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We consider the analogy of shock waves in KdV theory. It is well known (see
[1], pp. 261–263) that the analogy of a shock front, for instance, in a collisionless
plasma described by the KdV equation, has an oscillation zone. This zone is in the
framework of the averaging method described by a set of Whitham equations [2] for
three slowly varying quantities which in a given cycle of problems were first used
by Gurevich and Pitaevskii [3]. These authors studied exact self-similar solutions
of the Whitham equations on the basis of which they reached conclusions about
the asymptotic behavior of the oscillation zone as t → +∞.

The aim of the present paper is a correct mathematical statement of the problem
of the evolution of the oscillation (Whitham) zone for arbitrary boundary conditions
in the framework of the theory of sets of first order equations. This allows us, in
particular, to state and solve numerically the problem about the realizability of the
self-similar regimes found in [3] as asymptotic regimes for a wide class of initial
conditions as t → −∞.

The KdV equation has the form ut + uux + uxxx = 0. Averaging it against the
background of a set of periodic cnoidal waves

(1) u(x, t) = 2as−2dn2

[( a

6s2

)1/2

(x− V t), s
]

+ γ

with slowly varying parameters a, s, and γ leads to Whitham equations of the form

(2) rαt = vα(a, s, γ)rαx, α = 1, 2, 3,

where

(3) a = r2 − r1, s2 =
r2 − r1

r3 − r1
, γ = r2 + r1 − r3;

the equations for vα are given in [1], p. 264. Here v3 > v2 > v1, r3 > r2 > r1. If
r2 = r3, the solution (1) describes a soliton; if r2 = r1, (1) is a constant.

According to the physical representations worked out in [3], the oscillation zone
in the problems studied extend over the entire allowable range of variation of the
parameters rα; i.e., at any time t it is determined in the region (4), which is not
known beforehand,

(4) x−(t) 6 x 6 x+(t)

where

(5)
r1 → r2, x → x−(t),

r2 → r3, x → x+(t).
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Figure 1. Evolution of the single-valued function l(z, t) =
t−1/2r(z, t) (z = xt−3/2) of problem 2. The initial condition (t = 1)
in the oscillation zone corresponds to a perturbation of the self-
similar solution; at t = 2 this distortion is appreciably diminished.
The self-similar solution is indicated by dots.

Outside the range (4) there are no oscillations and the functions rα(x, t) are not
defined; at the boundary of (4) the solution of Eq. (2) must be joined continuously
to the solution of the Hopf equation ut + uux = 0, obtained from the KdV by
dropping the dispersion term, where u(x, t) is determined outside the zone (4):

(6)
u(x−(t), t) = r3(x−(t), t),

u(x+(t), t) = r1(x+(t), t).

It follows from (5) and (6) that the solution on the whole x axis is described by
the continuous function r(x, t) which is three-valued in the oscillation region (4),
r = (r1, r2, r3), and single-valued outside that region, r = u(x, t) (see Fig. 1).

Problem. Give the mathematically correct statement of the Cauchy problem for
multiple-valued functions r(x, t) which allows us to study the temporal evolution
of the oscillation zone (4).

For a more complete and rigorous study the basis of such a statement must follow
of course from the exact KdV theory. We have, however, deliberately restricted the
discussion to the theory of first-order systems which may have a broader meaning
than the KdV theory.
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Hydrodynamic systems without dissipation have the form

(7) uα
t = vα

β (u)uβ
x ,

where uα(x, t) is a vector function, α = 1, 2, . . . , k. The form of (7) is conserved
under nonlinear substitution of u(w). If the matrix vα

β (u) is diagonal, the fields
uα are called Riemann invariants. For instance, for Whitham’s system (2), k = 3,
the quantities uα = rα are the Riemann invariants of (2). Recently, a theory of
Hamiltonian systems of the form (7) and of the Poisson brackets connected with
them has been developed [4]. One of the authors of that paper hypothesized that
a system of the form (7) is integrate if, first, it is Hamiltonian and, secondly, it
has Riemann invariants. In some sense, this hypothesis was proved in [5]. The
procedure of [5] allows us to find some exact (“on average finite-zoned”) solutions
which have as yet not been studied. The theorem following from [5] about the
complete integrability of Whitham’s system (2) is of a formal, local nature. Its
applicability to a particular global class of functions rα(x, t) has not been studied.
Even more questionable is the applicability of this statement to the physically
interesting class described above, where the Whitham equation acts only in the
finite range (4) and is joined on the boundary to the solution of the trivial Hopf
equation; the range (4) changes here with time in a way not known as yet.

The system (2) possesses self-similar solutions of the form (8) with arbitrary
exponent γ:

(8) rα(x, t) = tγ lα(xt−1−γ) = tγ lα(z).

An important role below is played by the solution for γ = 1/2 found in [3] (see [1],
pp. 280–284). Let z = xt−3/2. Outside the zone (4) we have u(x, t) = t1/2θ(z),
where z = θ − θ3. At the edges of (4), where x = x±(t), all l±α can be expressed in
terms of z± from the conditions of continuity and constancy of the zone (4) in the
self-similar variable z (see [1], p. 281).

Such a solution exists and is unique, if l3 > 0, l1 < 0, and all lα are continuous
along with their first derivatives in the region z− < z < z+. At the point z0, where
l2(z0) = 0, the second derivatives apparently are no longer continuous. Calculations
show that

(9) z− ≈ −1.141, z+ ≈ 0.117, z0 ≈ −1.11.

We now turn to our problem. The class of multiple-valued continuous functions
r(x, t) must satisfy conditions (4)–(6). Moreover, these functions must be smooth
class C1 functions outside the points x±(t). They should be assumed to be smoother
outside zone (4). In the vicinity of the points on the curves x±(t), the hypothesis
of single-valuedness and of smoothness of the inverse function must be satisfied.
This means that for any fixed t > 1 the behavior of the quantity rα as x → x±(t)
is determined from Eqs. (10)–(13) at the given time t:

x′′ = (a+ + b+(r − r+))f(1− s2) + O(r − r+)3,(10)

x′′ = x− x+ 6 0, f(y) = y2[log(16/|y|) + 1/2];

x′ = a−(r − r−)2 + b−(r − r−)3 + o(r − r−)3, x′ = x− x− > 0.(11)

Here we have

dx+/dt = v+
2 = v+

3 , dr+/dt = −|r+
3 − r+

1 |2/(12a+),(12)

dx−/dt = v−1 = v−2 , dr−/dt = −1/(2a−).(13)
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If these conditions are satisfied, we call a multiple-valued function admissible at the
given time t.

Assertion. The Whitham equation, together with the Hopf equation, determines
uniquely the temporal evolution of the admissible multiple-valued functions r(x, t).

Although there is no mathematically rigorous proof of this assertion, the present
authors have constructed a numerical realization of this evolution applicable to two
functional classes (boundary conditions) corresponding to two physical problems
(see [1]).

Problem 1. Decay of an initial discontinuity for the KdV. Here we have

r(x, t) → 1, x → −∞,

r(x, t) → 0, x → +∞.

Problem 2. Dispersive analog of a shock front. Here the boundary conditions are

r(x, t)− u0(x, y) → 0, |x| → ∞, x = u0t− u3
0.

In each problem we assume that the rate at which the limit is reached as |x| → ∞
is sufficiently fast (exponential).

Using (2), we carry out the numerical calculation by the characteristics method
outside small regions near the points x±(t). In the vicinity of these points the
quantity r(x, t) was interpolated by Eqs. (10)–(13), where a±(t) and b±(t) were
determined by joining up with the numerical solution. This enabled us to construct
in each step in time the extension of the oscillation zone (4), since the derivatives
ẋ±(t) and ṙ±(t) are known. Along the line x−(t) the characteristics for r1 and r2

are tangent and along x+(t) the characteristics for r2 and r3 are tangent. These
are the singular lines: the characteristic r1 reaches the line x−(t), touches it, and
then leaves it as the characteristic r2. In exactly the same way, the characteristic
r3 arrives along x+(t), touches the line x+(t), and then leaves as r2 in the region
of the (x, t)-plane inside the curves [x+(t), x−(t)]. At each step in time around the
boundaries there is a transition of one characteristic into another. In the numerical
calculation the characteristics themselves are not calculated in small regions around
the curves x±(t).

As boundary conditions at t = 1 for problem 2 we introduced various admissible
perturbations of the self-similar Gurevich–Pitaevskii regime (see above).

The conclusions are the following: any admissible initial condition r(x, t), which
is sufficiently C1-close to the self-similar solution of problem 2 (see above), evolves
an infinite time without the appearance of any singularities (see Fig. 1) and as
t → ∞ the functions lα(z, t) tend to the self-similar solution (8), where rα(x, t) =
t1/2lα(z, t). There exists a finite threshold – the degree of remoteness of the ini-
tial perturbation from the self-similar solution – after which the evolution may be
(and sometimes is) such that there appears the usual hydrodynamic steepening and
afterwards the inversion of the front for rα. We do not know the numerical charac-
teristics of this threshold. In order that the evolution of r(x, t) be extended over an
infinite time as t → +∞, it is necessary (although not sufficient) that each single-
valued continuous branch of the function r(x, t) be a monotonic function of x at
time t. This statement is correct in all problems considered by us, as the numerical
experiment shows. Under the same necessary condition in problem 1, a wide class
of admissible (although not all) initial conditions in the evolution process tend to
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Figure 2. Evolution of the single-valued function r(z, t) (z =
xt−1) of problem 1. The initial condition (t = 1) inside the os-
cillation zone corresponds to the self-similar solution of problem 2
and outside this zone tends to a constant.

a regime which is self-similar with exponent γ = 0, where z = xt−1, r1 → const,
r3 → const, and v2 → z. This limiting regime is described in [1], pp. 268–270. By
itself it is not contained among the admissible functions, but is found to be a limit
(see Fig. 2).

From a methodological point of view, it is useful also to consider the case (prob-
lem 3) when x+ = +∞, x− = −∞, and rα(x, t) → r±α as x → ±∞, where
r−1 = r−2 < r−3 , r+

2 = r+
3 > r+

1 (infinite oscillation zone).
Numerical calculations show that in order that the evolution does not for all

t → +∞ lead to the usual hydrodynamic inversion of the front (i.e., in order that
|rαx| be finite for all α), it is necessary and sufficient that at the initial time t = 1
the condition for a monotonic increase of rα(x, t) is satisfied:

(14) rαx > 0, −∞ < x < +∞.

If r+
1 < r−3 there is a finite range of the self-similar z = xt−1, where the solution

tends, as t →∞, to the self-similar solution of problem 1: r3 = r−3 , r1 = r+
1 , v2 = z

(see Fig. 3). Hence it follows that the condition that there be no singularities in
the evolution process can in principle be formulated only in terms of the Riemann
invariants rα. It cannot be expressed in terms of the physical characteristics of
the initial condition – such as the average velocity ū, the quantities umin and umax

(see [1], p. 264), the average momentum density p̄ = u2, and the average energy ε̄,
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Figure 3. Evolution of the infinite oscillation zone of problem 3.
The functions rα(z, t) (z = xt−1), α = 1, 2, 3, at the initial time
t = 1 are shown by dots, the full drawn lines correspond to t = 11.

whose graphs may appear to be physically meaningful both when (14) is satisfied
and when it is violated.
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