
COMPUTING ĤF USING THE BORDERED FLOER PACKAGE

ROBERT LIPSHITZ, PETER S. OZSVÁTH, AND DYLAN P. THURSTON

Abstract. How to use the bordered Sage package to compute ĤF .

1. A brief introduction

We start with three computations; we’ll explain what’s going on briefly here, and
in more detail in later sections. However: if you’ve never used Sage before, you’ll
probably be lost, so take a look at the Sage tutorial first.

As a first, very high-level example, let’s compute ĤF of the branched double cover
of the (−2, 3, 5) pretzel knot.

sage : load ChainCx . sage
sage : load PMCAlg . sage
sage : load TypeDStr . sage
sage : load TypeDDStr . sage
sage : load Plat s . sage
sage : my_grp = BraidGrp (6)
sage : my_grp . hf_of_knot (5∗ [1]+3∗ [3]+2∗ [−5])
1

This takes a while (15 minutes or so, on a modern laptop); you can instead use
my_grp.hf_of_knot(5∗[1]+3∗[3]+2∗[−1], True) to have it print how far along it is.
As a reminder, in Python, 5*[1]+3*[3]+2*[-5] stands for the list [1,1,1,1,1,3,3,3,-5,-5].

The argument to BraidGrp is the number of strands. The argument for hf_of_knot
is the braid word; this one is σ5

1σ
3
3σ
−2
5 . It will be faster if one uses as few σn−1’s as

possible (if n is the number of strands). Really, this is taking the plat closure of the
braid, where σ2 and σ4 act trivially on the plat.

If you’re doing several computations this way, use the same instance of BraidGrp
for all of them: it remembers part of what it has already computed, to speed up
repeated computations.

Next, let’s compute, in a more hands-on way, the invariant of some lens spaces:

sage : load ChainCx . sage
sage : load PMCAlg . sage
sage : load TypeDStr . sage
sage : load TypeDDStr . sage
sage : to rus = spl i t_matching (1)
sage : hb0 = zero_type_D (1)

RL was supported by NSF Grant DMS-0905796 and a Sloan Research Fellowship.
PSO was supported by NSF grants number DMS-0505811 and FRG-0244663.
DPT was supported by a Sloan Research Fellowship.

1

2 LIPSHITZ, OZSVÁTH, AND THURSTON

sage : s1s2 = hb0 .mor_to_d(hb0)
sage : s1s2
Chain complex with 2 gene ra to r s .
sage : s1s2 . homology ()
2
sage : t au l = Arc s l i d e (torus , 2 , 1)
sage : hb1 = tau l . dd_mod () . mor_to_d(hb0)
sage : hb2 = tau l . dd_mod () . mor_to_d(hb1)
sage : hb3 = tau l . dd_mod () . mor_to_d(hb2)
sage : l en (hb3 . ba s i s)
154
sage : hb3 . s imp l i f y ()
sage : l en (hb3 . ba s i s)
4
sage : l 31 = hb3 .mor_to_d(hb0)
sage : l 31
Chain complex with 5 gene ra to r s .
sage : l 31 . homology ()
3
sage : l 31
Chain complex with 3 gene ra to r s .
sage : taum = Arc s l i d e (torus , 1 , 0)
sage : hb4 = taum .dd_mod () . mor_to_d(hb3)
sage : l 32 = hb4 .mor_to_d(hb0)
sage : l 32 . homology ()
3

We start by loading the relevant code. The command split_matching(1) generates
the split pointed matched circle of genus 1. zero_type_D(1) generates ĈFD of the
0-framed handlebody of genus 1 (i.e., a particular solid torus). Arcslide(torus ,2,1)
is the arc-slide given by sliding point 2 down over point 1 in this pointed matched
circle. (Points are numbered from bottom to top, starting at 0.)

hb0.mor_to_d(hb0) generates the chain complex of morphisms from the hb0 to
itself. We then take its homology. (Not surprisingly, it doesn’t change.)

The code taul .dd_mod().mor_to_d(hb0) generates the type DD module for this
arc-slide, and then the chain complex of morphisms from it to hb0.

len(hb3.basis) gives the number of generators of hb3 as a type D structure. The
Hom pairing theorem tends to create lots of extra generators. We cancel these (to
speed up computation) with hb3.simplify(). (The names of the generators also get
more and more complicated; it’s worth occasionally running hb3.shorten_names() to
truncate them again.)

Note that taking homology of a chain complex is a destructive operation, as we see
with l31.

As a more interesting example, we compute ĤF of the Poincaré homology sphere,
and Σ(2, 3, 7).

sage : hb = d i c t ()

THE BORDERED FLOER PACKAGE 3

sage : hb [0]= zero_type_D (2)
sage : s l i d e s e q= [(4 , 3) , (1 , 0) , (2 , 1) , (3 , 2) , (1 , 0) , (5 , 4) , (6 , 5) , (1 , 2)]
sage : dd s l i d e s eq = d i c t ()
sage : for i in range (l en (s l i d e s e q)) :

dd s l i d e s eq [i]=Arc s l i d e (hb [i] . pmc , s l i d e s e q [i] [0] ,
s l i d e s e q [i] [1])

hb [i +1]=dds l i d e s eq [i] . dd_mod () . mor_to_d(hb [i])
print "Before s imp l i f i c a t i o n , hb ["+repr (i+1)+"] has

rank "+repr (l en (hb [i +1] . b a s i s))
hb [i +1] . s imp l i f y ()
print "After s imp l i f i c a t i o n , hb ["+repr (i+1)+"] has

rank "+repr (l en (hb [i +1] . b a s i s))
hb [i +1] . shorten_names ()

Before s imp l i f i c a t i o n , hb [1] has rank 34
After s imp l i f i c a t i o n , hb [1] has rank 2
Before s imp l i f i c a t i o n , hb [2] has rank 56
After s imp l i f i c a t i o n , hb [2] has rank 2
Before s imp l i f i c a t i o n , hb [3] has rank 57
After s imp l i f i c a t i o n , hb [3] has rank 1
Before s imp l i f i c a t i o n , hb [4] has rank 31
After s imp l i f i c a t i o n , hb [4] has rank 1
Before s imp l i f i c a t i o n , hb [5] has rank 33
After s imp l i f i c a t i o n , hb [5] has rank 1
Before s imp l i f i c a t i o n , hb [6] has rank 50
After s imp l i f i c a t i o n , hb [6] has rank 2
Before s imp l i f i c a t i o n , hb [7] has rank 130
After s imp l i f i c a t i o n , hb [7] has rank 2
Before s imp l i f i c a t i o n , hb [8] has rank 134
After s imp l i f i c a t i o n , hb [8] has rank 4
sage : desired_hb = hb [8]
sage : dehna = Arc s l i d e (spl i t_matching (2) , 1 , 0)
sage : dehnb = Arc s l i d e (spl i t_matching (2) , 2 , 1)
sage : tw i s t i t up = d i c t ()
sage : tw i s t i t up [0]= desired_hb
sage : for i in range (7) :

tempmod = dehna .dd_mod () . mor_to_d(tw i s t i t up [i])
print "Before s imp l i f i c a t i o n , b(ab)^"+repr (i)+

"∗HB has rank "+repr (l en (tempmod . ba s i s))
tempmod . s imp l i f y ()
print "After s imp l i f i c a t i o n , b(ab)^"+repr (i)+

"∗HB has rank "+repr (l en (tempmod . ba s i s))
tw i s t i t up [i +1]=dehnb .dd_mod () . mor_to_d(tempmod)
print "Before s imp l i f i c a t i o n , (ab)^"+repr (i+1)+

"∗HB has rank "+repr (l en (tw i s t i t up [i +1] . b a s i s))
tw i s t i t up [i +1] . s imp l i f y ()
print "After s imp l i f i c a t i o n , (ab)^"+repr (i+1)+

4 LIPSHITZ, OZSVÁTH, AND THURSTON

"∗HB has rank "+repr (l en (tw i s t i t up [i +1] . b a s i s))
tw i s t i t up [i +1] . shorten_names ()

Before s imp l i f i c a t i o n , b(ab)^0∗HB has rank 229
After s imp l i f i c a t i o n , b(ab)^0∗HB has rank 7
Before s imp l i f i c a t i o n , (ab)^1∗HB has rank 317
After s imp l i f i c a t i o n , (ab)^1∗HB has rank 5
Before s imp l i f i c a t i o n , b(ab)^1∗HB has rank 250
After s imp l i f i c a t i o n , b(ab)^1∗HB has rank 6
Before s imp l i f i c a t i o n , (ab)^2∗HB has rank 263
After s imp l i f i c a t i o n , (ab)^2∗HB has rank 7
Before s imp l i f i c a t i o n , b(ab)^2∗HB has rank 337
After s imp l i f i c a t i o n , b(ab)^2∗HB has rank 9
Before s imp l i f i c a t i o n , (ab)^3∗HB has rank 374
After s imp l i f i c a t i o n , (ab)^3∗HB has rank 10
Before s imp l i f i c a t i o n , b(ab)^3∗HB has rank 445
After s imp l i f i c a t i o n , b(ab)^3∗HB has rank 11
Before s imp l i f i c a t i o n , (ab)^4∗HB has rank 447
After s imp l i f i c a t i o n , (ab)^4∗HB has rank 13
Before s imp l i f i c a t i o n , b(ab)^4∗HB has rank 586
After s imp l i f i c a t i o n , b(ab)^4∗HB has rank 14
Before s imp l i f i c a t i o n , (ab)^5∗HB has rank 567
After s imp l i f i c a t i o n , (ab)^5∗HB has rank 15
Before s imp l i f i c a t i o n , b(ab)^5∗HB has rank 673
After s imp l i f i c a t i o n , b(ab)^5∗HB has rank 17
Before s imp l i f i c a t i o n , (ab)^6∗HB has rank 678
After s imp l i f i c a t i o n , (ab)^6∗HB has rank 20
Before s imp l i f i c a t i o n , b(ab)^6∗HB has rank 869
After s imp l i f i c a t i o n , b(ab)^6∗HB has rank 19
Before s imp l i f i c a t i o n , (ab)^7∗HB has rank 751
After s imp l i f i c a t i o n , (ab)^7∗HB has rank 21
Sage : po incarehs = tw i s t i t up [5] . mor_to_d(desired_hb)
sage : po incarehs
Chain complex with 405 gene ra to r s .
sage : po incarehs . homology ()
1
sage : sigma237 = tw i s t i t up [7] . mor_to_d(desired_hb)
sage : sigma237
Chain complex with 551 gene ra to r s .
sage : sigma237 . homology ()
3

The computation takes a little while, and the print statements are there to keep me
from losing hope. What’s going on is that program is computing the ĈFDD for the
following diagram:

THE BORDERED FLOER PACKAGE 5

This is the first long computation, and the result is called desired_hb. It glues
two of these together with Dehn twists (ab)5 or (ab)7 in between (where a and b are
longitude and meridian for the bottom torus inside the genus 2 surface); this is the
second long computation.

2. Pointed matched circles

2.1. Creating a pointed matched circle. Pointed matched circles are specified by
the PMC class. To declare a pointed matched circle, the inputs are the genus and the
matching. The matching is a list of pairs of elements of {0, . . . , 4g−1}. For example,
the following generates the genus 2 split matching and calls it my_pmc:

sage : my_pmc = PMC(2 , [(0 , 2) , (1 , 3) , (4 , 6) , (5 , 7)])
sage : my_pmc
Genus 2 pointed matched c i r c l e with matching ((0 , 2) , (1 , 3) ,
(4 , 6) , (5 , 7))

There are also two pre-defined methods for creating particular kinds of pointed
matched circles: split_pmc(g) returns the split pointed matched circle of genus g,
and antipodal_pmc(g) returns the antipodal pointed matched circle of genus g.

2.2. Operations on pointed matched circles. Every pointed matched circle has
a reverse:

sage : pmc1 = PMC(3 , [(0 , 6) , (1 , 8) , (2 , 4) , (3 , 5) , (7 , 1 0) , (9 , 1 1)])
sage : pmc1 . oppos i t e ()
Genus 3 pointed matched c i r c l e with matching ((0 , 2) , (1 , 4) ,
(3 , 10) , (5 , 11) , (6 , 8) , (7 , 9))

This is useful since we define type DD bimodules as left-left bimodules; see Section 5.
A more interesting operation is the arc-slide. Given a pointed matched circle

my_pmc, my_pmc.arcslide(i,j) returns the pointed matched circle gotten by slid-
ing the foot i over the foot j. For example:

sage : my_pmc = spl i t_matching (2)
sage : my_pmc. a r c s l i d e (3 , 4)
Genus 2 pointed matched c i r c l e with matching ((0 , 2) , (1 , 6) ,
(3 , 5) , (4 , 7)

6 LIPSHITZ, OZSVÁTH, AND THURSTON

Of course, i and j must be adjacent integers.
The methods PMC.is_underslide(i,j) and PMC.is_overslide(i,j) return True if slid-

ing i over j is an underslide or overslide, respectively.

2.3. Other PMC Methods.
• PMC’s can be displayed graphically with PMC.show().
• PMC.selftest checks if PMC is a valid pointed matched circle—though cur-
rently, it doesn’t actually check if surgery on the pairs of points gives a con-
nected circle.
• PMC.which_pair and PMC.matched_point deal with the matching.
• PMC.idempotents, PMC.alg_basis and PMC.alg_trunc_basis return the idem-
potents of the algebra A(PMC), a basis of Strand_Diagram’s for the algebra,
and a basis for the truncated (no multiplicities greater than 1) algebra, re-
spectively.
• PMC.complementary_idem turns an idempotent over PMC into the comple-
mentary idempotent over its orientation reverse.
• PMC.zero returns the zero element of the algebra over PMC.
• PMC.chords returns the chords in PMC.

3. The algebra associated to a pointed matched circle

Two different classes are involved in algebra elements. The class Strand_Diagram
represents a basis element for the algebra. The class AlgElt holds a sum of Strand_Diagram’s.
Most of the heavy lifting is done by Strand_Diagram; however, the behavior of
Strand_Diagram’s under operations is a little inconsistent, so it is usually better
to use AlgElt’s.

3.1. Strand_Diagram’s.

3.1.1. Defining Strand_Diagram’s. The input to a Strand_Diagram is (pmc, strands, left_idem, right_idem, name).
For example, a full definition of a Strand_Diagram looks like this:

sage : my_pmc = spl i t_matching (2)
sage : my_strand_diag = Strand_Diagram (my_pmc,
[(2 , 5)] , [(0 , 2) , (1 , 3)] , [(1 , 3) , (5 , 7)] , ’ rho25 ’)

The argument [(2, 5)] is the list of strands in the Strand_Diagram (in this case,
a single strand from point 2 to point 5). [(0, 2), (1, 3)] is the left idempotent and
[(1, 3), (5, 7)] the right idempotent. The argument ’rho25’ is the (optional) name for
this element; we’ll come back to that.

It is not necessary to give both left and right idempotents; the following three
commands give the same element:

sage : my_pmc = spl i t_matching (2)
sage : my_strand_diag = Strand_Diagram (my_pmc, [(2 , 5)] ,
[(0 , 2) , (1 , 3)])
sage : my_strand_diag = Strand_Diagram (my_pmc, [(2 , 5)] ,
le f t_idem = [(0 , 2) , (1 , 3)])
sage : my_strand_diag = Strand_Diagram (my_pmc, [(2 , 5)] ,
right_idem = [(1 , 3) , (5 , 7)])

THE BORDERED FLOER PACKAGE 7

(If only one idempotent is given, it’s assumed to be the left one.)
The argument name is a little strange. Its only effect is on what happens when you

print the Strand_Diagram: if it has a name, only the name is printed; otherwise, all
of the data of the diagram is shown:

sage : my_pmc = spl i t_matching (2)
sage : my_strand_diag = Strand_Diagram (my_pmc, [(2 , 5)] ,
[(0 , 2) , (1 , 3)] , name=’ rho25 ’)
sage : same_strand_diag = Strand_Diagram (my_pmc, [(2 , 5)] ,
[(0 , 2) , (1 , 3)])
sage : my_strand_diag
rho25
sage : same_strand_diag
| LI : [(0 , 2) , (1 , 3)] S : [(2 , 5)] RI : [(1 , 3) , (5 , 7)] |

sage : my_strand_diag == same_strand_diag
True

As the example illustrates, naming is (currently) not very robust: two equivalent (and,
indeed, equal) Strand_Diagram’s can have different names (or one can be named and
the other nameless).

3.1.2. Operations on Strand_Diagram’s. Strand_Diagram’s can be multiplied:

sage : rho02=Strand_Diagram (my_pmc, [(0 , 2)] , [(0 , 2) , (5 , 7)])
sage : rho23=Strand_Diagram (my_pmc, [(2 , 3)] , [(0 , 2) , (5 , 7)])
sage : rho02∗ rho23
| LI : [(0 , 2) , (5 , 7)] S : [(0 , 3)] RI : [(1 , 3) , (5 , 7)] |

They can also be differentiated:

sage : rho1523=Strand_Diagram (my_pmc, [(1 , 5) , (2 , 3)] , [(1 , 3) , (0 , 2)])
sage : rho1523 . d i f f e r e n t i a l ()
[| LI : [(0 , 2) , (1 , 3)] S : [(1 , 3) , (2 , 5)] RI : [(1 , 3) , (5 , 7)] |]

Warning! If an operation on a Strand_Diagram gives 0, the returned answer is
[] (the empty list):

sage : rho23∗ rho02
[]
sage : rho23 . d i f f e r e n t i a l ()
[]

This is not a Strand_Diagram. This means that, when programing with Strand_Diagram’s,
one needs to test if operations give 0 or not. Therefore, it’s generally safer to work
with AlgElt’s.

The product can also be called with Strand_Diagram.r_multiply or Strand_Diagram.r_multiply
to right or left multiply this element by the argument, respectively.

8 LIPSHITZ, OZSVÁTH, AND THURSTON

3.1.3. Other Strand_Diagram methods.
• Strand_Diagram’s can be displayed graphically with Strand_Diagram.show().
• Strand_Diagram.name_me(name) allows you to name a Strand_Diagram af-
ter it has been created.
• Strand_Diagram.multiplicities() returns a list of the local multiplicities of the
Strand_Diagram. Strand_Diagram.is_in_trunc() returns True if none of the
multiplicities are bigger than 1.
• Gradings: Strand_Diagram.inv() returns the number of inversions in Strand_Diagram;
Strand_Diagram.iota() returns ι(); Strand_Diagram.big_grading() returns
the G′-grading of a.
• Strand_Diagram.augmentation() takes the augmentation of this diagram, i.e.,
returns self if it’s an idempotent and [] otherwise. Strand_Diagram.id_minus_aug()
returns the identity minus the augmentation.
• Strand_Diagram.opposite() returns the “same” strand diagram, but viewed
as an element of the opposite algebra.

3.2. AlgElt’s.

3.2.1. Defining AlgElt’s. Basically, an AlgElt is a list of Strand_Diagram’s (F2-linear
combinations are lists).

sage : a = AlgElt ([rho02 , rho23 , rho1523])

You can also explicitly specify the pointed matched circle; the following example
is equivalent to the previous one:

sage : a = AlgElt ([rho02 , rho23 , rho1523] ,my_pmc)

In either case, you can get the pointed matched circle via:

sage : a . pmc
Genus 2 pointed matched c i r c l e with matching ((0 , 2) , (1 , 3) , (4 , 6) , (5 , 7))

If the list is empty, you must specify the pointed matched circle (though currently
the program doesn’t raise an exception if you don’t).

sage : ze ro = AlgElt ([] ,my_pmc)
sage : ze ro
<[]>
sage : ze ro . pmc
Genus 2 pointed matched c i r c l e with matching ((0 , 2) , (1 , 3) , (4 , 6) , (5 , 7))

3.2.2. Operations on AlgElt’s. Like Strand_Diagram’s, AlgElt’s can be multiplied
and differentiated:

sage : a∗a
<[| LI : [(0 , 2) , (5 , 7)] S : [(0 , 3)] RI : [(1 , 3) , (5 , 7)] |]>
sage : a . d i f f e r e n t i a l ()
<[| LI : [(0 , 2) , (1 , 3)] S : [(1 , 3) , (2 , 5)] RI : [(1 , 3) , (5 , 7)] |]>

THE BORDERED FLOER PACKAGE 9

AlgElt. diff () is the same as AlgElt. differential ().
They can also be added:

sage : a+a
<[]>
sage : a+AlgElt ([rho23 , rho02])==AlgElt ([rho1523])
True
sage : a+a==0
True

Again, unlike Strand_Diagram’s, the zero AlgElt is an AlgElt. It evaluates as
equal to anything else that Python considers False (including the empty list, 0, False
and None).

3.2.3. Other AlgElt methods. The AlgElt class extends UserDict, so you can get ele-
ments from it, iterate over it, and so on:

sage : for x in a :
print x . d i f f e r e n t i a l ()

[]
[]
[| LI : [(0 , 2) , (1 , 3)] S : [(1 , 3) , (2 , 5)] RI : [(1 , 3) , (5 , 7)] |]

3.3. Other algebra operations.
• AlgElt.opposite() returns the same strand diagrams, but viewed as an element
of the algebra over the orientation-reversed surface.
• alg_element(pmc, strands, spinc=0) returns the AlgElt which is a sum of all
ways of choosing idempotents compatible with strands. l_idem_compat(pmc,strands,idem)
checks if idem is compatible, as a left idempotent, with strands. There is a
similar method r_idem_compat testing if a right idempotent is compatible
with strands.
• alg_homology(pmc, spinc=0) returns a basis for the homology of the algebra
associated to pmc, in the spinc-structure spinc.
• mul_list(list1 , list2) multiplies a list of strand diagrams; better to use the
AlgElt class. Similarly, alg_differentiate_list differentiates a list of strand
diagrams, aug_list applies the augmentation to a list, and id_minus_aug_list
applies id minus the augmentation.
• BigGradingGroup is a class for dealing with G′ gradings.
• AlgBlgElt is a class for elements of A(Z)⊗A(Z ′), and is used for DD modules.

4. Type D modules

This section has not been written yet.

4.1. Defining type D modules. The package knows about several different han-
dlebodies:

• infty_type_D(k)
• zero_type_D(k)
• m_one_type_D(k)

10 LIPSHITZ, OZSVÁTH, AND THURSTON

4.2. Operations on type D modules.

5. Type DD modules

This section has not been written yet.

5.1. Defining type DD modules.

5.2. Operations on type DD modules. Department of Mathematics, Columbia Univer-
sity, New York, NY 10027

E-mail address: lipshitz@math.columbia.edu

Department of Mathematics, Columbia University, New York, NY 10027
E-mail address: petero@math.columbia.edu

Department of Mathematics, Barnard College, Columbia University, New York,
NY 10027

E-mail address: dthurston@barnard.edu

	1. A brief introduction
	2. Pointed matched circles
	2.1. Creating a pointed matched circle
	2.2. Operations on pointed matched circles
	2.3. Other PMC Methods

	3. The algebra associated to a pointed matched circle
	3.1. |StrandDiagram|'s
	3.1.1. Defining |StrandDiagram|'s
	3.1.2. Operations on |StrandDiagram|'s
	3.1.3. Other |StrandDiagram| methods

	3.2. AlgElt's
	3.2.1. Defining AlgElt's
	3.2.2. Operations on AlgElt's
	3.2.3. Other AlgElt methods

	3.3. Other algebra operations

	4. Type D modules
	4.1. Defining type D modules
	4.2. Operations on type D modules

	5. Type DD modules
	5.1. Defining type DD modules
	5.2. Operations on type DD modules

