
A result of Gabber
by A.J. de Jong

1 The result

Let X be a scheme endowed with an ample invertible sheaf L. See EGA II, Definition
4.5.3. In particular, X is supposed quasi-compact and separated.

1.1 Theorem. The cohomological Brauer group of X is equal to the Brauer group of
X.

The purpose of this note is to publish a proof of this result, which was prove by O. Gabber
(private communication). The cohomological Brauer group Br′(X) of X is the torsion in
the étale cohomology group H2(X,Gm). The Brauer group of X is the group of Azumaya
algebras over X up to Morita equivalence. See [Hoobler] for more precise definitions.

Our proof, which is different from Gabber’s proof, uses twisted sheaves. Indeed, a sec-
ondary goal of this paper is to show how using them some of the questions regarding the
Brauer group are simplified. We do not claim any originality in defining α-twisted sheaves;
these appear in work of Giraud, Caldararu, and Lieblich. Experts may skip Section 2
where we briefly explain what little we need about this notion.

2 Preliminaries

2.1 Let (X,L) be a pair as in the Section 1. There exists a directed system of pairs (Xi,Li)
as in Section 1 such that (X,L) is the inverse limit of the (Xi,Li) and such that each Xi

is of finite type over Spec Z. Furthermore, all the transition mappings in the system are
affine. See [Thomason].

2.2 LetX, Xi be as in the previous paragraph. Then Br′(X) is the direct limit of Br′(Xi).
This because étale cohomology commutes with limits. See ??.Similarly, Br(X) is the limit
of the groups Br(Xi).

2.3 Let X be a scheme and let α ∈ H2(X,Gm). Suppose we can represent α by a Čech
cocycle αijk ∈ Γ(Ui ×X Uj ×X Uk,Gm) on some étale covering U : {Ui → X} of X.
An α-twisted sheaf is given by a system (Mi, ϕij), where each Mi is a quasi-coherent
OUi-module on Ui, and where ϕij : Mi ⊗OUij →Mj ⊗OUij are isomorphisms such that

ϕjk ◦ ϕij = αijkϕik

over Uijk. Since we will be working with quasi-projective schemes all our cohomology
classes will be represented by Čech cocycles, see [Artin]. In the general case one can define
the category of α-twisted sheaves using cocycles with respect to hypercoverings; in 2.9
below we will suggest another definition and show that it is equivalent to the above in the
case that there is a Čech cocycle.

1



2.4 We say that the α-twisted sheaf is coherent if the modules Mi are coherent. We say
an α-twisted sheaf locally free if the modules Mi are locally free. Similarly, we can talk
about finite or flat α-twisted sheaves.

2.5 Let α ∈ H2(X,Gm). Let X = Xα be the Gm-gerb over X defined by the cohomology
class α. This is an algebraic stack X endowed with a structure morphism X → X. Here is
a quick way to define this gerb. Take an injective resolution Gm → I0 → I1 → I2 → . . . of
the sheaf Gm on the big fppf site of X. The cohomology class α corresponds to a section
τ ∈ Γ(X, I2) with ∂τ = 0. The stack X is a category whose objects are pairs (T → X,σ),
where T is a scheme over X and σ ∈ Γ(T, I1) is a section with boundary ∂σ = τ |T . A
morphism in X is defined to be a pair (f, ρ) : (T, σ) → (T ′, σ′), where f : T → T ′ is
a morphism of schemes over X and ρ ∈ Γ(T, I0) has boundary ∂ρ = σ − f∗(σ′). Given
morphisms (f, ρ) : (T, σ) → (T ′, σ′), and (f ′, ρ′) : (T ′, σ′) → (T ′′, σ′′), the composition is
defined to be (f ′ ◦ f, ρ+ f∗(ρ′)).
We leave it to the reader to check that the forgetful functor p : X → Sch makes X into a
category fibred in groupoids over the category of schemes. In fact, for T → T ′ there is a
natural pullback functor XT ′ → XT coming from the restriction maps on the sheaves Ij .
To show that X is a stack for the fppf topology, you use that the Ij are sheaves for the
fppf topology. To show that X is an Artin algebraic stack we find a presentation U → X .
Namely, let U → X be an étale surjective morphism such that α restricts to zero on U .
Thus we can find a σ ∈ Γ(U, I1) whose boundary is τ . The result is a smooth surjective
morphism U → X . Details left to the reader (the fibre product U ×X U is a Gm-torsor
over U ×X U).

2.6 By construction, for any object (T, σ) the autmorphism sheaf AutT (σ) of σ on Sch/T
is identified with Gm,T . Namely, it is identified with the sheaf of pairs (id, u), where u is
a section of Gm.

2.7 There is a general notion of a quasi-coherent sheaf on an algebraic Artin stack. In
our case a quasi-coherent sheaf F on X is given by a quasi coherent sheaf Fσ on T for
every object (T, σ) of X , and an isomorphism i(ρ) : f∗F ′

σ′ → F for every morphism
(f, ρ) : (T, σ) → (T ′, σ′) of X . These data are subject to the condition i(ρ′ + f∗(ρ)) =
f∗(i(ρ′)) ◦ i(ρ) in case of a composition of morphisms as above.
In particular, any quasi-coherent sheaf F on X comes equipped with an action of Gm,X .
Namely, the sheaves Fσ are endowed with the endomorphisms i(u). (More precisely we
should write i((id, u)).)

2.8 By the above a quasi-coherent OX -module F can be written canonically as a direct
sum

F =
⊕
m∈Z

F (m).

Namely, the summand F (m) is the piece of F where the action of Gm is via the character
λ 7→ λm. This follows from the representation theory of the group scheme Gm. See ??.

2.9 The alternative definition of an α-twisted sheaf we mentioned above is a quasi-coherent
OX -module F such that F = F (1).In case both definitions make sense they lead to equiv-
alent notions.
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2.10 Lemma. Suppose α is given by a Čhech cocylce. There is an equivalence of the
category of α-twisted sheaves with the category of OX -modules F such that F = F (1).

Proof. Namely, suppose that α is given by the cocycle αijk as in Subsection 2.3 and by
the section τ of I2 as in Subsection 2.5. This means that on each Ui we can find a section
σi with ∂σi = τ , on each Uij we can find ρij such that

∂ρij = σi|Uij − σj |Uij

and that
αijk = ρij |Uijk

+ ρjk|Uijk
− ρik|Uijk

in Γ(Uijk, I
0).

Let us show that a quasi-coherent sheaf F on X such that F = F (1) gives rise to an
α-twisted sheaf. The reverse construction will be left to the reader. For each i the pair
(Ui → X,σi) is an object of X . Hence we get a quasi-coherent moduleMi = Fσi on Ui. For
each pair (i, j) the element ρij defines a morphism (id, ρij) : (Uij , σi|Uij ) → (Uij , σj |Uij ).
Hence, i(id, ρij) is an isomorphism we write as ϕij : Mi⊗OUij →Mj ⊗OUij . Finally, we
have to check the “α-twisted” cocycle condition of 2.3. The point here is that the equality
αijk + ρik|Uijk

= ρij |Uijk
+ ρjk|Uijk

implies that ϕjk ◦ ϕij differs from ϕik by the action of
αijk on Mk. Since F = F (1) this will act on (Uijk → Ui)∗Mi as multiplication by αijk as
desired.

2.11 Generalization. Suppose we have α and β in H2(X,Gm). We can obviously define
a Gm × Gm-gerb Xα,β with class (α, β). Every quasi-coherent sheaf F will have a Z2

grading. The (1, 0) graded part will be a α-twisted sheaf and the (0, 1) graded part will
be a β-twisted sheaf. More generally, the (a, b) graded part is an aα + bβ-twisted sheaf.
On Xα,β we can tensor quasi-coherent sheaves. Thus we see deduce that there is a tensor
functor (F ,G) 7→ F ⊗ G which takes as input an α-twisted sheaf and a β-twisted sheaf
and produces an α + β-twisted sheaf. (This is also easily seen using cocyles.) Similarly
(F ,G) 7→ Hom(F ,G) produces an β − α twisted sheaf.

In particular a 0-twisted sheaf is just a quasi-coherent OX -module. Therefore, if F ,G are
α-twisted sheaves, then the sheaf Hom(F ,G) is an OX -module.

2.12 On a Noetherian algebraic Artin stack any quasi-coherent sheaf is a direct limit of
coherent sheaves. See ??. In particular we see the same holds for α-twisted sheaves.

2.13 Azumaya algebras and α-twisted sheaves. Suppose that F is a finite locally free
α-twisted sheaf. Then A = Hom(F ,F) is a sheaf of OX -algebras. Since it is étale locally
isomorphic to the endormophisms of a finite locally free module, we see that A is an
Azumaya algebra. It is easy to verify that the Brauer class of A is α.

Conversely, suppose that A is an Azumaya algebra over X. Consider the category X (A)
whose objects are pairs (T,M, j), where T → X is a scheme over X, M is a finite locally
free OT -module, and j is an isomorphism j : Hom(M,M) → A|T . A morphism is defined
to be a pair (f, i) : (T,M, j) → (T ′,M′, j′) where f : T → T ′ is a morphism of schemes
over X, and i : f∗M′ → M is an isomorphism compatible with j and j′. Composition
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of morphisms are defined in the obvious manner. As before we leave it to the reader to
see that X (A) → Sch is an algebraic Artin stack. Note that each object (T,M, j) has
naturally Gm (acting via the standard character on M) as its automorphism sheaf over
Sch/T .
Not only is it an algebraic stack, but also the morphism X (A) → X presents X (A) as a
Gm-gerb overX. Since gerbes are classified byH2(X,Gm) we deduce that there is a unique
cohomology class α such that X (A) is equivalent to the gerb X constructed in Subsection
2.5. Clearly, the gerb X carries a finite locally free sheaf F such that A = Hom(F ,F),
namely on X (A) it is the quasi-coherent module F whose value on the object (T,M, j)
is the sheaf M (compare with the description of quasi-coherent sheaves in 2.7). Working
backwards, we conclude that α is the Brauer class of A.
The following lemma is a consequence of the discussion above.

2.14 Lemma. The element α ∈ H2(X,Gm) is in Br(X) if and only if there exists a
finite locally free α-twisted sheaf of positive rank.

2.15 Let us use this lemma to reprove the following result (see Hoobler, Proposition 3):
If α ∈ H2(X,Gm) and if there exists a finite locally free morphism ϕ : Y → X such that
ϕ∗(α) ends up in Br(Y ), then α in Br(X).
Namely, this means there exists a finite locally free α-twisted sheaf F of positive rank over
Y . Let Y be the Gm-gerb associated to α|Y and let us think of F as a sheaf on Y. Let
ϕ̃ : Y → X be the obvious morphism of Gm-gerbs lifting ϕ. The pushforward ϕ̃∗F is the
desired flat and finitely presented α-twisted sheaf over X.

2.16 Suppose that x̄ is a geometric point of X. Then we can lift the morphism x̄ → X
to a morphism ` : x̄ → X and all such lifts are isomorphic (not canonically). The fibre
of a coherent sheaf F on X at x̄ is simply defined to be `∗F . (Not the stalk!) Notation:
F ⊗ κ(x̄). This is a functor from coherent α-twisted modules to the category of finite
dimensional κ(x̄)-vector spaces.

2.17 Suppose that s ∈ X is a point whose residue field is finite. Then, similarly to the
above, we can find a lift ` : s → X , and we define the fibre F ⊗ κ(s) := `∗F in the same
way.

3 The proof

3.1 The only issue is to show that the map Br(X) → Br′(X) is surjective. Thus let us
assume that α ∈ H2(X,Gm) is torsion, say nα = 0 for some n ∈ N.

3.2 As a first step we reduce to the case where X is a quasi-projective scheme of finite
type over Spec Z. This is standard. See 2.1 and 2.2. In particular X is Noetherian, has
finite dimension and is a Jacobson scheme.

3.3 Our method does not immediately produce an Azumaya algebra over X. Instead we
look at the schemes XR = X ⊗ R = X ×Spec Z SpecR, where Z ⊂ R is a finite flat ring
extension. We will always assume that R is actually a normal domain. An α-twisted sheaf
on XR means an α|XR

-twisted sheaf.
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3.4 Lemma. For any finite set of closed points T ⊂ XR there exists a positive integer n
and a coherent α-twisted sheaf F on XR such that F is finite locally free of rank n in a
neighbourhood of each point t ∈ T .

Proof. We can find a section s ∈ Γ(X,LN ) such that the open subscheme Xs is affine and
contains the image of T in X. See EGA II, Corollary 4.5.4. By Gabber’s result [Hoobler,
Theorem 7] we get an Azumaya algebra A over Xs representing α over Xs. Thus we get
a finite locally free α-twisted sheaf Fs of positive rank over Xs, see Subsection 2.14. If
Fs does not have constant rank then we may modify it to have constant rank. (Namely,
Fs will have constant rank on the connected components of Xs. Take suitable direct
summands.) Let j : Xs → X be the open immersion which is the pullback of the open
immersion Xs → X. Then j∗Fs is a quasi-coherent α-twisted sheaf. It is the direct limit of
its coherent subsheaves, see 2.12. Thus there is a suitable F ⊂ j∗Fs such that j∗F ∼= Fs.
The pullback of F to an α-twisted sheaf over XR is the desired sheaf.

3.5 For a coherent α-twisted sheaf F let Sing(F) denote the set of points of XR at which
F is not flat. This is a closed subset of XR. We will show that by varying R′ we can
increase the codimension of the singularity locus of F .

3.6 Let c ≥ 1 be an integer. Induction Hypothesis Hc: For any finite subset of closed
points T ⊂ XR there exist
(a) a finite flat extension R ⊂ R′, and
(b) a coherent α-twisted sheaf F on XR′

such that
(i) The codimension of Sing(F) in XR′ is ≥ c,
(ii) the rank of F over XR′ − Sing(F) constant and positive, and
(iii) the inverse image TR′ of T in XR′ is disjoint from Sing(F).

3.7 Note that the case c = dimX + 1 and T = ∅ implies the theorem in the introduction.
Namely, by Subsection 2.14 this implies that α is representable by an Azumaya algebra
over XR′ . By [Hoober, Proposition 3] (see also our 2.15) it follows that α is representable
by an Azumaya algebra over X.

3.8 The start of the induction, namely the case c = 1, follows easily from Lemma 3.4.
Now we assume the hypothesis holds for some c ≥ 1 and we prove it for c+ 1.

3.9 Therefore, let T ⊂ X be a finite subset of closed points. Pick a pair (R ⊂ R1,F ′
1)

satisfying Hc with regards to the subset T ⊂ X. Set T1 = TR1 ∪ S′1, where S′1 ⊂ Sing(F ′
1)

is a choice of a finite subset of closed points with the property that S′1 contains at least
one point from each irreducible component of Sing(F ′

1) that has codimension c in X ⊗R1.
Next, let (R1 ⊂ R2,F ′

2) be a pair satisfying Hc with regards to the subset T1 ⊂ XR1 .
Set T2 = (T1)R2 ∪ S′2, where S′2 ⊂ Sing(F ′

2) − Sing(F ′
1) ⊗ R2 is a finite subset of closed

points which contains at least one point of each irreducible component of Sing(F ′
2) that

has codimension c in X ⊗R2. Such a set S′2 exists because by construction the irreducible
components of codimension c of Sing(F ′

2) are not contained in Sing(F1) ⊗ R2. Choose a
pair (R2 ⊂ R3,F ′

3) adapted to T2. Continue like this until you get a pair (Rn+1,F ′
n+1)

adapted to Tn ⊂ XRn . (Recall that n is a fixed integer such that nα = 0.) For clarity, we
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stipulate at each stage that

Sj ⊂ Sing(F ′
j)−

⋃
i<j

Sing(F ′
i)⊗Rj ,

contains at least one point from each irreducible component of Sing(F ′
j) that has codimen-

sion c in X ⊗Rj . We also choose a set Sn+1 like this.
Let us write Fi = F ′

i ⊗Ri Rn+1, and Si = S′i ⊗Ri Rn+1. These are coherent α-twisted
sheaves on X ⊗ Rn+1 and finite subsets of closed points Si ⊂ X ⊗ Rn+1. They have the
following properties:
(a) The subset T ⊗Rn+1 is disjoint from Sing(Fi).
(b) Each Fi has a constant positive rank over XRn+1 − Sing(Fi).
(c) Each component of Sing(Fi) of codimension c in X ⊗Rn meets the subset Si.
(d) For each s ∈ Si the sheaves Fj are finite locally free at s for j 6= i.
From now on we will only use the coherent α-twisted sheaves Fi, i = 1, . . . , n+1, the subsets
Si, i = 1, . . . , n + 1 and the properties (a), (b), (c) and (d) above. We will use them to
construct an α-twisted sheaf F over XR′ for some finite flat extension Rn+1 ⊂ R′ whose
singularity locus Sing(F) is contained in

⋃
Sing(Fi)⊗R′ such that Si⊗R′ ∩ Sing(F) = ∅.

It is clear that this will be a sheaf as required in Hc+1, and it will prove the induction step.

3.10 For ease of notation we write R in stead of Rn+1 from now on, so that the coherent
α-twisted sheaves Fi are defined over XR, and so that the Si ⊂ X ⊗R. Note that we may
replace Fi by direct sums Fmi

i for suitable integers mi such that each Fi has the same
rank r over the open X ⊗R− Sing(Fi). We may also assume that r is a large integer.

3.11 Consider the α-twisted sheaf

G1 := F⊕rn

1 ⊕ . . .⊕F⊕rn

n+1

and since (n+ 1)α = α the α-twisted sheaf

G2 := F1 ⊗F2 ⊗ . . .⊗Fn+1.

Consider also the sheaf of homomorphisms

H := Hom(G1,G2)

which is a coherent OX⊗R-module (see 2.11). Recall that L is our ample invertible sheaf.
Since XR → X is finite, LR is ample on X ⊗R as well. For a very large integer N we are
going to take a section ψ of the space

ΓN := Γ(X ⊗R,H⊗LN ) = Γ
(
X ⊗R,Hom(G1,G2 ⊗ LN )

)
.

The idea of the proof is that for a general ψ as above the kernel of the map of α-twisted
sheaves

G1 → G2 ⊗ LN

is a solution to the problem we are trying to solve. However, it is not so easy to show there
are any “general” sections. This is why we may have to extend our ground ring R a little.
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3.12 Claim. The kernel of a ψ ∈ ΓN is a solution to the problem if it satisfies the
following properties:
(a) For every geometric point x̄ ∈ X, x̄ 6∈

⋃
Sing(Fi) the map

ψx̄ : G1 ⊗ κ(x̄) → G2 ⊗ LN ⊗ κ(x̄)

is a surjection. (See 2.16 for the fibre functor.)
(b) Let s ∈ Si for some i. Then the composition

Frn

i ⊗ κ(s) → G1 ⊗ κ(s) → G2 ⊗ LN ⊗ κ(s)

is an isomorphism. (See 2.17.)

We will study the sheafH and its sections. Along the way we will show that the claim holds
and we will show that there is a finite extension R ⊂ R′ such that a section ψ ∈ ΓN ⊗R′

can be found satisfying (a), (b) above. This will prove the theorem.

3.13 Local study of the sheaf Hom(G1,G2). Let Spec(B) → X ⊗ R be a morphism of
schemes. Assume that α|Spec(B) = 0. Thus there is a 1-morphism ` : Spec(B) → X lifting
Spec(B) → X. In other words the sheaves Fi give rise to finitely generated B-modules
Mi. Then G1 corresponds to

Mrn

1 ⊕ . . .⊕Mrn

n+1

and G2 corresponds to
M1 ⊗B M2 ⊗B . . .⊗B Mn+1.

Finally, the sheaf H = Hom(G1,G2) pulls back to the quasi-coherent sheaf associated to
the B-module

HomB(Mrn

1 ⊕ . . .⊕Mrn

n+1,M1 ⊗B M2 ⊗B . . .⊗B Mn+1).

3.14 In particular, if x ∈ X is a point and OX,x ⊂ B is an étale local ring extension,
then the stalk Hx is an OX,x-module Hx such that Hx ⊗ B is isomorphic to the module
displayed above.

3.15 Suppose that the point x is not in any of the closed subsets Sing(Fi). Then, with
the notation above, we can choose isomorphisms Mi = Br for all i, and we see that

Hx ⊗B = HomB(B(n+1)rn+1
, Brn+1

) ∼= Mat((n+ 1)rn+1 × rn+1, B).

We conclude that the condition (a) at a geometric point x̄ over x is defined by a cone C(x̄)
in H⊗ κ(x̄) of codimension (n+ 1)rn+1 − rn+1 + 1 ≥ nrn.

3.16 Let H be the vector bundle over U := X −
⋃

Sing(Fi) whose sheaf of sections is
H|U . (So H is the spectrum of the symmetric algebra on the dual of H.) The description
above shows that there is a cone

C ⊂ H

whose fibre at each point is the “forbidden” cone of lower rank maps. (In particular the
codimension of the fibres Cx ⊂ Hx is large.) Namely, the description above defines this
cone étale locally over U . But the rank condition describing C is clearly preserved by the
gluing data and hence C descends.
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3.17 Suppose that the point x (as in 3.14) is one of the closed points s ∈ Si. In this case
we can find an extension OX,x ⊂ B as in 3.14 with trivial residue field extension. Namely,
the restriction of α to the henselization Oh

X,s will be trivial. Namely, the Brauer group of
a henselian local ring is easily seen to be equal to the Brauer group of the residue field
which is trivial in this case. In this case the modules Mj for j 6= i are finite locally free,
but Mi is not. We choose isomorphisms Mj = Br for j 6= i and we set Mi = M . Thus we
observe that in this case

Hs ⊗B = HomB(Mrn

,Mrn

)⊕HomB(Bnrn+1
,Mrn

).

The condition (b) for our point s simply means that if we write ψ ⊗ B = ψ1 ⊕ ψ2, then
ψ1 ⊗ κ(s) should be a surjection from Mrn ⊗ κ(s) to itself. By Nakayama’s Lemma and
the fact that a surjective self map of a finitely generated module over a Noetherian local
ring is an isomorphism, this is equivalent to the condition that ψ1 is an isomorphism.

3.18 Let ψs ∈ H ⊗ κ(s) be an element which corresponds to the image idMrn ⊕0 in the
fibre under an isomorphism as above. Fix an isomorphism L ⊗ κ(s) = κ(s) so that we
can identify the fibre of H and H⊗ LN . The following observation will be used below: If
we have a global section ψ ∈ H ⊗ LN which reduces modulo the maximal ideal ms to a
nonzero multiple of ψs for every s ∈ Si and every i then ψ has property (b) of 3.12.

3.19 Proof of Claim 3.12. Suppose that ψ satisfies (a) and (b). Over the open subscheme
U we see that ker(ψ) is the kernel of a surjective map of finite locally free α-twisted sheaves.
Hence ker(ψ) is finite locally free over U . At each point s ∈ S we see that ker(ψ) ⊗ B is
going to be isomorphic to the factor Bnrn+1

of G1,B . Thus it is finite locally free at each s
as well.

3.20 As a last step we still have to show that there exists a section ψ satisfying (a), (b)
of 3.12 possibly after enlarging R. This will occupy the rest of the paper. It has nothing
to do with Brauer groups. In fact, according to Subsection 3.18, we can formulate the
problem as follows.

3.21 Situation. Let X be a quasi-projective scheme of finite type over R finte flat over
Z as above. Let L be an ample invertible sheaf. Suppose that H is a coherent OX -module
which is finite locally free over an open subscheme U ⊂ X. Let H be the vector bundle
U whose sheaf of sections is H|U . Suppose that C ⊂ H is closed cone in H. Let c ∈ N
be such that the codimension of Cu in Hu is bigger than c for all u ∈ U . Furthermore,
suppose S ⊂ X is a finite set of closed points not in U , and suppose that we are given
“prescribed values” ψs ∈ H ⊗ κ(s) (compare with 3.18).

3.22 Claim. In the situation above, suppose that c > dimX +1. There exists an N and
a finite flat extension R ⊂ R′ and a section ψ of H⊗LN ⊗R R′ such that:
(a) The set of points u of U ⊗R R′ such that ψu ∈ Cu ⊗ L⊗N

u is empty.
(b) For each closed point s′ of XR′ lying over a point of s ∈ S, the value of ψ ⊗ κ(s′) of

ψ at s′ is a nonzero multiple of ψs. (Where the multiplier is actually an element of
LN ⊗ κ(s′).)

Proof. First we remark that it suffices to prove the claim for R = Z. Namely, given a
situation 3.21 and a solution ψ relative to X/Z on X⊗ZR

′′ then we just set R′ = R⊗ZR
′′.

So now we assume that R = Z.
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Choose N0 so that for all N ≥ N0 there is a finite collection of global sections

{Ψi ∈ Γ(X, IS ⊗H⊗LN ), i ∈ I}

such that the map ⊕
i∈I

OX

∑
Ψi

−→ IS ⊗H⊗LN

is surjective. For each s ∈ S we may choose a global section

Ψs ∈ Γ(X, IS−{s} ⊗H⊗LN )

which reduces to a nonzero scalar multiple of ψs at s (again we may need to increase N).
Let A = Spec Z[xi, xs; i ∈ I, s ∈ S]. There is a universal section

Ψ =
∑

xiΨi +
∑

xsΨs

of the pull back of H⊗LN to A×Spec ZX. In particular, in a point (a, u) of A×U ⊂ A×X
the fibre Ψ(a,u) can be seen as a point of Hu ⊗ LN

u . In the open subscheme A× U we let
Z be the closed subset described by the following formula:

Z = {(a, u) | Ψ(a,u) ∈ Cu ⊗ LN
u }

The fibres of the morphism Z → U have dimension at most #S+#I−c, by our assumption
that c bounds the codimensions of the cones Cu from below, and the property that the
sections Ψi generate the sheaf H⊗LN . Thus the dimension of Z is at most dimA−2 (note
that the dimension of A is #S + #I + 1).
Let Z̄ be the closure of the image of Z in A. For each element s ∈ S, let ts ∈ SpecR be
the image of s in SpecR under the morphism X → SpecR. Let Zs ⊂ At be the closed
subscheme defined by xs = 0. This has codimension 2 in A as t is a closed point of SpecR.
We want an Z-rational point of A which avoids Z̄ ∪

⋃
Zs. This may not be possible.

However, according to the main result of [1] we can find a finite extension R of Z and
morphism SpecR into A which avoids Z̄ ∪

⋃
Zs as desired.
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