σ,α,β, z) a bordered Heegaard diagram, view ∂Σ as a
cylindrical end, p.

Maps

u : (S , ∂S)→ (Σ× [0, 1]× R, (α× 1× R) ∪ (β × 0× R))

have asymptotics at +∞, −∞ and the puncture p, i.e., east ∞.

The e∞ asymptotics are Reeb chords ρi × (1, ti ).

The asymptotics ρi1 , . . . , ρi` of u inherit a partial order, by
R-coordinate.
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have asymptotics at +∞, −∞ and the puncture p, i.e., east ∞.

The e∞ asymptotics are Reeb chords ρi × (1, ti ).

The asymptotics ρi1 , . . . , ρi` of u inherit a partial order, by
R-coordinate.
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Another useless schematic of a curve in Σ× [0, 1]× R.
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Generators of ĈFD...

Fix a bordered Heegaard diagram (Σg ,α,β, z)

ĈFD(Σ) is generated by g -tuples x = {xi} with:

one xi on each β-circle

one xi on each α-circle

no two xi on the same α-arc.

x
x
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...and associated idempotents.

To x, associate the idempotent I (x), the α-arcs not occupied by x.

x

As a left A-module,
ĈFD = ⊕xAI (x).

So, if I is a primitive idempotent, I x = 0 if I 6= I (x) and I (x)x = x.
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R. Lipshitz, P. Ozsváth and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 29 / 50



The differential on ĈFD.

d(x) =
∑

y

∑
(ρ1,...,ρn)

(#M(x, y; ρ1, . . . , ρn)) a(ρ1, I (x)) · · · a(ρn, In)y.

where M(x, y; ρ1, . . . , ρn) consists of holomorphic curves asymptotic to

x at −∞
y at +∞
ρ1, . . . , ρn at e∞.
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Example D1: a solid torus.

z 1

23

x

a b

d(a) = b + ρ3x

d(x) = ρ2b

d(b) = 0.
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Example D2: same torus, different diagram.

z 1

23

x

d(x) = ρ2ρ3x = ρ23x.
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Comparison of the two examples.

First chain complex:
a

ρ3

��

1

��?
??

??
??

?

x
ρ2 // b

Second chain complex:

x
ρ23 // x

They’re homotopy equivalent!A relief, since

Theorem

If (Σ,α,β, z) and (Σ,α′, β′, z ′) are pointed bordered Heegaard diagrams

for the same bordered Y 3 then ĈFD(Σ) is homotopy equivalent to

ĈFD(Σ′).
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Generators and idempotents of ĈFA.

Fix a bordered Heegaard diagram (Σg ,α,β, z)

ĈFA(Σ) is generated by the same set as ĈFD: g -tuples x = {xi} with:

one xi on each β-circle

one xi on each α-circle

no two xi on the same α-arc.

Over F2,
ĈFA = ⊕xF2.

This is much smaller than ĈFD.
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The differential on ĈFA...

...counts only holomorphic curves contained in a compact subset of Σ, i.e.,
with no asymptotics at e∞.
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The module structure on ĈFA

To x, associate the idempotent J(x), the α-arcs occupied by x

(opposite from ĈFD).

For I a primitive idempotent, define

xI =

{
x if I = J(x)
0 if I 6= J(x)

Given a set ρ of Reeb chords, define

x · a(J(x),ρ) =
∑

y

(#M(x, y;ρ)) y

where M(x, y;ρ) consists of holomorphic curves asymptotic to

x at −∞.
y at +∞.
ρ at e∞, all at the same height.
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A local example of the module structure on ĈFA.

Consider the following piece of a Heegaard diagram, with generators
{r , x}, {s, x}, {r , y}, {s, y}.

The nonzero products are: {r , x}ρ1 = {s, x}, {r , y}ρ1 = {s, y},
{r , x}ρ3 = {r , y}, {s, x}ρ3 = {s, y}, {r , x}(ρ1ρ3) = {s, y}.
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Example A1: a solid torus.

z

1 2

3

x

a b

d(a) = b

aρ1 = x

aρ12 = b

xρ2 = b.
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Why associativity should hold...

(x · ρi ) · ρj counts curves with ρi and ρj infinitely far apart.

x · (ρi · ρj) counts curves with ρi and ρj at the same height.

These are ends of a 1-dimensional moduli space, with height between
ρi and ρj varying.
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The local model again.
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...and why it doesn’t.

But this moduli space might have other ends: broken flows with ρ1

and ρ2 at a fixed nonzero height.

These moduli spaces – M(x, y; (ρ1, ρ2)) – measure failure of
associativity. So...
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Higher A∞-operations

Define

mn+1(x, a(ρ1), . . . , a(ρn)) =
∑

y

(#M(x, y; (ρ1, . . . ,ρn))) y

where M(x, y; (ρ1, . . . ,ρn)) consists of holomorphic curves asymptotic to

x at −∞.

y at +∞.

ρ1 all at one height at e∞, ρ2 at some other (higher) height at e∞,
and so on.
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Example A2: same torus, different diagram.

z

1 2

3

x

m3(x , ρ2, ρ1) = x

m4(x , ρ2, ρ12, ρ1) = x

m5(x , ρ2, ρ12, ρ12, ρ1) = x

...
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Comparison of the two examples.

First chain complex:
a

m2(·,ρ1)

��

1+ρ12

��?
??

??
??

??
??

??
??

?

x
m2(·,ρ2) // b

Second chain complex:

x
m3(·,ρ2,ρ1)+m4(·,ρ2,ρ12,ρ1)+... // x

They’re A∞ homotopy equivalent (exercise).
Suggestive remark:

(1 + ρ12)−1“=”1 + ρ12 + ρ12, ρ12 + . . .

ρ2(1 + ρ12)−1ρ1“=”ρ2, ρ1 + ρ2, ρ12, ρ1 + . . . .
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R. Lipshitz, P. Ozsváth and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 44 / 50



Comparison of the two examples.

First chain complex:
a

m2(·,ρ1)

��

1+ρ12

��?
??

??
??

??
??

??
??

?

x
m2(·,ρ2) // b

Second chain complex:

x
m3(·,ρ2,ρ1)+m4(·,ρ2,ρ12,ρ1)+... // x

They’re A∞ homotopy equivalent (exercise).
Suggestive remark:

(1 + ρ12)−1“=”1 + ρ12 + ρ12, ρ12 + . . .

ρ2(1 + ρ12)−1ρ1“=”ρ2, ρ1 + ρ2, ρ12, ρ1 + . . . .
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Again, that’s a relief, since:

Theorem

If (Σ,α,β, z) and (Σ,α′, β′, z ′) are pointed bordered Heegaard diagrams

for the same bordered Y 3 then ĈFA(Σ) is A∞-homotopy equivalent to

ĈFA(Σ′).
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The pairing theorem

Recall:

Theorem

If ∂Y1 = F = −∂Y2 then

ĈF(Y1 ∪∂ Y2) ' ĈFA(Y1)⊗̃A(F )ĈFD(Y2).

At this point, one might wonder:

Why the distinction between ĈFD and ĈFA?

And why is the pairing theorem true?
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Consider this local picture

Here,

d(xA ⊗ xD) = xA ⊗ d(xD)

= xA ⊗ γyD

= xAγ ⊗ yD

= yA ⊗ yD

as desired.
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Using “nice diagrams” (analogous to Sarkar-Wang), such rectangles
are the only rigid curves crossing the boundary.

Any Heegaard diagram is equivalent to a nice one, so the pairing
theorem follows from this simple case and invariance.

This proof probably wouldn’t work for CF−. There is a more involved
proof that should – and perhaps gives insight into the right definition
of CFD− and CFA−...

but we’ll omit it for lack of time.
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Computing ĈFD for knot complements.

For a knot K in S3, ĈFD and ĈFA are determined by CFK−(K ).

The proof involves winding one of the α-curves like this

...and studying boundary degenerations when curves in a bordered
H.D. are allowed to cross z .
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Satellites

It is easy to compute ĤFK of satellites from these results.

In particular, one can reprove results of Eaman Eftekhary and Matt
Hedden.

More generally, these techniques imply HFK− of satellites of K is
determined by CFK− of K . i.e.,

Theorem

Suppose K and K ′ are knots with CFK−(K ) filtered homotopy equivalent
to CFK−(K ′). Let KC (resp. K ′C ) be the satellite of K (resp. K ′) with
companion C . Then HFK−(KC ) ∼= HFK−(K ′C ).
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