HOLOMORPHIC FIBERINGS AND NONLINEAR EQUATIONS. FINITE ZONE SOLUTIONS OF RANK 2

I. M. KRIČEVER AND S. P. NOVIKOV

I. The theory of finite zone solutions of the Korteweg–de Vries (K.d.V.) equation in one space variable (see the survey [1]) is well known, as well as its analogs such as the sine-Gordon equation, the Toda lattice equation, and so on. These solutions are naturally connected with the theory of holomorphic line bundles (with fibre C^1). Therefore, in the sequel we shall call them finite zone solutions of rank 1. The family of finite zone solutions of rank 1 for the K.d.V. equation in two space variables (the Kadomcev–Petviašvili (K.P.) equation) was obtained in [2].

In their recent papers [3] and [4] the authors discuss new perspectives on the inverse problem method, that are connected with the application of holomorphic vector bundles (with fibre C^1) over Riemann surfaces (algebraic curves). These papers are devoted to the following problems:

a) The problem, formulated in the twenties, of the effective classification and calculation of the coefficients of commuting linear ordinary differential operators whose orders are divisible by l [5]. The connection between this problem and l-dimensional bundles is very simple and follows naturally from the results in [2] and [6]. On the inefficient abstract-algebraic level some classification language was discussed in [7] and [8], while analytic constructions are given in [3]. In this paper explicit formulas are for the first time obtained for the coefficients of commuting operators of orders 4 and 6, which do not reduce to the rank 1 case (see Theorem 3).

b) The problem of constructing new large classes (depending on l-1 arbitrary functions of one variable) of exact solutions for the two-dimensional K.d.V. (K.P.) equation, and subsequently for other equations of mathematical physics in two space variables, admitting a commutative representation. A "latent", but apparently fundamental, connection between this problem and holomorphic fiberings was discovered by the authors in [4].

II. We recall the results obtained in [3] and [4]. A holomorphic fibering η of rank l, that is, a fibering with fibre C^l whose base is an algebraic curve Γ of genus g, where the determinant det η has the degree lg, is an algebraic-geometric object. The l-tuple (ξ_1, \ldots, ξ_l) of holomorphic sections, which in general depend on a collection of distinct points $\gamma_1, \ldots, \gamma_{lg} \in \Gamma$ is called "equipment". We assume that this linear dependence has the form

(1)
$$\xi_l(\gamma_j) = \sum_{i=1}^{l-1} \alpha_{ij} \xi_i(\gamma_j), \quad j = 1, \dots, lg.$$

Date: Received 29/MAR/79.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 35Q99, 35B10, S8G30. UDC 513.835. Translated by D. B. C. CONSTANDA.

The collection (γ_j, α_{ij}) is called the Tjurin parameters, defining a holomorphic vector bundle which is stable in the sense of Mumford [9].

These same parameters appear in the "clothes" of classical analysis. Following [4], we introduce the Baker–Ahiezer multiparameter vector $\psi = \{\psi_s(x_1, \ldots, x_q; P; x_{10}, \ldots, x_{q0})\}, 1 \leq s \leq l$, where $P \in \Gamma$ and x_i and x_{i0} are numerical parameters. This vector-valued function is given by means of the following requirements:

1) all the coordinates ψ_s are meromorphic on Γ less P_0 ;

2) the poles of all the ψ_s do not depend on (x_1, \ldots, x_q) , are located at the points $\gamma_1(x_0), \ldots, \gamma_{lg}(x_0)$, and are of order one;

3) the residues ϕ_{sj} of the components $\psi_s(x, P, x_0)$ of the Baker–Ahiezer function at the poles γ_j are all proportional to the residue ϕ_{ij} with the coefficients $\alpha_{sj}(x_0)$ independent of $x = (x_1, \ldots, x_q)$:

(2)
$$\phi_{sj}(x,x_0) = \alpha_{sj}(x_0)\phi_{lg}(x,x_0)$$

4) as $P \to P_0$ the vector-valued function $\psi = \{\psi_s\}$ is representable in the form

(3)
$$\psi = \left(\xi_0 + \sum_{s=1}^{\infty} \xi_s k^{-s}\right) \Psi_0(x,k;x_0),$$

where $\xi_0 = (1, 0, ..., 0)$ and $\xi_s = \xi_s(x, x_0)$ are row vectors, and $z = k^{-1}(P)$ is a local parameter in the neighborhood of P_0 . The $l \times l$ matrix Ψ_0 is given by means of the following requirements: the matrices

(4)
$$A_i(x,k) = \frac{\partial \Psi_0}{\partial x_i} \Psi_0^{-1}, \quad i = 1, \dots, q,$$

are polynomial in k; they satisfy the compatibility equations

(5)
$$\frac{\partial A_i}{\partial x_j} - \frac{\partial A_j}{\partial x_i} = [A_j, A_i]$$

moreover, $\Psi_0(x_0, k; x_0) = 1$.

The above analytic properties uniquely define the vector-valued function $\psi(x, P, x_0)$, which by the same token is uniquely given by the quantities A_i , Γ , P_0 , γ_j and α_{ij} .

For one variable, q = 1, such a function is constructed in [3], where it was established that for a specific choice of $A_1(x, k)$ the components of $\psi(x, P, x_0)$ are eigenfunctions of linear ordinary differential operators. Moreover, they correspond to the same eigenvalues, which by the same token turn out to be degenerate with multiplicity l; the orders of the operators are multiples of l.

The authors have shown ([4], §3) that a Baker–Ahiezer function ψ can be constructed which depends on q = l(g + 1) - 1 parameters x_1, \ldots, x_q . It is likely that this number q is the maximum possible. The dimension of the moduli space of the equipped fiberings is equal to l^2g , where g is the genus of Γ . For l > 1 we always have $q < l^2g$. It follows from this that it is possible to construct q-parameter commutative groups of transformations of the moduli space whose orbits are not tori for l > 1. Consequently, the problem does not reduce to θ -functions. Thus, according to [3], for l > 1 the calculation of ψ requires the solution of a system of singular integral equations on a circle.

In [4] the authors have shown that in the important case q = 3, $x_1 = x$, $x_2 = y$, $x_3 = t$ the quantities A_1 , A_2 and A_3 can be chosen so that the row vector ψ is

annihilated by scalar operators whose form does not depend on l:

(6)
$$\begin{pmatrix} \frac{\partial}{\partial t} - A \end{pmatrix} \psi = 0, \quad \left(\frac{\partial}{\partial y} - L \right) \psi = 0; \\ L = \frac{\partial^2}{\partial x^2} + u, \quad A = \frac{\partial^3}{\partial x^3} + \frac{3}{2}u\frac{\partial}{\partial x} + w.$$

Consequently, the following compatibility equation is satisfied:

(7)
$$\left[\frac{\partial}{\partial t} - A, \frac{\partial}{\partial y} - L\right] = 0.$$

By the same token the coefficients u(x, y, t) and w(x, y, t) satisfy the K.P. equation

$$0 = \frac{3}{4} \frac{\partial^2 u}{\partial y^2} + \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial t} + \frac{1}{4} \left(\frac{\partial^3 u}{\partial x^3} + 6u \frac{\partial u}{\partial x} \right) \right);$$
$$\frac{3}{4} \frac{\partial u}{\partial y} = \frac{3}{4} \frac{\partial^2 u}{\partial x^2} - \frac{\partial w}{\partial x}.$$

Definition. The solutions u and w constructed above are called finite zone solutions of genus g and rank l.

III. In view of the fact that it is impossible to simplify the calculation of ψ for nonsingular curves of genus $g \ge 1$, we develop methods of computing the solutions which do not require the preliminary calculation of the Baker–Ahiezer vector.

Lemma 1. The Tjurin parameters (γ_j, α_{ij}) , regarded as functions of $x_0 = (x_{10}, \ldots, x_{q0})$, satisfy a compatible collection of differential equations with respect to the variables x_{i0} , whose right-hand sides can be algebraically defined in terms of γ_j, α_{ij} , the curve Γ , the point P_0 , and the coefficients of the expansion in $k^{-1} = z$ of the matrices $B_i(x, P)$ at the point P_0 , where $B_i = \hat{\Psi}_{x_i} \hat{\Psi}^{-1}$, $\hat{\Psi}$ being the matrix of the Wronskian for ψ .

The computational algorithm for the right-hand sides can be obtained from [3], §3 and [4], §3. In the latter for g = 1 and l = 2 these right-hand sides are written in an unnecessarily complicated form and with some sign mistakes. The following proposition holds.

Lemma 2. Let g = 1, l = 2 and suppose that the matrices A_1, A_2 and A_3 are chosen in the form given in [4], §1, Example 1. Then the quantities $\gamma(x_0)$ and $\alpha(x_0)$ satisfy the system of equations

(8)
$$\gamma_{ix} = (-1)^{i} (\alpha_{2} - \alpha_{1})^{-1}, \quad \alpha_{ix} = \alpha_{i}^{2} + u + (-1)^{i} \Psi(\gamma_{1}, \gamma_{2}, P_{0}),$$
$$\gamma_{iy} = 1, \quad \alpha_{iy} = -v(x, y, t),$$
$$\gamma_{it} = (-1)^{i+1} (\alpha_{1}\alpha_{2} + u/2)(\alpha_{2} - \alpha_{1})^{-1},$$

where we have performed the substitution $x_{10} = x_0 \rightarrow x$, $x_{20} = y_0 \rightarrow y$, $x_{30} = t_0 \rightarrow t$, $\alpha_{11} \rightarrow \alpha_1$, $\alpha_{21} \rightarrow \alpha_2$. The quantity u(x, y, t) satisfies the Kadomcev–Petviašvili equation by virtue of (7) and $2v_x = u_y$. The function $\Phi(\gamma_1, \gamma_2, P_0)$ has the form

(9)
$$\Phi(\gamma_1, \gamma_2, P_0) = \zeta(\gamma_2 - \gamma_1) + \zeta(P_0 - \gamma_2) - \zeta(P_0 - \gamma_1),$$
$$\frac{d\zeta(z)}{dz} = -\wp(z), \quad \zeta(-z) = -\zeta(z), \quad (\wp'(z))^2 = 4\wp^3 + g_2\wp + g_3,$$

where $\wp(z)$ is Weierstrass' \wp -function [10].

We introduce the notation $\gamma_1 = y = c(x, t), \ \gamma_2 = y - c(x, t) + c_0, \ c_0 = \text{const}, \ \alpha_1 - \alpha_2 = z(x, t), \ \alpha_1 + \alpha_2 = w(x, y, t), \ \Phi = \Phi(y, c, c_0).$

From the addition theorem for elliptic functions [10] it follows that the quantity $Q = \partial \Phi / \partial c + \Phi^2$ does not depend on y. The equations (8) take the form

(10)
$$u(x,y,t) = -\alpha_1^2 - \alpha_2^2 + \phi(x,t) = -\frac{z^2 - w^2}{2} + \phi(x,t)$$
$$w_x = -\frac{z^2 + w^2}{2} + 2\phi(x,t).$$

Substituting the expression $w = (\log z)_x + 2\Phi z^{-1}$ in the equation for w_x , we obtain

(11)
$$\phi(x,t) = \frac{1+3c_{xx}^2}{4c_x^2} + Qc_x^2 - \frac{1}{2}\frac{c_{xxx}}{c_x},$$
$$u(x,y,t) = -\frac{1}{4c_x^2} + \frac{1}{4}\frac{c_{xx}^2}{c_x^2} + 2\Phi c_{xx} + c_x^2(\Phi_c - \Phi^2) - \frac{1}{2}\frac{c_{xxx}}{c_x}.$$
$$c_t = \frac{3}{8c_x}(1-c_{xx}^2) - \frac{1}{2}Qc_x^3 + \frac{1}{2}c_{xxx}.$$

It follows from [4] that the equation in t for c(x,t) is "latently" isomorphic to the K.d.V. equation, but an explicit construction of this isomorphism has not been obtained.

Theorem 1. The nonsingular solutions of the equation (11), bounded and smooth with respect to x and such that $c_x = z^{-1} \neq 0$ and $z \neq 0$, generate nonsingular solutions u(x, y, t) of the K.P. equation which are periodic in y and bounded with respect to x. If the function c(x, t) depends only on x+at, then the solution u(x, y, t)of the K.P. equation depends on (x + at, y). For g = 1 and l = 2 all the solutions of the K.P. equation depend nontrivially on x and y.

We consider the question of nonsingular periodic solutions of the form u(x+at, y) for g = 1 and l = 2. It follows from the foregoing arguments that to this end it is necessary to find a periodic solution of the equation (11), where c = c(x+at), with $c_x \neq 0$ and $z = c_x^{-1} \neq 0$ for all x. We choose c as independent variable and make the substitution $z = h^{-2}(c)$. Then the equations (11) take the form

(12)
$$h'' = \frac{d^2h}{dc^2} = -\frac{\partial W(h,c)}{\partial h},$$
$$W = -\frac{1}{2}Q(c,c_0)h^2 + ah^{-2} - \frac{1}{8}h^{-6},$$

where $Q(c, c_0) = \Phi_c + \Phi^2$ is an elliptic function. A qualitative analysis leads to the following conclusions.

Theorem 2. a) The K.P. equation has a nonsingular periodic solution of genus g = 1 and rank l = 2, of the form u(x + at, y) for $a \le 0$, if and only if the equation h'' = Qh has a solution without zeros.

b) For sufficiently large a > 0 the K.P. equation always has a nonsingular periodic solution of genus g = 1 and rank l = 2 which is of the cnoidal wave type and periodic in x, y, t. The calculation of these solutions reduces to finding the periodic nonvanishing positive solutions $h \neq 0$ of the equations (12). IV. For one variable, q = 1, in the case of genus g = 1 and rank l = 2 the solution of the equations (8) in x leads, using results obtained in [3], to the explicit calculation of nontrivial ordinary commuting operators L_4 and L_6 of orders 4 and 6, respectively.

Theorem 3. The operator L_4 of rank 1 has the form (see the formulas (11))

$$L_4 = L^2 - c_x [\wp(c+c_0) - \wp(c+c_1)] \frac{d}{dx} - \wp(c+c_0) - \wp(c+c_1),$$

where $L = d^2/dx^2 + u(x)$. The operator L_6 is connected with L_4 by the algebraic relation

$$L_6 = 4L_4^3 + g_2L_4 + g_3, \quad L_6 = 2L^3 + D.$$

where D is a third order operator.

The analysis for g = 1 and l = 3 is more complicated. The corresponding results will be published later.

References

- B. A. Dubrovin, V. B. Matveev and S. P. Novikov, Uspehi Mat. Nauk **31** (1976), no. 1 (187), 59; English transl. in Russian Math. Surveys **31** (1976).
- [2] I. M. Kričever, Dokl. Akad. Nauk SSSR 227 (1976), 291; English transl. in Soviet Math. Dokl. 17 (1976).
- [3] _____, Funkcional. Anal. i Priložen. 12 (1978), no. 3, 20; English transl. in Functional Anal. Appl. 12 (1978).
- [4] I. M. Kričever and S. P. Novikov, Funkcional Anal. 1 Priložen. 12 (1978), no. 4, 41; English transl. in Functional Anal. Appl. 12 (1978).
- [5] J. L. Burchnall and T. W. Chaundy, Proc. London Math. Soc. (2) **21** (1922/23), 420.
- [6] I. M. Kričever, Funkcional. Anal. i Priložen. 11 (1977), no. 1, 15; English transl. in Functional Anal. Appl. 11 (1977).
- [7] V. G. Drinfel'd, Funkcional. Anal. i Priložen. 11 (1977), no. 1, 11; English transl. In Functional Anal. Appl. 11 (1977).
- [8] David Mumford, An algebra-geometric construction of commuting operators. Preprint, Harvard Univ., Cambridge, Mass., 1977.
- [9] A. N. Tjurin, Izv. Akad. Nauk SSSR Ser. Mat. 29 (1965), 657; English transl. in Amer. Math. Soc. Transl. (2) 63 (1967).
- [10] A. Erdélyi et al., Higher transcendental functions. Vol. 2, McGraw-Hill, New York, 1953.

INSTITUTE OF THEORETICAL PHYSICS, ACADEMY OF SCIENCES OF THE USSR