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The 7-Function for Analytic Curves

I. K. KOSTOV, I. KRICHEVER, M. MINEEV-WEINSTEIN,
P. B. WIEGMANN, AND A. ZABRODIN

ABSTRACT. We review the concept of the T-function for simple analytic
curves. The 7-function gives a formal solution to the two-dimensional in-
verse potential problem and appears as the 7-function of the integrable
hierarchy which describes conformal maps of simply-connected domains
bounded by analytic curves to the unit disk. The 7-function also emerges
in the context of topological gravity and enjoys an interpretation as a large
N limit of the normal matrix model.

1. Introduction

Recently, it has been realized [1; 2] that conformal maps exhibit an integrable
structure: conformal maps of compact simply connected domains bounded by an-
alytic curves provide a solution to the dispersionless limit of the two-dimensional
Toda hierarchy. As is well known from the theory of solitons, solutions of an
integrable hierarchy are represented by 7T-functions. The dispersionless limit of
the 7-function emerges as a natural object associated with the curves. In this
paper we discuss the 7-function for simple analytic curves and its connection
to the inverse potential problem, area preserving diffeomorphisms, the Dirichlet
boundary problem, and matrix models.

2. The Inverse Potential Problem

Define a closed analytic curve as a curve that can be parametrized by a func-
tion z = z+14y = z(w), analytic in a domain that includes the unit circle |w| = 1.
Consider a closed analytic curve 7 in the complex plane and denote by D, and
D_ the interior and exterior domains with respect to the curve. The point z =0
is assumed to be in D,. Assume that the domain D, is filled homogeneously
with electric charge, with a density that we set to 1. The potential ® created by
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the charge obeys the equation

o1 if z=ax+4+1iy€ Dy,
_6Za§q>(z’z)_{o if z=ax+iyeD._. (2-1)
The potential ® can be written as an integral over the domain D*:
2
&(z,2) = ——/ d*2' log|z — 2| (2-2)
™ Dy

In the exterior domain D_, the potential is the harmonic function whose asymp-
totic expansion as z — oo is given by

&7 (z,2) = —2tglog|z| + 2 Re Z %z_k, (2-3)
k>0
where .
vp = —/ 2Fd?z (k> 0) (2-4)
e Dy
are the harmonic moments of the interior domain D, and
Tty = d?z
Dy

is its area. In the interior domain D, the potential (2-2) is equal to a function
@+, which is harmonic up to the term —|z|?. The expansion of this function
around z = 0 is

ot (2,2) = —|2]> —vo + 2Re »_ tx2". (2-5)
k>0
Here )
ty = — — kg2 k 2
k AL (k > 0) (2-6)

are the harmonic moments of the exterior domain D_ and

2
vy = —/ log |z| d?z.
s Dy

The two sets of moments (2-4) and (2-6) are related by the conditions &+ = &~
and ,®% = 9,9 on the curve 7.

The inverse potential problem is to determine the form of the curve « given
one of the functions ®* or ®~, i.e., given one of the infinite sets of moments. We
will choose as independent variables the area 7ty and the moments of the exterior
tx, for £ > 1. Under certain conditions, they completely determine the form of
the curve as well as the moments vy, for & > 0 [3]. More precisely, {tx}7°, is a
good set of local coordinates in the space of analytic curves. For simplicity we
assume in this paper that only a finite number of t; are nonzero. In this case
the series (2-5) is a polynomial in z, z and, therefore, it gives the function &+
for z € D. Note that tg, vo are real quantities while all other moments are in
general complex variables.
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3. Variational Principle

Consider the energy functional describing a charge with a density p(z, z) in
the background potential created by the homogeneously distributed charge with
the density +1 inside the domain D, (2-1):

E{p} = _iz // d*zd*2 p(z,2) log|z — 2'| p(«',Z) — 1 /d2z p(z,2z) ®(z, 2).
T T

The first term is the two-dimensional “Coulomb” energy of the charge while
the second one is the energy due to the background charge. Clearly, the distri-
bution of the charge neutralizing the background charge gives the minimum to
the functional: pg = —1 inside the domain and py = 0 outside. At the minimum
the functional is equal to minus electrostatic energy E of the background charge

1

1
—E =min,&{p} = - /Dsz /Dd2z' log |z — 2| = -3 d*z ®(z,%).
+ +

LN
Varying over p and then setting p = —1 inside the domain, we obtain (2-5).

The first corollary of the variational principle is that the F is a potential func-
tion for the moments. Equation (2-5) suggests treating vg and ¢ as independent
variables, so moments of the interior, vg, k > 1, and ¢g are functions of vg and .
Differentiate E or —&{p} at the extremum with respect to the parameters vy,
tx. Since pp minimizes the functional, the derivative is equivalent to the partial
derivative of € at the fixed extremum p. This gives

OFE OE OF

9r _ e _ 9% _ 4 3-1
atk Vk, 8tk Vk, 01)0 0, ( )

where the partial derivative with respect to ¢ is taken at fixed vy and ¢;, for
j # 0, k. Therefore the differential dE reads

dE = Z(vkdtk + ’(_)kdfk) — toduvyg.
k>0

The variational principle may be formulated in a number of different ways.
One particular variational principle is suggested by the matrix model discussed
in Section 9. In this case one considers a charged liquid in the potential

V(z2,2) = 2Z + vy — Z (trz® + e 2") (3-2)
k>0

defined everywhere on the plane and vg and t; are parameters. The energy of
the charged liquid,

1 1
Elp,V} = / iz / P2 plz7) p(,7) log 22| + / &z plz,2) V(2 2),
(3-3)
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reaches its minimum if the liquid forms a drop with the density pg = —1 bounded
by the curve determined by parameters of the potential vy and ¢x. For another
version of the variational principle see [4].

4. The 7-Function

It is more natural to treat the total charge ¢y rather than vy as an independent
variable, i.e., to consider the variational principle at a fixed total charge ¢ty =
J pd?z. This is achieved via the Legendre transformation. Introduce the function
F = E + tqug , whose differential is

dF =) (vkdty, + Trdty) + vodto.
k>0

We define the 7-function as 7 = ef’, so that

1 1
; — ; d221 d2Z,. (4—1)

1 1
log7 = — [ d?z ®(2,2) +tovg = -—— // log
2T Dy s Dy

The 7-function is a real function of the moments {to, t1, t2,...}. Under the
assumption that only a finite number of them are nonzero, we can substitute
(2-5) into (4-1) and perform the term-wise integration. Taking into account
that %fD+ |2|2d%z = 318 + 3 340 k(tkvr + Ex0k) (a simple consequence of the
Stokes formula), we get the expression for the 7-function in terms of 5 and vy:

1 1 _
210g’7’ = —§t(2) + t()’UU — 5 Igo(k — 2)(tkvk =+ tk’(_)k)

Rephraising (3-1) we get the main property of the 7-function, which was used
in [2] as its definition:

OlogT OlogT _ OlogT
= — =7 -
Aty AT B Bt

where the derivative with respect to ¢ is taken at fixed t; (j # k).
Two immediate consequences of the very existence of the potential function
are symmetry relations for the moments

Ove _ O Ov _ O
Otn Oty Otn Ot

and the quasi-homogeneity condition for the 7-function:

Ologt OlogT _ OlogTt
41 =—t2+2 - -2 (n —— )
og T = —tZ + 2t Bt n%:o(n )t o +1 T

Apart from the term —¢2, this formula reflects the scaling of moments as z — Az:
t — )\2iktk (k’ > 0), Vg — )\2+kvk (k > 1)
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As an illustration we present the 7-function of ellipse [2]. In this case only
the first two moments ¢; and t; are nonzero:

3 1 to to _
logr = —=t2 + ~t3 1 t1? + tits + E5t2) .
08T = —yfot+ 5t log (1—4|t2|2)) SR (2 + 8182 + B1ta)

(The 7-function for the ellipse (at ¢; = 0) appeared in [5] as the limit of the
Laughlin wave function or a planar limit of the free energy of normal matrix

models; see Section 9.)

5. The Schwarz Function and the Generating Function of the
Conformal Map

Consider a univalent conformal map of the exterior domain D_ to the exterior
of the unit disk and expand it in a Laurent series:

1 oo

w(z)= Lo 4 e,
7=0

where the coefficient r is chosen to be real and positive. The series for the inverse

map (from the exterior of the unit disk to D_) has a similar form:

z(w) =rw + Zujwfj. (5-1)

Chosen w on the unit circle, (5-1) gives a parametrization of the curve. By
the definition of an analytic curve, the map can be analytically continued to a
strip-like neighborhood of the curve belonging to D . The continuation is given
by the Riemann—Schwarz reflection principle (see [6], for example):

w=(@(S()) %,

where S(z) is the point reflected relative to the curve, and where the bar notation
has the following meaning: Given an analytic function f(2) = 3_; fi77, we set
f(z) =32, fj#. Following [7], we call S(z) the Schwarz function of the curve.
We recall its construction. Write the equation for the curve F(z,y) = 0 in
complex coordinates, F(%(z—l—z), %(z—z)) = 0, and solve it with respect to Z.
One gets the Schwarz function: zZ = S(z). The Schwarz function is analytic in
a strip-like domain that includes the curve. On the curve the Schwarz function
is equal to the complex conjugate argument. The main property of the Schwarz
function is the obvious but important unitarity condition

S(S(z)) ==
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(the inverse function coincides with the complex conjugate function). In terms
of a conformal map the Schwarz function is

S(z) =rw (2) + Y ajwi(2). (5-2)
7=0

Using the Schwarz function one can write the moments of the exterior and the
interior domains (2-4), (2-6) as contour integrals

1 ﬁz”S(z) & vy = L ?{ 2"S(2) dz. (5-3)

n — . = .
2min 2

(This follows from the more general statement
1
£z = x5 F()S()
Dy 2 Jy

where f(z) is an analytic function in the domain D4 .) Equation (5-3) yields the
Laurent expansion of the Schwarz function

o0 t oo
S(z) = E ktpzF1+ 2 4 E vpz kL (5-4)
z
k=1 k=1

We now define the generating function €}(z), related to the Schwarz function
by
S(z) = 0.9(z).

The latter is given, according to (5-4), by the Laurent series
> 1 v
Q(Z) = ;tkzk — 5’00 + to IOgZ — ; ?szk‘

It can be represented as Q(z) = Q) (2) + Q) (z) — vy, where QF)(2) are
analytic in Dy:

1 oo
Qb (2) = ;/ 10g<1 - g)dz "= Ztkzk,
D- k=1

1 > Vi
0 (z) == / log(z — 2/)d?2' =tglogz— Y —z F.
™ D, Iﬂ:z::l k
From (2-3) and (2-5) we see that ®(2,2) = —2ReQ(7)(2) and ®*(z,2) =
2Re Q()(2) —wg — |2|2. Contrary to the potentials *, the analytical functions
Q1 and —Q~ do not match each other on the curve. The discontinuity gives the
value of the generating function restricted to the curve

1
0() = 5|2 +2iA(2), =€,

where A(z) is the area of the interior domain bound by the ray ¢ = argz and
the real axis. As a corollary, it is easy to show that variations of the Q(z) on
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the curve with respect to the real parameters ty, Rety and Imt; are purely
imaginary. This allows one to apply the Riemann—Schwarz reflection principle
to analytical continuation of

Hy(2) = 8,,9(z), Hi(z) = —0;,(2),

and to prove the fundamental relations

0, 2(2) = log w(z), (5-5)
00, (2) = (" (w)) , + 3 (2" (w)),, (5-6)
0, 0(z) = (S () _ + (S (a(w))y. (5-7)

The symbols (f(w))+ stand for the truncated Laurent series, preserving only
terms with positive or negative powers of w, as the case may be; (f(w))p is the
constant term of the series. The derivatives in (5-5) and (5-7) are taken at
fixed z.

To prove (5-5), we first notice that

91, Q(z(w)) = log z — 284, vo + negative powers in z
= logwr — %@0 Vg + negative powers in w.

Independently, one can show that 8;,u0 = 2logr.

Then, using the Riemann—Schwarz reflection principle, we may also write
01,Q(2(w)) in the form 8,,Q(S(z(w)). Expanding this in S(z) and then using
the expansion of (5-2) in w, we have

91,Q(S(2(w))) = log S(z) — 384,vo + negative powers in S(z)
= log w + positive powers in w.

Comparing both expansions, we conclude that 0;,Q(z) = logw(z). Similar ar-
guments are used in the proof of (5-6) and (5-7).

6. Dispersionless Hirota Equation
and the Dirichlet Boundary Problem

Using the representation (4-2) of the moments v as derivatives of the 7-
function, one can express the conformal map w(z) (5-5) through the 7-function:

1 —k
logw = logz — Oy, (5@0 + E ZTatk> log . (6-1)
k>1

With the help of the 7-function, equations (5-6) and (5-7) can be similarly
encoded as follows:

0.0¢10g (w(e) (@) = s+ (Ko 1o ) (¢ o) ogr (6-2)

k>1 n>1
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—8,0zlog (w(z)w(() — 1) = (szlatk> <Z Cn13{n> log 7. (6-3)

k>1 n>1

The derivation is similar to the one given in [8; 9] for the case of the KP hierarchy.
Moreover, these equations in the integrated form are most conveniently written
in terms of the differential operators

D(z)=Y" %atk,, D =% ‘%at-k. (6-4)

k>1 k>1

From (6-2) and (6-3) one obtains:

log %&"(O — 18 logr + D(z)D(O)logr,  (6-5)
1 _
— log (1 — m) = D(z)D(({)logT. (6-6)

Combining (6-1) and (6-5), one obtains the dispersionless Hirota equation
(or the dispersionless Fay identity) for two-dimensional Toda lattice hierarchy
[2]:

(Z_C)eD(z)D(C) log T :ZefatOD(z) log T _CefatOD(C) log T (6*7)

This equation, after being expanded in powers of z and (, generates an infinite set
of relations between the second derivatives 0;,0;, logr of the 7-function. Using
(6-6) instead of (6-5), a similar equation for the mixed derivatives 9;, 8, log T
can be written:

1 — ¢ D@D@logr _ 1 0, (81g+ D)+ D) l0g
z¢

We conclude this section with two other forms of the dispersionless Hirota
equation for the conformal map. They emphasize a relation between the Hirota
equation and two fundamental objects of the classical analysis: the Green func-
tion of the Dirichlet problem (which was pointed out to us by L. Takhtajan) and
the Schwarz derivative.

The Green function of the Dirichlet boundary problem for the Laplace oper-
ator in D_ expressed through the conformal map w(z) is:

Go.0) — ‘ w(z) = w(¢) ‘

& lw(z)ad) - 1

Combining (6-5) and (6-6), and using the notation (6-4), we represent the Green
function as follows:

2G(z,¢) = 2log |2~ =7+ (84, + D (2) +D(2)) (84, + D(¢)+D(()) log 7. (6-8)

This formula generalizes (6-1), since (6-8) becomes the real part of (6-1) as
¢ — oo. (As ¢ approaches infinity, G(z, () tends to —log|w(z)|.) The real part
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of (6-1) can be written in the form
®(z,z) = —2tglog|z| + (D(z) + D(z)) log T,

where ® is the potential (2-2) and z € D_.
The left-hand side of (6-5) generalizes the Schwarz derivative of the conformal
map

_we) 3w\ w(z) - w(()
)= e = () = i onaces "

Taking the limit ( — z of both sides of (6-5), we get a relation between the
Schwarz derivative and the 7-function:

0%log T
T =6 —2 —k—n
(2) = 62 k%; 0 Btpoty

This can be used as an alternative definition of the T-function.

7. Integrable Structure of Conformal Maps and
Area-Preserving Diffeomorphisms

Equations (5-5)—(5-7) allow one to say that the differential

dQ = Sdz + logwdto + Y _(Hy dty — Hy, dfy)
k=1

generates the set of Hamiltonian equations for deformations of the curve due to
variation of t:

atks(z) = 6sz(z)7 8f

k

S(2) = 8, Hy(2), (7-1)

where we set Hy(z) = log w(z). The equations are consistent due to commuta-
tivity of the flows:

(0, Hi), = (0u, Hj), = 84,05, (2).

Equations (7-1) are more transparent when written in terms of canonical vari-
ables. The differential dQ) suggests that the pairs log w, to and z(w), S(z(w)) are
canonical and establishes the symplectic structure for conformal maps. Indeed,
treating w as an independent variable, one rewrites (5-5) as

{z(w), $(2(w))} =1, (7-2)

where the Poisson bracket { -, - } is with respect to logw and the area tg is defined
as

(f }:wa_f@ _ 2901
' 9 ow oty " ow oty

where the derivatives with respect to ¢ty are taken at fixed ¢ and w.
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The other flows read
0z(w)
Oty

BED _ {1, ()}, 74

and similarly for the flows with respect to . Now the Hamiltonian functions
H,;, and Hj, are degree k polynomials of w and w~! respectively.

The consistency conditions (7-1) now take the form of the zero-curvature
conditions

= {Hy, z(w)}, (7-3)

8thi - atzHJ + {Hz, HJ} - 0, (7*5)

The infinite set of Poisson-commuting flows forms a Whitham integrable hierar-
chy [10]. Equations (7-3) and (7-4) are the Lax—Sato equations for the hier-
archy. They generate an infinite set of differential equations for the coeflicients
(potentials) u; of the inverse conformal map (5-1). The first equation of the
hierarchy is
07,0 = 01, exp(04,9), Oty =logr?.

The integrable hierarchy describing conformal maps is also known in the soliton
literature as the dispersionless Toda lattice hierarchy, or SDiff(2) Toda hierarchy
[11]; see the next section. The algebra Sdiff(2) of area-preserving diffeomor-
phisms is the symmetry algebra of this hierarchy [11]. Equations (7-3)—(7-6)
describe infinitesimal deformations of the curve such that the area tqy is kept
fixed.

(A relation between conformal maps of slit domains and special solutions
to equations of hydrodynamic type, namely the Benney equations, was first
observed by Gibbons and Tsarev [12].)

The integrable hierarchy possesses many solutions. The particular solution
relevant to conformal maps is selected by the subsidiary condition (7-2). This
condition, known as dispersionless string equation, has already appeared in the
study of the ¢ = 1 topological gravity [11; 13; 14] and in the large N limit of a
model of normal random matrices [15]. The latter is discussed in Section 9.

8. Toda Lattice Hierarchy and its Dispersionless Limit

We review the two-dimensional Toda lattice hierarchy and show that its dis-
persionless limit gives the equations describing the conformal maps (5-6), (5-7),
(7-3), (7-4).

The two-dimensional Toda hierarchy is defined by two Lax operators

L =r(tg) /%% 4 Z ug(to) e FhO/0%, (8-1)
k=0



THE 7-FUNCTION FOR ANALYTIC CURVES 295

L =e /% p(ty) + Z ekho/P gy (1), (8-2)
k=0

acting in the space of functions of tq where the coeflicients u; and u; are functions
of to and also of two independent sets of parameters (“times”) t; and . Note
that ug and uy as well as t; and f in (8-1), (8-2) are not necessarily complex
conjugate to each other, although we choose them to be so.

The dependence of the coefficient u; and % on t; and % are given by the
Lax—Sato equations:

oL
h— = |Hy, L 8-3
o =, L), )
oL _
h—, - L, H 5 8*4
o = (L, (54
and similar equations for L. The flows are generated by
Hy = (L), +3(L%), (8-5)

and
He = (L) _ + 3(L%),,
where the symbol (Lk) . means positive (negative) parts of the series in the shift

h8/dtq

operator e . The first equation of the hierarchy is the Toda lattice equation

331{1 (b(tO) = e¢(t0+h)7¢(t0) - e¢(t0)7¢(t07h)a

where 72 = e?(to+h)—¢(to)
The spectrum of the Lax operator is determined by the linear problem LV =

zW. The wave function ¥ is expressed through the 7-function 74 of the disper-
sionful hierarchy (8-3), (8-4) by the formula

U(z;to,t1,t2, )

=15, (o, t1, ta, - - )7t/ Pe(l/m) Lo =" h s (=" /K) /0ty (to, tr, ta, . . .).-

Among many solutions of the hierarchy, one is of particular interest. It is
selected by the string equation [16]

[L,I] = h. (8-6)

This solution is known to describe the normal matrix model at finite size of
matrices [15].

The dispersionless limit of the Toda hierarchy is a formal semi-classical limit
h — 0. To proceed we notice that the shift operator W = e"¥/%% obeys the
commutation relation [W, to] = AW. In the semiclassical limit it is supposed to
be replaced by the canonical variable w with the Poisson bracket {logw,to} = 1.
The Lax operator then becomes a c-valued function which is identified with the
inverse conformal map z(w) (5-1). Similarly, L is identified with S(z(w)). In
their turn, the Lax—Sato equations (8-3) and (8-4) are identified with equations
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(7-3) and (7-4) for the conformal map. In the same fashion the dispersionless
limit of the string equation (8-6) is identified with (7-2). The semiclassical limits
of the wave function and the 7-function give the generating function (2 and the
dispersionless 7-function: ¥ — /" 1, — ellog)/ K Similarly, equation (6-7)
is a semiclassical limit of the Hirota equation for the 7-function of the two-
dimensional Toda hierarchy.

9. The 7-Function of the Conformal Map as a Large N Matrix
Integral

The integrable structure of conformal maps is identical to the one observed in
a class of random matrix models related to noncritical string theories. Moreover,
there exists a random matrix model whose large NV limit reproduces exactly the
7-function for analytic curves.

Consider the partition function of the ensemble of normal random N x N
matrices [15], with the potential (3-2):

Th|t, t] = /deMTe*(l/h)TrV(M,MT).

(V. Kazakov pointed out to us that the Lax equations (8-3) and (8-4) are gener-
ated by the Hermitian 2-matrix model [17] with complex conjugated potentials.
The latter and the normal matrix model have an identical 1/N-expansion.)

A matrix is called normal if it commutes with its Hermitian conjugated
[M,M*'] = 0. Passing to the eigenvalues diag(zi,...,zn) of the matrix M,
one obtains the measure of the integral in a factorized form

N
dM dM" ~ [ dzi dz; [ [ (2x — 2) (2 — %))
=1 k<j
Then the partition function is represents a two-dimensional Coulomb gas in the
potential (3-2)

N
hlt, T = / H dzy dzy, e~ (V/MV (zk:2k) He210g|z1-*Zj .

k=1 i<j
To proceed to the large N limit one introduces a parameter tg = AN and ex-
presses the integrand in terms of density of eigenvalues as e_h_2€{p*v}, where
&{p,V'} is given by (3-3). Then the limit for large N (or A — 0) yields to the
variational principle of Section 3. In the large N limit the eigenvalues of the
matrix homogeneously fill the domain D, bound by the curve, characterized by
the harmonic moments ¢; and the area ¢ty and leads to the 7-function defined
by (4-1). Other objects introduced in Sections 3 to 7 can also be identified
with expectation values of the matrix model. In particular the moments v of
(2-4) are

v, = I (Tr M*)
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and Q~ — vy = A(Tr log(z — M)).

In order to identify the Lax operator, we follow [18; 15; 17]. Introduce the basis
of orthogonal polynomials P,(z) = hpz™ 4+ --- (n > 0), by the orthonormality
relations

(m|n) = / P2 P e HVED P(2) = .

The polynomials are uniquely defined by the potential V' up to phase factors.
It is easy to see that the 7-function is given by the product of the coefficients
N!'|hphy_1...ho|? of the highest powers of the polynomials Py, (z) = hpz™+---.
Then Lax operators L and L appear as the operators (m|z|n) and (m|Z|n).
Since zP,(z) can be expressed through polynomials of the degree not grater
than n, one may represent (m|z|n) and (m|z|n) in terms of shifts operators
W = ¢"3% in the form of (8-1), (8-2), where r(tg = hn) = hp/hpy1.

Similar arguments allow one to identify the flows. Consider a variation of
some operator (m|O|n) under a variation of t,. We have hd,, (m|O|n) =
(m|[Hy,O]|n), where Hy = Ay, — ATy, and (m|Ag|n) = (m|d;, |n). Obviously
Hy, = —L¥(W) + negative powers of W. Choosing O to be L (see (8-2)) which
consists on W' and positive powers of W, one concludes that Hj does not
consists of negative powers of W. This brings us to (8-5).

Finally, the operator D = (m|kd, |n) is equal to

D=L-— ZktkLk*I.
k>1

The Heisenberg relation [D, L] = A prompts the string equation (8-6).
The matrix model also offers an effective method to derive equations (6-1)—
(6-7); see [17], for example.
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