Uhlenbeck compactification as a Bridgeland moduli space

Tuomas Tajakka

University of Washington

February 12, 2021

Outline

Dimension 1

- Slope stability on a curve
- Projectivity via a determinantal line bundle

Dimension 2

- · Gieseker and Uhlenbeck moduli spaces
- Bridgeland stability
- Projectivity on vertical wall & Uhlenbeck
- Proof sketch & questions

3 Dimension 3

• Work in progress: PT-stability

- C a smooth, projective curve over ${\mathbb C}$
- (everything will be over \mathbb{C})
- Slope of $E \in Coh(C)$:

$$\mu(E) = \frac{\deg(E)}{\operatorname{rk}(E)}$$

 $\text{ if } \operatorname{rk}(E) > 0 \text{, and } \infty \text{ if } \operatorname{rk}(E) = 0.$

E ∈ Coh(*C*) is stable (resp. semistable) if for all subsheaves *F* ⊊ *E*

$$\mu(F) < \mu(E)$$
 (resp. $\mu(F) \le \mu(E)$)

• $E \in \operatorname{Coh}(C)$ is polystable if

 $E \cong \oplus E_i$

where E_i are stable, $\mu(E_i) = \mu(E)$.

• A semistable $E \in Coh(C)$ has JH-filtration

 $0\subseteq E_1\subseteq\cdots\subseteq E_{n-1}\subseteq E_n=E$

where E_i/E_{i-1} are stable with $\mu = \mu(E)$.

 Semistable E and E' are S-equivalent if they have isomorphic JH-factors.
 S-equivalence classes ↔ polystable sheaves

$$egin{array}{lll} \mathcal{M}^{\mu}_{r,d} & ext{moduli stack} \ & \downarrow & \ & M^{\mu}_{r,d} & ext{good moduli space} \end{array}$$

- Good moduli space: parameterizes
 S-equivalence classes ↔ polystable sheaves of rank r, degree d.
- Stack-theoretic techniques $\Rightarrow M^{\mu}_{r,d}$ exists as a proper algebraic space.

Question: Is $M^{\mu}_{r,d}$ projective?

(Mumford: Yes, using GIT.)

- Faltings: Ample determinantal line bundle.
- ${\mathcal E}$ universal bundle on ${\mathcal M}^{\mu}_{r,d} imes {\mathcal C}$

• For $F \in \operatorname{Coh}(C)$ locally free, set

 $\lambda_{\mathcal{E}}(F) = \det(Rp_*(\mathcal{E} \otimes q^*F))^{\vee}.$

- Depends only on rk(F), det(F).
- Fix rk(F), det(F) so that

 $\chi(\mathcal{C}, \mathcal{E}\otimes \mathcal{F}) = 0$ for $\mathcal{E}\in \mathcal{M}^{\mu}_{r,d}$.

• (1) $\lambda_{\mathcal{E}}(F)$ descends to $M^{\mu}_{r,d}$. (2) $Rp_*(\mathcal{E} \otimes q^*F)$ is a 2-term complex

 $[\mathcal{G}_0 \xrightarrow{g} \mathcal{G}_1], \quad \mathrm{rk}(\mathcal{G}_0) = \mathrm{rk}(\mathcal{G}_1).$

 $\begin{array}{l} \mathsf{Global section of } \lambda_{\mathcal{E}}(F) \text{:} \\ s_F = \mathsf{det}(g) : \mathcal{O} \to \mathsf{det}(\mathcal{G}_1) \otimes \mathsf{det}(\mathcal{G}_0)^{\vee} \end{array}$

Vary F with fixed rk(F), det(F) ⇒ vary the section s_F.

• Thm (Faltings 1): For $E \in \mathcal{M}_{r,d}^{\mu} \exists F$ s.t.

 $H^0(X, E \otimes F) = H^1(X, E \otimes F) = 0$

i.e. $s_F(E) \neq 0 \Rightarrow \lambda_{\mathcal{E}}(F)$ is globally generated.

• Thm (Faltings 2): $\lambda_{\mathcal{E}}(F)$ is strictly nef: $\deg(\lambda_{\mathcal{E}}(F)|_{C'}) > 0$ for any $C' \subseteq M_{r,d}^{\mu}$.

 $\Rightarrow \text{ Induced map } M^{\mu}_{r,d} \rightarrow \mathbb{P}^{N} \text{ is finite, so } \lambda_{\mathcal{E}}(F) \text{ is ample.}$

X smooth, projective surface, $H \subseteq X$ very ample divisor

 $v \in K_{\operatorname{num}}(X)$ class with $\operatorname{rk}(v) > 0$

Gieseker stability

• Define stability using reduced Hilbert polynomial

 $p_E(n) = \frac{1}{\operatorname{rk}(E)}\chi(X, E(nH))$

- Good moduli space M_v^{Gies} exists as a projective variety - constructed using GIT.
- *M*^{Gies}_v parameterizes polystable sheaves torsion-free but not necessarily locally free.

 μ -stability

• Define stability using *H*-slope

$$\mu(E) = \frac{H \cdot c_1(E)}{\operatorname{rk}(E)}$$

• No good moduli space in general, but Uhlenbeck compactification comes close:

•
$$\mu$$
-semistable sheaves are torsion-free
 $\Rightarrow \quad 0 \to E \to E^{\vee \vee} \to Q \to 0$ with
 $\dim(Q) = 0$

Thm (J. Li): Projective scheme M_v^{Uhl} param. μ -polystable sheaves up to:

Fundamentals

- Bridgeland (2003): generalize stability from $\operatorname{Coh}(X)$ to $D^b(X)$.
- A stability condition is $\sigma = (A, Z)$:
 - $\mathcal{A} \subseteq D^b(X)$ heart of a t-structure (full abelian subcategory)
 - $Z: K_{\operatorname{num}}(X) \to \mathbb{C}$ group hom.
 - $Z(\mathcal{A}) \subset \overline{\mathbb{H}} = \{z \mid 0 < \arg(z) \leq \pi\}$
- $E \in \mathcal{A}$ is semistable if for subobjects $F \subseteq E$

 $\arg(Z(F)) \leq \arg(Z(E)).$

- Thm (Bridgeland): Stability conditions parameterized by a *complex manifold* Stab(X). For fixed v ∈ K_{num}(X), wall-and-chamber structure on Stab(X).
- Existence is nontrivial Coh(X) doesn't work as A.

Construction of stability conditions

- Construct \mathcal{A} by *tilting* Coh(X): write Coh(X) = $\langle \mathcal{T}, \mathcal{F} \rangle$, set $\mathcal{A} = \langle \mathcal{F}, \mathcal{T}[-1] \rangle$.
- For $\alpha, \beta \in \mathbb{R}, \alpha > 0$, set

$$egin{aligned} Z_{lpha,eta}(E) &= \int_X e^{-(lpha+eta i)H} \operatorname{ch}(E) \ \mathcal{A}_eta &= \{E \mid F o E o T[-1]\} \end{aligned}$$

where $F, T \in Coh(X), \mu(F) \leq \beta < \mu(T)$.

• Thm (B, A–B): $(\mathcal{A}_{\beta}, Z_{\alpha,\beta}) \in \operatorname{Stab}(X)$.

Thm (T, A-HL-H): Moduli stack *M*^σ_ν is algebraic, of finite type, universally closed, good moduli space *M*^σ_ν is a *proper algebraic space*.

Dim 2: Projectivity, vertical wall, and Uhlenbeck

Question: Is M_v^σ projective?

- Previously know cases (incomplete list):
 - $X = \mathbb{P}^2$ (ABCH), $\mathbb{P}^1 \times \mathbb{P}^1$, $\mathsf{Bl}_p \mathbb{P}^2$ (AM) exceptional collections and quiver GIT.
 - Gieseker stability for any X. (B)
 - X = K3 (BM) or Enriques (N): relate to Gieseker by Fourier-Mukai.
- Thm (B-M): (cf. Faltings 2) Determinantal line bundle L_σ that is strictly nef on M^σ_ν: deg(L_σ|_C) > 0 for C ⊆ M^σ_ν.
- \Rightarrow If some $\mathcal{L}_{\sigma}^{\otimes n}$ is globally generated, then \mathcal{L}_{σ} is ample!

New affirmative case: vertical wall

- Polystable objects: $F \oplus (\oplus_i \mathcal{O}_{p_i}[-1])$, $F \mu$ -polystable *locally free*, and $p_i \in X$ \Rightarrow set-theoretic bijection with M_v^{Uhl} (L–Q).
- Uhlenbeck-equiv. becomes S-equiv. for σ: If E ∈ Coh(X) is μ-stable but not locally free, rotate 0 → E → E^{VV} → Q → 0

$$\Rightarrow \quad E \stackrel{S}{\sim} E^{\vee \vee} \oplus Q[-1]$$
$$\stackrel{S}{\sim} E^{\vee \vee} \oplus \bigoplus_{p \in X} \mathcal{O}_p^{\oplus l_p(Q)}[-1]$$

 $\begin{array}{l} \underline{\mathbf{Thm}} \ (\mathbf{T}): \mbox{ On vertical wall:} \\ \hline \mathcal{L}_{\sigma} \mbox{ is ample and } M_{v}^{\sigma} \mbox{ is projective.} \\ \mbox{Bijective morphism } M_{v}^{\mathrm{Uhl}} \rightarrow M_{v}^{\sigma}. \end{array}$

Proof sketch

• Special to vertical wall: there are curves $C \in |mH|$ and $F \in Coh(C)$ s.t. $\mathcal{L}_{\sigma}^{\otimes n} \cong \lambda_{j^*\mathcal{E}}(F)^{\vee} = \det(Rp_*(j^*\mathcal{E} \otimes q_C^*F))^{\vee}.$

- Strategy: restriction to C & Faltings 1.
- Lemma 1: for any $E \in \mathcal{M}_v^{\sigma}$ and $C \in |mH|$, $H^i(C, F \otimes E|_C) = 0$ for $i \neq 0, 1$,

 $\dim H^0(C, F \otimes E|_C) = \dim H^1(C, F \otimes E|_C)$

 $\Rightarrow \lambda_{j^* \mathcal{E}}(F)^{\vee} = \det[\mathcal{G}_0 \xrightarrow{g} \mathcal{G}_1] \text{ has section} \\ s_F = \det(g).$

• Enough to show: for $[E_0] \in \mathcal{M}_v^{\sigma}$ there is F with $s_F(E_0) \neq 0$.

- Thm (F): If F ∈ Coh(X) is μ-semistable, for generic C ∈ |mH|, restriction F|_C is semistable.
- Lemma 2: For generic $C \in |mH|$, restriction $E_0|_C$ is a semistable sheaf.
- Apply Faltings 1: choose $F \in Coh(C)$ s.t.

 $H^0(C,F\otimes E_0|_C)=H^1(C,F\otimes E_0|_C)=0$

 $\Rightarrow s_F(E_0) \neq 0.$

• $M_v^{\text{Uhl}} \rightarrow M_v^{\sigma}$ for free from Li's construction.

Questions

- Is $M_v^{\text{Uhl}} \to M_v^{\sigma}$ isomorphism? (Could have different singularities/non-reduced structure.)
- Projectivity of other Bridgeland moduli spaces? For starters, is $\mathcal{L}_{\sigma_{\text{Gies}}}$ relatively ample for $M_{\nu}^{\text{Gies}} \rightarrow M_{\nu}^{\sigma}$?
- Projectivity of other moduli of sheaves or complexes when GIT isn't available?

8/9

X smooth, projective 3-fold, $H \subseteq X$ very ample $v \in K_{num}(X)$ with rk(v) > 0

- A **PT-stable pair** is $\mathcal{O}_X \xrightarrow{f} F$ with F pure dim 1, dim $(\operatorname{coker}(f)) = 0$.
- (Bayer, Toda) Higher rank PT-pairs from *polynomial/limit stability*.
- Heart of "perverse sheaves" $\mathcal{A}^p \subseteq D^b(X)$ (non-noetherian!), $Z : \mathcal{K}_{num}(X) \to \mathbb{C}[t]$.
- Stability on \mathcal{A}^p using $\arg(Z(E))$ for $t \gg 0$.
- PT-semistable $E \in \mathcal{A}^p$ fits in $F \to E \to T[-1]$, where
 - F is μ -semistable
 - T is 0-dimensional
 - $\operatorname{Hom}(\mathcal{O}_p[-1], E) = 0$ for all $p \in X$
 - $\Rightarrow F^{\vee\vee}/F$ is pure 1-dimensional
- Thm (Lo): Moduli stack $\mathcal{M}_{v}^{\mathsf{PT}}$ is algebraic, of finite type, universally closed.

If $gcd(rk(v), c_1(v)) = 1$, \mathcal{M}_v^{PT} has a proper coarse moduli space \mathcal{M}_v^{PT} .

Thm (T):

A determinantal line bundle \mathcal{L}_2 on $\mathcal{M}_v^{\mathsf{PT}}$ is globally generated.

Fibers of induced map $\pi: M_v^{\mathsf{PT}} \to \mathbb{P}^N$:

- $F^{\vee\vee}$ are S-equivalent
- lengths of F^{VV}/F at codim. 2 points constant
- (incomplete description)
- Global generation follows by restricting to curves, fibers using *Faltings 2*.
- Questions:
 - Does $\mathcal{M}_v^{\mathsf{PT}}$ have a good moduli space when $\gcd \neq 1$? Is it projective?

9/9

- Precise description of fibers of π ?
- Image of π = analog of Uhlenbeck compactification for a 3-fold?