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Abstract

In this thesis, a division algorithm is studied,
following work of Macaulay, Hironaka, Buchberger, and others,
which generalizes row reduction and the euclidean algorithm,
in the same way that elimination theory generalizes the
determinant and the resultant.

The main result is a cohomological interpretation
of the complexity of this algorithm, for a fixed number of
variables. This follows from a new result on the vanishing
of coherent sheaf cohomology, which generalizes previous
work by Gotzmann, and Macaulay.

The Hilbert scheme offers a setting in which results
about this algorithm can be understood; this relationship
is described.

The theory of the division algorithm is related to
the problem of manipulating objects in algebraic geometry
by computer. The problem of computing coherent sheaf
cohomology is considered, as a guiding example.

Finally, explicit equations are given for the

Hilbert scheme.
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Introduction

Suppose that one wants to determine the solvability
of a system of inhomogenecus polynomial equations
fl S L.. = fs = 0, of maximum degree d, in n variables,
over an algebraically closed field k. When d = 1, the
determinant can be used to provide a criterion for
solvability. When n = 1, one can instead use the
resultant. In the intersection of these cases, d =n =1,
the two criteria obtained are identical. Elimination theory,
described in [vdW50)], generalizes these criteria to the case

of arbitrary d, n, and has found many applications beyond

the specific question of solvability.

4
-
L
{4 1
alg al s
1+ elimination 1o the division
% theory = algorithm
v 2
I 313
3 = U
1+ 13
2 2]l 0
1| =| the determinant 1| = row reduction
1 2 3 n 1 2 3 n
formulas algorithms

If one instead considers the algorithms given by row
reduction, and the euclidean algorithm, as criteria for
solvability in the cases d =1, n = 1, respectively, one

again finds that in the overlapping case d = n = 1, these
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algorithms are identical. This thesis studies the
corresponding algorithm for the case of arbitrary 4, n,
called here the division algorithm, which specializes to
row reduction, and the euclidean algorithm.

This theory has been studied in different forms in
several streams of work. Macaulay [Mac27) first realized
the algebraic significance of ordering the monomials in a
polynomial ring, and inspired in particular the subsequent
work [Got78], ([Sta78], [DEP82]. Hironaka [Hir64] developed
a division procedure. as part of his proof of the resolution
of singularities in characteristic zero, which is isolated
as an object of study in the subsequent work [Bri73],
[Gal79], [Sch80]. Buchberger [Buc70], [Buc79] independently
studied this division procedure, and is responsible for
making it computationally effective as an algorithm. His
work has been followed by the work [Spe77], [Tri78],
[Zac78], [Mor8l], [Po¥S81].

We give a unified presentation of the division
algorithm, incorporating the points of view of each of the
above schools. The technique of row reduction is ubiguitous
in settings where linear equations are found. This author
believes that the division algorithm, and the associated
ideas of algebraic geometry, could become as ubiquitous in
settings involving polynomial equations, if its fundamental
role is recognized.

The main theoretical contribution of this thesis is

a cohomological interpretation of the complexity of the
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division algorithm, in the setting of interest in algebraic
geometry. We give a vanishing theorem for coherent sheaf
cohomology, which generalizes a result given by Gotzmann
[Got78] in the case of ideal sheaves. From this result, and
a generalization of related machinery contained in
Macaulay's original work [Mac27], the termination of the
division algorithm is related to the structure of the zero
locus of its input polynomials. The bound obtained is often
exact.

A motivation behind this work is the author's
desire to computerize the study of examples in parts of
algebraic geometry. Specificallv, given a projective space
p" over the field k, objects in the categories either of
subschemes X c Fn, or coherent sheaves F on Pn, can be

represented by exact sequences

0 = 1 > M = F = 0,

where M is a free GP-module. Thus, these objects admit
concise, finite descriptions which are amenable to computer
manipulation. The division algorithm provides a uniform
tool for carrying out a wide range of constructions on these
objects. The most fundamental one is the calculation of
free resolutions. The cohomological interpretation of the
division algorithm's complexity has a practical application
here: it indicates how prior knowledge of the structure of

the input objects can be used to yield significant savings

in computation.
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The Hilbert scheme is a parameter space for the

possible zero sets in PV

with a given set of integer
invariants; see [Har66]. Many of the results given in this
thesis can be understood as statements about the structure
of the Hilbert scheme. 1In the other direction, this point
of view has motivated many of the ideas presented here. We

indicate this relationship between the division algorithm

and the Hilbert scheme.

Chapter I develops the division algorithm. Some
familiarity with commutative algebra is assumed, as can be
found in [AtM69], but little algebraic geometry is needed.

Chapter II contains the main technical work. The
results of Macaulay [MacZ26], Gotzmann [Got78], and this
author are uniformly derived as consequences of the
characteristic zero theory of ideals fixed by the Borel
subgroup of the special linear group, which is developed
here. Many previous arguments relied on specializing from
arbitrary ideals to monomial ideals, yet monomial ideals can
be unwieldy to work with. In terms of the Hilbert scheme,
one might as well specialize as far as possible when using
specialization arguments; the Borel ideals described above
are geometrically the most special points on the Hilbert
scheme. This was the starting point for Hartshorne's proof
of the connectedness of the Hilbert scheme [Har66]. We
first obtain our results for Borel ideals, taking advantage

of their combinatorial simplicity, and then 1lift these



results to the general setting, in arbitrary characteristic.
A familiarity with algebraic geometry on the level of
[Har77] is assumed; other results are developed as needed.
Chapter III consists of two parts. 1In the first,
we apply the machinery of chapter II to determining the
complexity of the division algorithm on inputs arising from
algebraic geometry. The second part discusses relationships
with complexity theory, when the number of variables is
arbitrary. This section is self-contained, and speculative.
The rest of this thesis is guite sketchy, and is
included primarily to provide the reader with a context for
the preceding theory. Chapter IV describes an algorithm for
computing ranks of coherent sheaf cohomology groups.
Chapter V describes the relationship between the division
algorithm and the Hilbert scheme. Chapter VI gives
explicit equations for the Hilbert scheme, providing a

different application of the theory developed in chapter II.
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The Division Algorithm



§1 Multiplicative Orders

(1.1) Let Q, Z, N, N denote the rationals, integers,

+
nonnegative integers, and positive integers, respectively.

Let k be a field, and let A = k[xl,...,xn] be
the polynomial ring in n variables over k. Associate
N with the monomials of A by associating w e N?  with
Xx € A.

Let E' be the subset of Nr consisting of the

r vectors el={l,0,...,nj, ey er={D,...,ﬂ,1}. Let M
r

be the free A-module AY = iglﬁei' Then the elements of

HHXEI can be associated with a k-basis for M, which will

be called the monomials of M.

. . . +
NOxET inherits a natural partial order from N T,

if u = {ul,....u ) and wv = {vl,...,v ), then u = v

n+r n+r

if u;, 2 vy for i =1 to n+r, with strict ineguality
for at least one 1i.

Corresponding to the action of A on M there is
a natural action of N" on Nanr, which will be written

multiplicatively. It is given by w{uxei} = {w+u}xei,

n n _r
for w e N and uxei e N =E" .

Definition: A multiplicative order > on M 1is a total

order on NnuEr such that

(a) > refines the natural partial order on



(b} for all u,v e NHXEr, the order relation

u > v only depends on the difference u-v ¢ 27T,

Condition (b) implies in particular that for all
n . :
welN and u,v e NHXEr, u > v 1f and only if wu > wv.

This will be referred to as the multiplicative property

of =.
(1.2) Definition: The lexicographic order >1ox OO M
. . n
1s defined, for ukei, vxej e N'xgt where u = {ul,.. ,un}
and v = {vl,...,vn}, by uxe, > lex vxej if
(a) i< j, or
(b) i =73, and for some s, W =Vi,...,u =V gy

but uE > v$.

The lexicographic order is clearly a multiplicative

order, so multiplicative orders exist for any M.

Let A = k[x,v,2], and let M = Az, with A-basis

€., Then the following monomials of M are listed

lexicographically:
3.2_8 3.2 3.9
x'y“z ey, xTy“ze,, xyz'e,,
6 4 3
Xz ey, Xej;, Yy zey, ze;, €, Xe,,

X 2E! 32E 51.‘:‘.' e
Y2 €50 Y 285, Z €31 Z€5, &5



(1.3) PFix a multiplicative order > on M.

Definition: The initial form in{m) of an element m ¢ M

is the greatest term of m with respect to =>. The
leading exponent exp(m) of m is the underlying monomial
in N'xE" of in(m). Specifically, if m = Zaju,, with
u, e Nanr and nonzero a, e k, such that u, > uy for
each i » 1, then in(m) = a,u, and exp(m) = uy .

The module in(I) of initial forms of a submodule

I cM is the submodule of M generated by all initial

forms in{m) of elements m ¢ M.

Thus a multiplicative order > associates with
each submodule I = M a submodule in(I) =« M generated
by monomials in M.

Let A =1TC[x,y,z], and let M = Az, with A-basis

€s85. Then under *lex’

= 2 — 2 .
in(3x el+yzel} = 3x%e,;

in(2e +x2E2+e2} = Eel;

1
. 4 _
in(4ye,+ze,) = dye,.

(1.4) Example: Let A = K[x,v,z], and let M = A. Take

> as multiplicative order. If

lex
I = {xz, XY, xz+y2},
then

. 2 3
in(I) = (%", %y, %2, ¥ ).



y> is the initial form of y(xz+y?)-z(xy). Thus, the
initial forms of a generating set for I need not

generate in(I).

(1.5) Each element 4 ¢ fozr induces a grading on M,
by assigning to each u e N"xE*  the degree d+u. Let I
be generated by homogeneous elements with respect to d.
The Hilbert function f : 2 — N of I is defined by
f(z) = dim{I}z, where {I]z is the k-vector space of
degree z elements of I.

The following result is due to Macaulay [Mac27]:

Proposition: Let I, d be as above. Then I and

in(I) have the same Hilbert function Ff.

Proof. Every monomial in in(I) is itself an initial
form of some element of I: if u = in(m) for some

me M, then wu = in(x"m) for each w e Nn, by the mul-
tiplicative property of .

Choose a k-basis for {Ilz so no two elements
have initial forms a scalar multiple of one another.
Then the initial form of any element of {I}z is a
scalar multiple of one of the inital forms of this
k-basis, so {I}z and in[I}z have the same dimension,

for each integer =z. 0



In (1.4), if M is graded by 4 = (1,1,1)=0,
then I is homogeneous, and both I and in(I) have
the Hilbert function

z+2

£(z) = (%°) -3, z 2 2;

0, otherwise.

(1.6) Proposition: A multiplicative order > on M is

a well-ordering of NxET.

Proof. If not, then there exists an infinite seguence of

n__r
u, « NxE", so u., = u

. for each i N,. N . §
i i i+1 e N o ul =

a multiple of a previous uj, j <« i, since > refines the
natural partial order on NxET. Thus the submodule of M
generated by all the u, requires infinitely many

generators. This is impossible, since M is noetherian. [

(1.7) Let > be a multiplicative order on M, and define
the subset B < z™'F by
B = {uv| uveN*%E" and u>v1l.

The order > is determined by this set B.

Lemma : No egquation Enibi = (0,...,0) is possible for

n; e N+ and hi ¢ B.

Proof. By allowing repetitions among the bi' assume that
Nzt —> 2¥ be the second

all n, = 1. Let P, ® Z

projection.



Assoclate a directed graph G to the eguation

Ebi = ﬁ, with vertex set ErJr and an edge from ej to
1

for each bi with pz{bi] = ejz - ejl. For each

vertex of G, the indegree eguals the outdegree, since

Ej2

Ib; = 0. Thus the edge set of G 1is a disjoint union
of directed cycles. We reduce G to the graph on E"
with no edges, by replacing in the sum each set {bi]
forming a cycle by a single b, with pzibi] = 0

Let bl""’bs be such a cycle, so for indices

jl""'js'js+l=j1 and i = 1 to s, each

n__r :
p,lb.) = e. - e, . Choose u, ¢ N =E with
21 Ji+1 34 1
pztul] = e, , so if u, 1is defined inductively by
11 1
u, =u, 4+ bi-l for i =2 to s+l1, then each

n__r .
. € x ...
uy N *E~, By construction, Uoyq > > Uy, SO

s
Uoyy — 4y = iilbi e B. Also, p2{u5+1—ul} = 0. Replace
the cycle bl,...,bE by the single element Uoyg ~ Yy
t
Now, given an equation Ebi =0 with
i=1

pzibi} = § for each i, again choose uy € NxE" so if

u; 1is defined inductively by u; =uy g+ bi-l for

i=2 to t+l, then each u; € NOxET. By construction

u > ee. > uq, but u

£+1 = Uy which is a contradiction. 0O

t+1

(1.8) Proposition: Let > be a multiplicative order

on M, and let U be a finite subset of Nanr. Then



there exists a grading of M given by d « Ni+r, such

that for each wu,v ¢ U, u > v if and only if d-u > d-v.

Proof. Define B c z"Y as in (1.7) above. Define the
finite subset By < B by
By = {uv|[uveU and u> v},

We want to find a d so d+*b > 0 for each b ¢ By-

Adjoin to B, the elements (1,0,...,0)x0,
eee s (0,...,0,1)x0, which belong to B since
> refines the natural partial order on N"xET.

Consider the convex hull of By in Qn+r‘ Any
eguation Eqibi = 0 with q; € Q, q; 2 o, Eqi = 1, and

bi £ BU can be reduced to an egquation of the form

precluded by the lemma, so 6 is not in the convex hull

of By- Since By is finite, we can separate By from

0 by some 4d ¢ Zn+r so d+*b > 0 for all b e BU.

Because of the elements adjoined to B d must actually

Ul
n_,r . . B (4 .
belong to N_xZ". Since adding ¥(jpee.,3) to d

does not affect any d+*b, d can in fact be chosen from

n+r

NI D

-

(1.9) Example: Consider the multiplicative order >lex

Given a finite subset U ¢ anEr, choose t ¢ N+ which
strictly bounds any coordinate of any u ¢ U. Then the

grading

a = (£, ..., t2, £1, ™, .., 2™l entl

induces the same order as > on U.

lex



§2 The Division Algorithm

(2.1) For u ¢ Nanr, let N"u denote the set of all
multiples wu of u, for w ¢ N'. Fix a multiplicative
order > on the free A-module M.

The following definition is from [Gal79].

Definition: Given p elements ml,...,mp of M, let
ﬂl,...,ﬁp,ﬂ denote the following partition of NOxET ;
&i = Nnexp{mi} Y vA., for i =1 to p;
jei
- P
E = N"™xg" \ As
i=1

Thus, if u e NnKEr, then u ¢ ﬂi for the least
i so u is a multiple of exp(m.), if such an i exists.
Otherwise, u ¢ 4.

Note that some of the ﬁi,E may be empty. A& is

the complement in N'xE¥ of the monomial submodule of M

generated by in{ml},...,in{mp}.

(2.2) The following result is a special case of a result
in [Hir64,III17], which is isoclated in [Bri73], [Gal79].

It is also implicit in [Buc70], [Buc79].

Proposition: Let ml,...,mp

above. For each m ¢ M, there exist unique quotients

e M, and define ﬂi,E as

gl,...,gp e A and a unique remainder h ¢ M such that

(a) m = gymy * ... F gpmp + h;



(b) if g, = Eajwj with a; ¢ k and Wy e N",

then wjexp{mi} € ﬁi for each j;
(¢) if h = Za,u, with a. ¢ k and u. ¢ N_xEF,
1 J J n

then uy e & for each j.

Proof. The result holds trivially when m = 8. Ssince
> 1s a well-ordering of n'xg" by proposition (1.6), we
can also assume the result for all n ¢« M with
exp(m) > exp(n). Write in(m) = au with a ¢ k and
u € NnkEr.
If ue b, let
- i = s +
m in (m) g m; + + gpmp h
be the unique expression for m - in(m). Then
= + .. + +
m = g my + ngP (h + au)

is an expression of the desired form for m.

If ued,, then u = w exp(m;) for some w e N,

Write in{mi} = bv with v e NHXEr and nonzero b ¢ k.
Let
a w _
m-gXm o= gm + ... + gpmp + h

. . a _w
be the unigue expression for m - 5 X M- Then

m o= gm + ... 4+ {gi + %—xw}mi + ... + gpmP + h

is an expression of the desired form for m.

In either case, unigueness follows by induction. [

We say that the expression g,my + ... + ngP + h is

obtained from m by division by m ..,mp.

1"
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(2.3) Definition: Let m and ml,.-.,mp be elements
of M. Define the remainder operator R by
m R ml,...,mP = h

where h 1is the remainder of m with respect to

ml.r---;mp given b&r {2-2]’-

The proof of (2.2) gives an iterative procedure

for computing m R ml,...,mp. There it is seen to

terminate because > well-orders N xEY'. One can also
. . . +

see this using (1.8): choose a grading d ¢ Nz ' on

M so for each i, in{mi} is of higher degree than any
other term of m.. Then each step in the computation of

mRm ..,mp replaces a term of m by terms of lower

1'"
degree.

(2.4) The remainder operator R 1is k-linear in its
left argument, with kernel contained in the submodule of
M generated by its right arguments. However, this

containment can be proper.

Example: Choose the multiplicative order >lex ©F
M =A, where A = k[x,vy]. Then

x3y R x3,x2y—y3 = 0, but

x3y R xzy-y3,x3 = xyz.

Thus, the remainder operator can vary with the order of

its right arguments.
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Let I < M be the submodule generated by

xzy-y3,x3. Then x3y e I, but x3y R xzy—y3,x3 is

seen above to be nonzero.

(2.5) Definition: A set of generators ml,...,mP for
a submodule I < M 1is a standard basis for I if

in{mli,...,in{mpl generate in(I).

This is the terminclogy of [Gal79]: these sets
are called Grobner bases in [Buc70].
(2.86) The following result is a continuation of (2.2),

from the same sources.

Proposition: Let m

l,...,mP generate the submodule I < M.
Then the following conditions are equivalent:
(a) ml,...,mp is a standard basis for 1I.

(b) m R m ,m_ = 0 for every me I.

1;-0- p

Proof. (a)== (b) : Consider the quotient A-module M/IM
as a k-vector space. M/IM is spanned by the monomials
N"xE¥. A monomial u ¢ N'xE' is linearly dependent on
lower monomials with respect to the well-ordering > if and
only if u = exp(n) for some n ¢ I. Since
in[mlj,...,in{mpj generate in(I), A is the complement

of in(I) in Nanr. Thus A is a k-basis for M/IM.
Therefore each element m ¢ M has a unique expression as

a linear combination of monomials in A, modulo I, which
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must be 0 if m e I.
(b)=> (a): 1If ml,...,mp is not a standard basis
for I, then for some me I, exp(m) ¢ A. For this m,

m R m ,m is nonzero. 0

1re My

The proof of (a)= (b) above shows that the
remainder of m ¢ M is the same with respect to any
standard basis for I. This remainder can be considered
to be a well-defined remainder of m with respect to the

submodule I.

(2.7) We next strengthen (2.6) to yield an effective

criterion for generators ml,...,mp of the submodule

I cM to be a standard basis. Let in{mi] = a;u,, with

U, e anEr and nonzero a, ¢ kK. Let u, = v.x , With
i i i %7y

V. € Nn and e € Er.
1 ti

Let vV vj denote the join of Vi’vj in the
lattice Nn, with coordinates each egqual to the maximum of

the corresponding coordinates of vy and Vj‘

Consider the pair of initial forms aju; ajuj of

mi,mj. If ti # tj' then a.u

submodule of M, and do not have a syzygy. If ti = tj'

T ajuj generate a free

then aiui,ajuj have the syzyagy Eij given by

Eij = aj{vivvj—vi] a;u, - ai{vivvj—vj] aju..

If J is the submodule of M generated by the

initial forms alul,...,apup of ml,...,mp, then
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* — — ——
(*) .G_Asij > @ ﬁaiui > J > 0
1,] 1
is an exact sequence of A-modules. Choose a minimal set

{s..} of syzygies so (*) remains exact.

1]
Definition: The syzygy operator S is defined, when
L, = tj’ by
mi s mj = aj{vivvj - vi} m, - ai{vivvj - vj} mj.
When ti # tj' then
m S m = 0

Note that the initial forms of the two expressions

on the right cancel each other, in the first case.

(2.8) Consider the order >1ex ©ON M=~5a=k[x,vy,z].
Then

xyz s xzy = 0;

xy2+1 = xzy = X;

xz+y2 5 xy = y3.

Compare the last equation with (1.4).

(2.9) The following result is due to Buchberger [Buc70],

[Buc79].

Proposition: In (2.6), conditions (a),(b) are each

equivalent to

(c) for each pair (i,j) corresponding to a
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syzygy in the set {sij}, {mi S mj} R Myseenmy = 5.

Proof. (b)= (c): m, = mj belongs to I.

(c)=> (b): Suppose that for some m e I,

m R ml,...,mp = h 1is nonzero. h 1is itself an element

of I, and can be written as h = gym * ...+ g for

m
PP
gl,...gp elements of A. Define the height of such an
expression to be max{Exp{gimi}} with respect to the well-
i
ordering >, and choose an expression for h of minimal
height.
Let L be the set of indices j so

Exp{gjmj} = mgx{exp{gimi}}. For each j ¢ L, let wj be
i

the term of gj involved in exp{gjmj}, S0

in(g.m.) = w.i ™ L w.i .) = 0, si i
{g] ]l wy n{mj} jEijln{mJ] 06, since h is a

linear combination of monomials in &. Thus by the

exactness of the sequence (*) of (2.7),

L w.,in(m.,) = L fi.si. for single terms fi' e A and
jeL i,3 J 1] J

syzygles Sij £ {Eij}' It follows that

I w.m. = L f..(m. S . considered as essi i
s jmj i ljiml m]], r as expr ions in

the symbols m,,...,m_. Since each m, 5 m. has
1 P i j

remainder G, we can rewrite L wjm., and thus
jeL

gymy * ... ¥ gpmp' into an expression of lower height.

Thus no such h can occur. ]
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(2.10) Proposition (2.9) gives a constructive procedure
for obtaining a standard basis from an arbitrary set
Myseee,mo € M. For each pair (i,j) corresponding to

a syzygy in a minimal set of syzygies for

in{ml},...,in{mp}, calculate
{ my s mj ) R Myyees,m = h.
If h 1is nonzero, then adjoin h = mp+l to the set

ml,...,mp, extend the minimal set of syzygies, and also
check the new pairs (i,p+l).
The following is due to Buchberger [Buc70],

[Buc79].

Proposition: The above process terminates.

Proof. If not, then the sequence of monomials Expimi}
for i e N_ generates a submodule of M requiring
infinitely many generators, which is impossible since M

is noetherian. ]

When this process terminates, condition (c) of
proposition (2.9) is satisfied, and we have constructed a
standard basis.

If ml,...,mP are homogeneous with respect to some
grading d e Nf+r , then by considering syzygies of lowest
degree first, this process will enumerate a minimal gener-
ating set for in(I) as it adjoins remainders. Thus, the

complexity of this process is closely connected to

understanding the relationship between minimal generating
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sets for homogeneous I and in(I).
The next two propositions reveal a strong

relationship between the submodules I and in(I).

(2.11) The following result was discovered independently

by Spear [Spe77], [Zac78], and Schreyer [S5chB80].

Proposition: Let m ,mP be a standard basis for the

lf!r!

submodule I < M. Then the syzygies among ml,...,mP can

be explicitly constructed from the syzygies among

in{ml},...,in{mpj.

Proof. For each syzygy 54 in the set {sij}

associated with the exact seguence (*), define the syzyagy

tij by
tij = mi s m:.I - {glml + ... + gpmp},
where 9,m + ... + gpmp is the expression for m, 5 mj
obtained by division by m,,...,m_. m., S m. has
1 P 1 J

remainder 0 by proposition (2.2), so tij = 0 taken as
an element of M. If {tij} is the set of all tij
obtained in this way, then we want to show that

(**) & At.. —> ® Am. —> I —> O
i3 4 it

is an exact seguence of A-modules.
The proof proceeds exactly as in the proof of
proposition (2.9). Any expression

gym; + ...+ gpnp 3 ? Am, , which maps to 0 in I, is
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egquivalent modulo the image of ® At.. to an expression
i, 5

of lower height. Thus (**) is exact, and {tij} is a

set of syzygies for ml""mp' O

The above result can be used to construct free
resolutions. In the graded case, these resolutions are
usually not minimal, but can be easily trimmed to yield

minimal resolutions.

(2.12) Proposition: Let k be algebraically closed.

Let I be a submodule of M. Then M/in(I)M occurs as
the special fiber of a flat family with general fibers

all isomorphic to M/IM.

Proof. Let k[t] be the polynomial ring over k in a
new variable +t, let A[t] = k[xl,...,xn,t], and let

M[t] = aﬂ[t]ei. Choose a standard basis ml,...,mp for

each I. By proposition (1.8), choose a grading d ¢ Ni+r
on M so for each 1, in{mi} is of higher degree than any
other term of m, .

For each mi = Eajuj with uj € ﬂanr and nonzero

ay e k, let b = max{d-u.} be the degree of in(m;), and
]

define mi{t] e M[t] by
b-d-u.
m,(t}) = L a,u,t j
1 53 33
Then miill = m; for each 1i. More generally,

ml{c],...,mpic] generates a submodule of M isomorphic

to I by a change of coordinates, for nonzero c ¢ k.
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mltﬂ],...,mptﬂ} generates the submodule in(I) =« M, since
each mi{ﬂ] = in[mi}. Let I(t) c M[t] denote the
submodule generated by mltt],...,mpit}.

Extend the multiplicative order on M to a
multiplicative order on M[t], by defining uti > vtj for
u,v ¢ N?xg¥ if

(a) u > v, oOr

(b) u=v, and i > j.

Note that t acts as a homogenizing variable of
weight one for the grading d, making each mi{t}
homogeneocus. Each eqguation

ms s mj = g;m + ...+ gpmp
obtained by division by My reee My, remains valid after

homogenizing. Thus,
m. (t) 8 mj{t] = gy(thm,(t) + ... + gp(t}mpit},

where each gi{t} e M[t] 1is defined by the homogenizing

process, and satisfies condition (b) of proposition (2.6).

Therefore, by (2.6), ml{t},...,mp{t} is a standard basis
for I(t).
F = M[t]/I(t)M[t] is a flat family over k[t],

with the properties we seek. It remains to be shown that
F 1is flat. The criterion for flatness we shall use is
given in Hartshorne [Har77,II19.1.3]. Since k[t] is a
principal ideal domain, a k[t]-module F is flat if no
f(t) ek[t] is a zero divisor in F. Since k[t] is

also a unique factorization domain, it suffices to
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consider f£(t) = t - ¢ with ¢ ¢ k.
Suppose, for n ¢ M[t] and ¢ = 0, that
(t=c)n ¢ I(t). Break n into homogeneous parts
n, + ... + ng with respect to d, in degree increments of

one. Since I(t) is homogeneous, the homogeneous parts

-Cn tn. =-cn tn =-CIn_, tnE

1’ 1 27 "t s=1 s
of (t-c)n each belong to I(t). It follows that
ne I(t).

Suppose, for n e M[t], that tn ¢ I(t). Then by
proposition (2.6),

th = gl{t]ml{t] + ... + gpitlmpit}

with each g, (t) e A[t] satisfying condition (b) of
proposition (2.2). It follows that each gi{t} is divisible

by t, so me I(t). O

We shall only need this result for k algebraical-

ly closed, but it extends easily to arbitrary fields.
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§3 Systems of Polynomial Equations

(3.1) Let m mP be polynomials in the ring

11
A = k[xy,...,x ], where k is algebraically closed. Let
k" denote affine n-space over k. We describe an

algorithm to

(a) determine if m1 = ... = mp = 0 has a
solution z ¢ kn:
(b) solve for the coordinates of such solutions
n
z e k.

Let M denote the free A-module Ar, as in §2.

Definition: A standard basis ml,...,mP e M 1is reduced
if for each i =1 to p,
(a) m, is monic: 1n{mi] = Exp{mi}:

LM = m, .

{b} Im - R mlrir.;mi_l,miq_l:-. p i

1

(3.2) This result is due to Buchberger.

FProposition: For a given multiplicative order > on M,

a submodule I < M has a unique reduced standard basis.

Proof. Let ml,._.,

I. Choose from in{ml],...,in{mq] a minimal generating

set for in(I). Throw away each uninvolved mi, and make

mq be an arbitrary standard basis for

the rest monic, leaving a standard basis ml,...,mP of

minimal cardinality. Now replace each m, by its

remainder with respect to ml"“'mi—l’mi+l""’mp‘
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For each i, no term of m, except exp{mi]
belongs to in(I), since such a term cannot be a multiple
of in{mi], and by construction is not a multiple of
in{ij for 3 # i. Thus,

m, = exp(mi} - Eajvj,
with ay e k and v, ¢ A, where & is defined with
respect to ml,...,mp as in §2. Therefore, ml,...mP
is a reduced standard basis, since each m, satisfies
condition (b) of the definition.

Unigueness follows from the proof of proposition
(2.6), since Eajvj must be the unigque expression for

exp(m;) as a linear combination of monomials from 1,

considered as an element of the guotient M/IM. 0

Together with the results of §2, the above proof
gives a constructive procedure for finding the reduced
standard basis for I < M with respect to >, given an

arbitrary set of generators for I.

{3.3) Let M = A, and thus consider a multiplicative

order > defined directly on the polynomial ring A.

Example (row reduction): Suppose that > induces the
order Xy > X5 > ... > X On the wvariables of A. Let
ml,...mp ¢ A be polynomials consisting only of linear and

constant terms. Then the procedures for row reducing
ml"'”mp' and for obtaining a reduced standard basis from

ml,...,mp, are identical.



22

Example (euclidean algorithm): Let ml,._.,mp be

polynomials in A = k[xl]. There is a unique

multiplicative order > on A, since the natural order on
the monomials Nl is total. A 1is a principal ideal
domain, so the reduced standard basis obtained from
ml,...,mP will consist of one polynomial, the greatest

common divisor of m ..,mp. The computation of this

1"
reduced standard basis is identical with the euclidean

algorithm.

The above examples are special in that they only

R 1]

1 P
are of arbitrary degree in n > 1 variables, the operator

rely on the operator R. In general, when the m
S5 plays an essential role in constructing standard bases.

(3.4) This result is due to Buchberger [Buc70], [Buc79].

Proposition: Let m m_ e A be a reduced standard

l_ri-- P

basis. Then the system of equations my = ... = mp =0

has a solution z e k" if and only if {ml,...,mp] = {1}.

Proof. my = ... = rnp = 0 has no solutions if and only if

m ,mp generate the unit ideal (1) ¢ A. (1) has

170
the unique reduced standard basis {1} for any

multiplicative order ». O

(3.5) By considering specifically the lexicographic

order defined in §1, we can strengthen (3.4). This line of
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reasoning was discovered independently by Spear (sug-
gested in [Spe77]), Trinks [Tri78], and this author. See

also Pohst and Yun [PoYS81].

Proposition: Let > be the lexicographic order on A,

and let ml,...,mp be the corresponding reduced standard
basis for the ideal I of A. For 1 = s < n, consider

the subring C = k[x .1 of A. Then I n C is

s+1'""""'"n

generated as an ideal in C by the my contained in C.

Proof. The lexicographic order is uniquely determined as
a multiplicative order by the property that for each such
C, all of the monomials in A \ C are ordered greater than
any monomial in C. Thus for any polynomial m ¢ A, we
have m ¢ C if and only if in(m) ¢ C. Suppose
me I n C, and let

m = glml + ...+ gpmp
be the expression for m obtained by division by
My seee My Since the 94 satisfy condition (b) of
proposition (2.6), and m ¢ C, the 9 for which m. ¢ C

are zero. Thus the m, contained in C generate

I n C. O

(3.6) When s =n, so C = k, the above result reduces
to (3.4).
In general, let X c k" denote the set of solutions

to My = ... = mP = 0. When s =n-r, I nC 1is the ideal
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of the projection from k" to k¥ of X.

Consider specifically the case s = n-1, so
C=k[x_ J. If InC= (0), then the projection of
X to kl is Zariski dense. This does not mean that
my = ... = mp = 0 can be solved for an arbitrary value
of X rather, points of X 1lie above all but finitely
many values of x_. Consider the example xy - 1 = 0 in
kz: this equation can be solved for every value of vy
except vy = 0.

The resolution of this technical difficulty in
general is to work in projective space, homogenizing each
equation. There, solution sets are proper, so dense

projections are onto. In many cases of interest, this

difficulty fails to be a problem.

If I nC=¢C, then I = (1), and
my = ... = mP = 0 cannot be solved. Otherwise,
IngC-= {mjj for a unique mj in the reduced standard

basis for 1I. m:.I € k[xn]' and the roots of mj are

exactly the values of X for which m = ... = rnp =0

can be solved.
If I =2 (1), then let x, = a be a wvalue for which

my = ... = mp = 0 can be solved. Adjoin the new poly-

nomial mP+l =x - a,or equivalently make the sub-

stitution X, = a, and construct again a reduced standard

basis. Iterating, we obtain a solution z = a to
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We thus have:

Proposition:

Let m .,mp be polynomials in the

pree
polynomial ring k[xl,...,xn] over the algebraically
closed field k. Then the process of repeatedly
constructing reduced standard bases from ml,...,mp with
respect to the lexicographic order defined in §1, and
eliminating wvariables by admissible substitutions X, = a,
will find a solution z ¢ k" to m; = ... = mP = 0, or

determine that there are none. 1In principle, any solution

can be reached by this algorithm. 0

(3.7) In practice, one cannot work in an algebraically
closed field. Thus, to make full use of this algorithm.
one must be able to make field extensions as necessary.

See [Rab80] for a discussion of such field
operations over finite fields. 1In characteristic zero, it
is proven in [LLL82) that one variable polynomials can be
factored over Q in polynomial time. Susan Landau has
extended this result to factorization over algebraic
extensions of Q.

As we shall eventually see, the field operations
will not often be the limiting factor in use of this

algorithm.
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(3.8) Example: Let > be the lexicographic order on
A =Q[x,y], and let
2, 2
m = X +y =2, m, = ®y=-1,

generate the ideal I < A. We compute

3
my = {ml s mz} R my,m, = xty -2y;
= = 6_, 4 2_,.
m, = m R my = ¥ 4y "+5yT =2
4 2
mg = m, R my, = -y +2yT=1:
m, R m5 = 0;
{m3 s m5} E m3 _rm5 = 0.
_ 3 4 2 .
Thus Mgy,=m, = Xx+y -2y, v -2y "+1 is the reduced standard
4 2

basis for I, with respect toc =>. y -2y“+1 = 0 has the
roots 1, 1, -1, -1. Substituting back into x+y3—23 =0,

we find that m, = m, = 0 has the solutions

(x,y) = (1,1) or (-1,-1),

each with multiplicity two.



Chapter II

A Vanishing Theorem
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g1 Hilbert Polynomials

(1.1) Let F be a coherent sheaf on P". The Hilbert

polynomial p(z) of F 1is defined by

(-1)*n* (F(2)),
0

n
plz) = x(F(z)) =

*

i
and we have
p(z) = nO(F(2))
for all large degrees =z.

We describe a notation for numerical polynomials
which facilitates computations, and which will ultimately
yield a concise description of which numerical polynomials
occur as ¥ (F(z)) for some coherent sheaf F on p"

For background on numerical polynomials, see

[Har77,1.7]. We adopt here the notation of [Haré6].

=1 . '
e . _ z+ij _|z+i-m,
(1.2) Definition: g[mu,...,ms,z) iio [i+1] [ il 11_

For each sequence of integers Mg reve Mgy

g{mﬂ,...,ms:z} is a numerical polynomial in 2z of degree

s, with leading term {msfs!}zs.

(1.3) Lemma : Any numerical polynomial p(z) can be
expressed as g{mﬂ,...,ms;zl for unigue integers
mD,...,mE, where m, 0.

Proof. Let pl(z) be of degree s. plz) can then be

written as
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' . Z+s Z+s-3
for unique integers aﬁ,...,as- [s+l]-[ st+1 51 has the
same leading term {asfsl}zs, so its difference with p(z)
is a numerical polynomial of lower degree. Setting

m_ = a the result follows by induction. |

s s’

(1.4) Suppose that each m; = 0. Since

my

z+i]_ z+i-m. ] _ o T[z+i-j

i+1) i+l 3 i :

we can write
. o z+i-j
g{mﬂ,...,ms,z} = ED<i<s [ i ].
lcjcmi
More generally, let A = {aij] be an array of

integers, where 1i,j € N, and all but finitely many a.

1]
are zero.
Definition: g(A;z) = T a..[z+%-j1.
i, B0

If pl(z) = g(A;z), we can call A a diagram for
the polynomial p(z). We say that two diagrams
A = {aij}, B = {bij} are equivalent, written A ~ B, if
g(A;z) = g(B;z).

Clearly, g(A+B;z) = g(A;z) + g(B;z).

(1.5) Associate the sequence of integers Myrese Moy

where each m, = 0, with the diagram A = {a,.} defined by

aij =1 if 0 = i< s and 1 = j = m_;

0 otherwise.
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The definitions for g[mn.-..,ms;z} and g(A;z)

then agree as polynomials, by (1.4).

(1.6) Example: Let X c P3 be the twisted cubic curve,

with Hilbert polynomial p(z) = 3z+l. Then
pl(z) = g(4,3;z). We can picture this polynomial as the

following diagram, with zero entries left blank:

(1.7) Definition: A diagram A is reduced if aij =0

or aij =1 for each 1,3.

(1.8) Definition: A diagram A 1is monotonic if there

exists integer bounds My = «.. 2 m_ > 0 so aij > 0 when

1 < 3 « mi, and aij = 0 otherwise,

Example (l1.6) is both reduced and monotonic. If A

is reduced, and monotonic with bounds My 2 ... 2 m_ > o,

then A is the diagram associated with Myseeo Mg, as in

(1.5).
(1.9) Lemma : The following diagrams A have
h(A;z) = 0, for any choice of u,v:

fa) Ay = -1; au-l,v = au,v+l = 1;

a. . 0 otherwise.
1]
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{b) auv = =1; aw,v+l =1 for 0 = w = u;

aij = 0 otherwise.

Proof. (a) follows from Pascal's identity:
[z+l-j] _ [z+i—l-j] [z+i—lhj]

. = . + i .

1 i-1 i
(b) follows by repeated application of (a). O
(1.10) Example: If u = 2, v =1, then lemma (1.9) refers

to the following diagrams:

(a) _ (b)

el L

Each of these diagrams yields the zero polynomial.

(1.11) Lemma (1.9) can be used to compute equivalences
between diagrams, since adding either diagram (1.9a) or

(1.9b) to a given diagram corresponds to adding the zero

polynomial.

Example: A degree d Thypersurface X c P" has Hilbert

polynomial

_ z+nf _ }{2+n-=d
o = [ - (7).

We compute integers Mysee Mg SO

plz) = g{mﬂ,...,m$;z}.
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By adding a sequence of diagrams first of type

(1.9a), then of type (1.9b),

0 1 d-1 d 0 1 d-1 d

0

n-1 n-1| 1

n 1 -1 n 1 -1
0 1 d-1 d 0 1 d-1 d
1
1
~ n~ 1
n-1; 1 1 1 1 n-1f 1 1 1 1

n n
0 1 d-1 d 0 1 d-1 d
0 1 1 0 1 1 1 1
1 1 1 1 1 1 1 1
o~ 1 1 ~ 1 1 1 1
n-1, 1 1 1 1 n-1 1 1 1 1

n n

Thus, p(z) = g{mu,...,mn_l;z} with

=d_
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(1.12) Lemma : Any monotonic diagram A is equivalent
to a reduced monotonic diagram B. If A has bounds

My 2 .. 2m_ > 0, then B has bounds Ny 2 ... z2n_ > 0,
with n; = m, for each 1i.

Proof. Assume that A 1is reduced for all aij with

i » r. By repeated addition of diagrams of type (1.9b)

to row r, we can reduce row r while keeping A
monotonic. This requires only finitely many steps, since
each step leaves the sum of the entries in row r fixed.
The sums of the entries in rows < r increase during this
process, so the bounds m; can only increase when we
reduce A to B. Repeating this process for each row

r-l1, ..., 0 vyields the result. ]

0 1 2 3 0 1 2 3

0 1 1 1 1 1 2

1 1 1 1 1 1 2

1 1 1 ~ 1 1 2

r 1 2 r 1 1 1
1 1

The above illustrates a step in the proof.

0 P oae. = mr = 0, and

n, 2 oaa. 2 n_ > 0, with r = s, then

(1.13) Lemma: If m

g{mﬂ,...,mr;z}+g{nn,...,ns:z} = q{pu,...,ps;z}

with p, =2 ... = p_ > 0, and p; > max{m;,n,} for each i.
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Proof. Let A,B be the diagrams corresponding to

mu Z oaa. = mr = 0, n0 Z oaas = ns = 0, by (1.5). Then

A+BE is monotonic with bounds Py 2 ++- 2 P_ > 0, where
each P; = max{mi,ni}. The result follows by (1.12). 0

(1.14) Lemma: If m, =2 ... 2 m, > 0 and g = 0, then

0 >
g{mu,i.-,m$:z+q} = gtnﬂ,-~-,ns:z)
for ny 2 ... 2 n_ >0, with n; 2 m, for each i.
Proof. It suffices to show the statement for gq = 1.
Let A be the diagram corresponding to mﬂ 2 oee. 2 m5 = 0,
by (1.5). Since
(z+1)+i-3 _ z+i-(j-1)
i i ,
B = {bij] is a diagram corresponding to g[mD,...,ms;z+1}
if we define b = a for each 1i,j. Adding diagrams

ij ~ %i,541
of type (1.9b) for each entry in column 0 of B, we obtain
a monotonic diagram, which by (1.12) is equivalent to a
reduced monotonic diagram with bounds N 2 «-- 2 n_ > 0.

Since the sum of the entries in each row can only increase

throughout this process, we must have n; = my for each

i. O

N = [=]
[ 3% T PUR N

o= e

The above illustrates a step in the proof.
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Note that gl(d,...,d;2z-1) cannot be written in the

desired form, so g z 0 is a necessary hypothesis.

(1.15) Example: Let &5 = k[xﬂ""'xn]' and let I < S
be the zero ideal I = (0). Then the Hilbert polynomial of
s/I 1is
_ z+n
plz) = [ n ].

Applying (1.9b), we obtain the equivalence of diagrams

0o 1 2 0 1 2
0 1
1
- 1
n 1 n 1
Thus, pl(z) = g{mﬂ,...,mn;z} with mﬂ = .. =M= 1.

(1.16) Example: Let I ¢ S be an ideal defining d
points in Pn, so the Hilbert polynomial of S/I is

p(z) = d. Then pl(z) = g{mﬂ;z} with m, = d.

(1.17) Example: Let I © 8 be an ideal which defines
a degree d, genus g curve X c P". Then S/I has

Hilbert polynomial p(z) = dz + (l-g). Note that

m
z+1 z+1-m _ I B 8
) - ) e me -G

[z;ﬂ] _ [z+ﬂ—m
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Thus, following the proof of (1.3), we see that

p(z) = g[mﬂ,ml:z}

with
= [Q)4qo _
my = [21+1 g, ml = 4,
(1.18) Lemma: Let p(z) = g{mu,,..,ms;z} be a numerical

polynomial, following (1.3). Then

g(mﬂ,...,ms:z}—g[mﬂ,...,ms:z—l} = g{ml,...,ms;z}.
Proof. g{mﬂ,...,ms:z}—g{mu,...,ms;z-l}

_ [_; [z+i]_[zfi—mi11 _ g [z-1+i]_[z-1+i—mi]
i=0 i+l i+l J i=0 i+1 i+l

_ ; [z—1+il [z—lfi-m.l
i=1t o)
E_l + A

Z+1 Z+1-m.

iiﬂ[i+1] i+l 1+1]
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§2 m-Regularity

(2.1) We recall the notion of m-regularity, due to
Castelnuovo, which measures the vanishing of coherent sheaf
cohomology. A discussion of m-regularity can be found in
Mumford [Mumé6, lecture 14], where a loose bound is
obtained on the vanishing of ideal sheaf cohomology. We

follow Mumford in the proofs of (2.2) and (2.3a).

Definition: A coherent sheaf F on P" is m-regular if

H' (F(m-i)) = (0) for all i = 1.

(2.2) The following exact sequence is fundamental to the

study of m-regularity:

Lemma : Let F be a coherent sheaf on Pn, and let
HcpP® bea hyperplane not containing any associated

primes of F. If F denotes the restriction of F to

H
H, then
(a) the sequence
0 — F(-1]) — F —> FH —> 0
is exact:
(b) if F 1is m-regular, then FH is m-regular.
Proof. (a) We have tensored the exact seguence

0 — 0(-1) —> (0 —> ﬂH —> 0
by F, where 0 = ﬂP is the structure sheaf on P". Since
by assumption, any local egquation for H is a unit at all

associated primes of F, the map F(-1) —= F is injective,
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which is all that we need to check.
(b) From the exactness of (a), we have
B (F(n-i)) —> BYF, (m=i)) —> B3 (F(moio1))
for each i 2 1. If F 1is m-regular, then the outside

groups are zero, so FH is m-regular. O

(2.3) The following result is due to Castelnuovo.

Proposition: If F is an m-regular coherent sheaf on

Pn, then
(a) F is j-regular for each 3j = m;
(b) F(m) 1is generated by global sections, as

an ﬂptmodule.

Proof. (a) Choose a hyperplane H not containing any
associated prime of F, and consider the exact sequence
(2.2a). By (2.2b) and induction, we can assume for j > m
that FH is j-regular and F 1is (j-1)-regular. By the
exactness of

Y (F(3-i-1)) —> BY(F(3-1) —> w1 (F (3-1)),
F is j-regular.

(b) 1is an immediate consequence of (a) and the

following lemma. 0
(2.4) Lemma : Let F be a coherent sheaf on Pn, and
let
Al AD
U"—?Hn—>...——>Hl—:~Mﬂ-——>F—:ﬁ

be a finite free resolution of F, where each
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I'r{l = Eﬂp{_elj &

3 J
Let m = maﬁ{e..*i}. Then
1.3
(a) F is m-regular;
(b) for a minimal free resolution, F 1is not

(m-1) -regular.

Proof. Each group Hi(F{z}} is dual as a k-vector space
to Extn_i{F{z},m} by Serre duality on Pn, where

o~ ﬂPt—n—ll. We can use the given projective resolution
of F to compute these Ext groups. Write (0 = ﬂP.

Ext" ' (F(z),s) is the kernel mod image of the

seguence
* *
An—i ﬂn—i—l
HGm(Hn_i+1{z},m} <— Hom(M__,(z),0) <— Hom(M__._,(2z),0),
where
Hom{Mn_i{z},m} = ? Hom[ﬂ{z-en_i‘j},ﬂ(—n—l)}.
(a) If m = max{ei.—i}, then
i3
Hom{Mn_i{m-i},m} = (0),
SO necessarily Hl{F{m—ijj = (0), for i =1, and F is
m-regular.
(b) A minimal free resolution has the property
that each map Hi : Mi+l —= Mi is given by a matrix whose

entries are either zero, or homogeneous polynomials of

degree = 1. Thus each syzygy ﬂ{—eij} is either preceded

in the resolution by an 0(-e, } with e

> .
i+l,r €iq”

i+l,r ij
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or the map Ai has a zero jth row corresponding to the
summand ﬂ{—eij} of Mi. Thus we can choose a syzygy

where the latter is the case, and where m = eij-i.

The dual map A; has as matrix the transpose of
the matrix for Ai’ so the summand Hom[ﬂ[z-eij],m} of
Hmm{Mi[z},m} is contained in the kernel of A;. Let

zZ = eij—n-l, and consider the seguence

* *
A A

Ham{Mi+l{z] f) <= Hom{Mi{z}l P} -:l—-l Homl{Mi_liz} ).

Hom{Mi{z},m} has as summand HDm{GEz-eij},m}

*
= Hom(0(-n-1) ,0(-n-1)) ~ k, contained in the kernel of A

Furthermore,
Hom (M, _,(2),0) = EHom{ﬂ{z—ei_er},m}
P
= EHDm{ﬂ{Eij-ei_lrp-n-l},G{-n—l}}

p

which is zero since by construction e.. > e. for each
_ ij i-1,p
p. Thus Extl[F{eij—n—l],m} = (0), so
Hn-l{F{{eij*i-l}-{n-ijjl 2 0

Since eij—i-l = m-1, F is not (m-1)-regular. |
(2.5) Let F be an m-regular coherent sheaf on Pn, with
Hilbert polynomial

plz) = x(F(z)).

Then since all higher cohomology of F wvanishes in degrees
z = m-1, we have eguality between the Hilbert polynomial of

F and the Hilbert function of F,
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p(z) = h'(F(2)),

for all =z =z m-1.

(2.6) The following is a continuation of (2.2). We follow

[Got78].

Lemma : Let F be a coherent sheaf on P", and let
HecpP' bea hyperplane not containing any associated
primes of F.

(a) I1f FH is m-regular, then F satisfies the
conditions of m-regular for i = 2.

(b) Furthermore, if the Hilbert polynomial
¥ (F(m=1)) agrees with the Hilbert function hDEF{m-l}}

of F at degree m-1, then F 1is m-regular.

Proof. (a) From the exactness of (2.2a), we have for
i 2z 2 the exact seguence

Hi_l[FH[z—i+1]}—>Hi{F(z—i]}->Hi{FEz—i+l}}->Hi{FH{z—i+1}}.

When =z z m, the outside groups are zero, so
Hl{F{z—i}}::Hl{F{z—i+l]}. Since these groups are zero for

all large degrees, we must have that, in fact,

Bl (F(m-1)) = (0) for i > 2.
(b) By (a), we need only show that
B (F(m-1)) = (0). Also by (a),

¥ (F(m-1)) = h® (F(m-1))-h! (F(m-1)).

The hypothesis forces hl{F{m—1}] = 0. O
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(2.7) The following is an extended version of a result
from [Got78]; David Eisenbud related this generalization
to me.

Lemma : Let I < 8§ be the ideal defined by

(1) W (1(z)), z = m,

z

[

(1),

{(0), otherwise,
where 1 1is an m-regular ideal sheaf on P?. Then I is
generated by {I}m. Also, the lst syzygies are all of

degree m+l, and more generally, the ith syzygies are all

of degree m+i, in a minimal free resolution of 1I.

Proof. We would like to associate I with a truncated
ideal sheaf Izm' assert that this ideal sheaf is still
m-regular, and so, by (2.4}, claim the above results.
There are two approaches to doing exactly this.
One is to employ local cohomology. The second, which we
use, is to add a wvariable to 8, and consider Tbm as an

ideal sheaf on Pn+1. There, a generic hyperplane section

yields the original ideal sheaf 1. Furthermore, the

minimal free resolution for I}m does not involve the new

variable, and gives exactly a minimal free resolution for

I. We need only to establish that I}m is m-regular.

By (2.6), it suffices to check that
hlfI}m{m-l}] = 0. Consider the exact sequence
0 — Iemiz—l} — Iam{Z} — T{z) —= O

given by a hyperplane section, as in (2.2). Since
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0

Y (1, (2))-h%(1,_(z-1)) = h’(I(2)) for all z > m by

construction, we have hltl}m{z—l}} - hIII}m{z}] for all
2 2 m. Thus, these groups must all be zero, and the

result follows, O

(2.8) Lemma : Let I be an ideal sheaf on Pn, and let
HcP® be a hyperplane not containing any associated
primes of 1. 1If the Hilbert polynomial x{ﬂPfI}[z) is

written as g{mu,...,ms;z} for integers Mg reee Mgy by

(1.3), then
x{ﬂHKIH}{z} = glmy,...,m_;z).
Proof. It follows from (2.2) that
0 —> (0p/1) (z-1) —> (0p/1) (2) —> EDHKIH]{z} —> 0
is an exact sequence. Thus, we have the formula
X0/ Ty) (2) = x(05/1) (2) = x(0p/1) (2-1)

for Hilbert polynomials.

The result now follows from (1.18). |
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§3 Borel Ideals

(3.1) Let 5L(n+l) denote the group of (n+l)x(n+l)
matrices over k with determinant 1. Let
T(n+l) < SL(n+l) denote the Borel subgroup of upper
triangular matrices, and let D(n+l) < T(n+l) denote the
subgroup of diagonal matrices.

Let Sl be the k-vector space of degree 1
polynomials in S = k[xD,...,xn], and let the above groups
act on 51' via the basis Kogreoe X, for Sl. These

actions extend to actions on all of §S:

S = @Sy = @Symm®(S,), and g ¢ SL(n+l) acts on
a a

_ da .
Sd = Symm {Sl} via

aD an aD a
g{xD cee X ) = {gxﬂ}

n
{gxn} .

An ideal I < S is fixed by a group G acting
on S5 1if GI < I, i.e., for every f ¢ I, g ¢ G we have

gf ¢ I.

Definition: An ideal I = 8§ is Borel fixed if I is

fixed by the Borel subgroup T(n+l) < SL(n+l).

(3.2) Lemma : An ideal I < 8 is fixed by D(n+l) if

and only if I is a monomial ideal.

Proof. Suppose I is fixed by D(n+l). If f ¢ I, then
gf ¢ I for every g € D(n+l). Since k 1is infinite, the
span of {gf|g ¢ D(n+l)} includes the monomials underlying

each term of £. Thus f is a linear combination of
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monomials in I, so I 1is generated by monomials.
Conversely, monomial ideals are clearly fixed

by D(n+l). O

The above argument can be found in [Haré66].

(3.3) Since D(n+l) ¢ T(n+l), Borel fixed ideals must
be monomial ideals.
While a monomial ideal can be considered as a

subset of Nn+l

, independent of the field k, the
question of which monomial ideals are Borel fixed turns out

to depend on the characteristic of k.

Example: Let S5 = klx,v,z], and let I = {xp,yp}, where
p is prime. I defines a point of multiplicity Pz in

Pz. Let g ¢ T(3) be the matrix

1 1 0
g = 0 1 0
0 0 1
Then gx = x, gy = x+y, and gz = z. Thus gyp = (x+y)F.

{x+y}p is an element of I preciseley when char k = p,

so I 1is Borel fixed only when char k = p.

(3.4) We will be particularly concerned with monomial

ideals I c Hn+1 which correspond to a Borel fixed ideal

I ¢ 5 in any characteristic. Such ideals admit a simple
, . o i . 4
combinatorial description, considered as subsets of N" l.

Consequently, certain useful results can be proved for
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them. These results will be valid in any characteristic,
but by (3.3), their usefulness will be impaired in any
characteristic except zero by the fact that they do not
apply to all Borel fixed ideals.

The above motivates the following definition. Let

n+ . :
Nd 1 denote the nomonials of degree d in Nn+l, by the
usual grading.
s ; n+l .
Definition: A Borel ideal I < N is a set of mono-

mials which correspond to a Borel fixed ideal I < S, when

k 1is of characteristic zero.

A Borel subset J ¢ Ng+l is a set of monomials

which spans a Borel fixed subspace of S in charac-

ﬂl‘
teristic zero.

(3.5) Let Z denote the natural partial order on Nn+l:

. = n+l . * _ T+ _

if a,b e« N with a = {aﬂ,...,an), b = {bﬂ,...,bn},
-
a

b iff a, Z b. for each 1i.
i i

LIRTS

A monomial ideal I < S can be identified with the

+ . . . . .
subset of N" 1 conslsting of the monomials it contains;

. Nn+l

we write I . The subsets J c Nn+l which

correspond to monomial ideals satisfy the following

n+l

property: if a e J, BenN , and B 2

3, then b ¢ J.

n+1

Let gi e N have zero entries except for a 1

in the ith coordinate. In the above condition, it
suffices to check that 3451 e J for each 1.

. . . R +
We seek a similar criterion for J < Nn 1 to
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correspond to a Borel fixed monomial ideal in character-

istic zero.

{3.6) Lemma: Let S=k(x,v], where cmﬂlc=0,masl

is 2-dimensional with basis x,y. If J ¢ Hé is a set

of degree d monomials, then the following conditions are

equivalent;
(a) J is a Borel subset of Ng:
(b) for some r, J consists of the first r+l

monomials of degree d in the lexicographic order, i.e.

J = {xd_lyl | 1 =0,...,r}.

Proof. (a)y=> (b): Let 50""'Er be the monomials of
J. Suppose that condition (b) does not hold, and let 1
be the first index so Ei = xd_jyj with 3 = i. Let

g € T(2) be the matrix

so gx = %, and gy = x+y. Then

ga. = x%+ ]]Xd-ly+"‘+ 3 xd—]+1yj-l+xd-]yj,
i 1) i-1

so in characteristic zero ggi is not é linear combination
of Agrese ey and condition (a) does not hold.

(b)=> (a); T(2) 1is generated by D(2) and the
matrix g above. Given condition (b), by the above
calculation each g;i is a linear combination of

..l so J generates a Borel fixed subspace of Sd

a{}l" r!

in any characteristic. 1In particular, condition (a) holds.[
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(3.7) Lemma : Let § = k[xu,...,xnl, where char k = 0.
If J ¢ Ng+l is a set of degree d monomials, then the

following conditions are equivalent:

{a) J is a Borel subset of Ng+1:

(b) for each a = (aD,...,anj ¢ J, and for each
i < j with aj = 0, {aﬂ,...,ai+1,...,aj-1,...,an} also
belongs to J.
Proof. T(n+l) is generated by D(n+l) and matrices

934 i < j, which consist of identity matrices with an

extra 1 in position (i,j). For example, in T(3) we

have
1 0 1
913 = 0 1 0
o 0 1
n+l n-1 . . ; ,
Let p:N —> N be the projection which omits the
i,j coordinates, i.e.
P{aﬂr---;an} = {aﬂr---rai_lrai+lr*--:aj_ira]+lr--¢ran}'

For each b « Hn'l of degree = 4, let Wb e 5 denote

d
the subspace spanned by the degree d monomials of

p-l{E}. Then we have the direct sum decomposition
Sd = %WE'
and the action of gij on Sd is the direct sum of its

actions on each summand WE' gij acts on each WE

according to the isomorphism

~ d-deg (b)
WE ~  Symm [xi,le;
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so the result follows from lemma (3.6). ]

(3.8) We shall need to draw sets of monomials in H3

in the following pages. This can be done by representing
Ng, the possible monomials of degree d in klx,y,z],
by a triangle whose cells correspond naturally to these

monemials. We have

1 XZ vz

represented by the diagram

O

Using this notation, a specific set of monomials
can be indicated by shading in the corresponding cells.
If we wish to illustrate Ng for a single degree

d, we will use a single triangle. This notation is

employed in the following example.

Example: According to (3.7), in characteristic zero, the

possible sets of 7 monomials which are Borel subsets of
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Ng are these:

Condition (3.7b) can be imagined as follows:
For each 1 < j, when corner i of such a diagram is
lowered, and corner 3§ 1lifted, the monomials J ¢ Nn+1

cannot roll further downhill, if one assumes gravity.

(3.9) Definition: The partial sum operator
g oz Nn+1 —> Hn+l is defined by
g{aﬂ,._.,an} = {aﬂ, au+al, cee s aﬂ+...+an].

Note that ¢ 1is injective and linear.

(3.10) Let e. e Hn+l be defined as in (3.5), and let

i
-+ _ o =+ . 4
Cij = ei ej. For example, in N ,

- * _ _

EE = {ﬂrlfufD)F C24 = {urlrur l}*
Then

o(e,) = (0,1,1,1); o(c,,) = (0,1,1,0).
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+
Lemma : Let E,E e NP 1, and suppose U{E} 2 G{E}. Then

- .

M i = M
there exists a sequence a = Agres-,a_ = b with each

r
-+ n+l
ag e N ;, so for s = 0,...,r-1 we have
- - o - f M &
s+173s = & r cij or some 1i,j.

Proof. Suppose that a partial seguence a = ED""'EE

has been constructed, with o(B) 2 G{EEI, and 55 z D.

Let 0(3), denote the ith  coordinate of o(3), and

choose an 1 s0 G{E—E Y., = 0.

s' i
There are two cases: first, if each coordinate

+* =
= a +e.,
1

P . -+ f . -+
j *1i of a 1s zero, then we can define a
s s+1 s

and then G{E} 2 U{3$+lj. Otherwise, let j > i be the
next o coordinat £ a d defi a = A_4C..;
ext nonzer nate o ag, an efine ag,, = ag cijr
again, o(b) 2 o(a ). In either case,
s+l
U{;u},...;ﬁ{$5+l} forms a strictly increasing sequence
. + .
in Nn 1 under the natural partial order 3, and so must
a T . . ®
terminate at ¢ (b) in finitely many steps. 0
- n+l .
(3.11) Proposition: Let I < N ; the following
conditions are equivalent:
(a) I is a Borel ideal;
(b) for each a e I, b e Hn+l so o(b) 2 o(a),
we have b e I.
Proof. (b)=> (a): For condition (a) to hold, I must

first correspond to a monomial ideal. By (3.5), it
suffices to check that §+Ei e I for each a ¢ I, and for

each 1. Also, for each d, the degree d monomials in
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1

+ :
I must form a Borel subset of Ng . By (3.7), it

suffices to check that §+Eij e I for each a ¢ I, and

for each i < j with Ej > 0. S&ince U{§+§i} Z o(3a)
and c{§+Eij} 2 o(a), these requirements both follow from
condition (b).

(a)= (b). Supprose condition (a), and let

a e I, b € Nn+l with G{E}

I

o(a). Construct a seguence

-

= aD""'Er = b with the property asserted in lemma

4

(3.10). For each s =0,...,r=-1, if 55 e I, then either

I

-+ - - = + =
a = a_te. a a = +c, .
s+1 s 1 nd s+1 qs+1 4s clj

and §5+1 e I by (3.7). Thus b = Er belongs to I by

induction, so condition (b) holds. O

e I by (3.5), or
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§4 Saturated Ideals

(4.1) We recall the notion of a saturated ideal, and

study it for the case of Borel ideals.

Definition: A homogeneous ideal I ¢ 5 1is saturated

if, for any J = I so {J}z = {I}lz for all z >> 0, we

have J = I.

If I 1is not saturated, there exists a largest
J # I with the above property, which is called the
saturation of I, denoted Isat.

Consider the subscheme X c P" defined by I; I
is saturated if it is the largest ideal of S which
defines X. Eguivalently, I is saturated if in the
primary decomposition of I, the irrelevant ideal
{xD,...,xn} c S (corresponding to the vertex 0 of the
affine cone over Pn} does not occur as an associated

prime.
I is saturated in degrees = 4 if
(1) = {Iﬁat}j for all § > d.
(4.2) Lemma : Let the ideal I ¢ S8 define the subscheme

X c Pn, and suppose Vv e Sl defines a hyperplane which
does not contain any associated primes of X. Then the
following are equivalent, for f ¢ S:

(a) f e Isat;

{b) ylf ¢ I for some j.
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Proof. (a)=> (b): This follows from the definition
(4.1). (b)= (a): Choose a primary decomposition

Il N ess N Iq of Isat; by assumption, y is not contained
in any associated prime r{Ii}. Since yjf e I c Isatr

yjf € I, for each i. &ince each I, is primary, it
follows that f ¢ Ii for each i. Thus f ¢ Isat. O
(4.3) Lemma : Let I < 8§ be a Borel ideal, defining
the subscheme X < Pn. Then X, € Sl defines a

hyperplane which does not contain any associated primes of

S.

Proof. Since I 1is Borel fixed, the associated primes
of X are themselves defined by Borel fixed monomial

ideals. The only possibilities are Ir = (x ..,xr} for

0"
r=0,...,n-1. X is contained in no such Ir' 0

Note that the above result in fact holds for any Borel

fixed ideal in any characteristic.

(4.4) Lemma : Let I ¢ S be a Borel ideal, generated
by its degree d part {I}d. If v e S4 is a monomial so
Vxnj € I for some j, then v e I.

Proof. Associate I with the subset of Nn+l consisting

of its monomials, and associate v with the corresponding

vector v ¢ Nn+1. If 3+{ﬂ,...,ﬂ,j} e I, then

$+{ﬂ,...,j} = w+a for some W € [I}d, a e Nn+1. Moreover,
. -+ -+ .

if a = (ajs...,a ), then o(a) = [aﬂ,...,aD+...+an_l,j].
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Thus 0{3} = U{§}+[aﬁ,...,aﬂ+...+an_1,0}, =Te) 6{31 z G{%].
It follows by proposition (3.11) that v ¢ I. O
We recall the discussion from (3.4). The above result is

valid in any characteristic, but is about a class of ideals
which are primarily of interest in characteristic zero.

(4.5) Corollary: Let J be a Borel subset of Sd. let

I <« S be the ideal generated by J. Then I 1is a Borel

ideal, saturated in degrees = d.

Proof. I is Borel fixed in any characteristic, since
for any g ¢ T(n+l), gI is generated by gJ, which spans
the same subspace of Sd as J, by assumption.

The saturation of I in degrees = d now follows

from lemmas (4.2),(4.3),(4.4). O
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§5 The Wild Card Partition

(5.1} In this section, we develop a notation for
describing Borel ideals, which makes their structure more
apparent. These results hold in any characteristic, but

are of most interest in characteristic zero (see (3.4)).

Definition: A wild card a* = (ag,...,a_,*,...,%) < N"'1
is the subset
= n+ .
{aﬂ,-..,ar,*,...,*} = {beN llai=hi for i=0,...,r}.

The wild card a* consists of all b e Nn+l whose
coordinates match those of a*, where * as a coordinate
of a* matches anything.

A wild card has rank 3j if j+1 of its coordi-
nates are *,

The height of a wild card is the sum of its
coordinates, excluding occurences of *,

A set of wild cards is disjoint if it consists of
disjoint subsets of N"'1.

The partial sum operator ¢ is defined on wild

cards by

c{aﬂ,...,ar,*,...,*} - {au,a0+a1,...,aﬂ+...+ar,*,...,*}.

The partial order Z on Nn+l can be extended to
wild cards of equal rank:
-

82 %, ..,%) 1f b, a, for

-
* * -
{bﬁ""'b ¥ e, ®) = {aD,.. i i

each i =0,...,r.
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(5.2) Lemma: Let I be a subset of N"'1, and let B

be the set of all wild cards contained in the complement
of I:

1

B = {b* | b* c N°"1 \ 13.

The following conditions are equivalent:
(a) I 1is a Borel ideal;
(b) For each b* ¢ B, if a* is a wild card of

the same rank so o (b¥*) 2 og(a*), then a* ¢ B.

Proof. If a*, b* are two wild cards of the same rank
so 0o (b*) 2 0 (a*), then each monomial a ¢ a* is similarly
bounded by a corresponding monomial b ¢ b*: if

b* = (b « b r*r-ior*}r and 3— = {anr---ran} ¢ a*, then

pre- r

let b = (b b ,a we have b e b*, and

0'"*""""r r+1"“"an}F
o(B) 2 o(d).
The equivalence of conditions (a) and (b) is now

a direct rewording of proposition (3.11). O

(5.3) Example: Let S = k[x,y,z], and let I ¢ S be the

Borel ideal generated by x3, xzy, xyz, xzz, and xyz:
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The complement of I is then the union of the wild
cards (0,*,*), (1,0,*%), (1,1,0), and (2,0,0). These wild
cards are disjoint, and thus form a partition of the
complement of 1I.

Note that the complement of IEat = {xz,xy} is
partitioned by the wild cards (0,*,*) and (1,0,*); the
rank -1 wild cards (1,1,0) and (2,0,0) do not appear.

We seek to show that such a finite wild card par-

tition exists for the complement of any Borel ideal.

(5.4) Definition: Let I bke a subset of Nn+l. A wild

card b* 1is c-maximal with respect to I if

b*  y°t1 Y I, and no a*::Nn+l W I properly contains b*,

+ :
The complement of any subset I ¢ N 1 is clearly

the union of c-maximal wild cards, which must be disjoint.
The difficulty is to determine when such a partition is

finite.

(5.5) Definition: Let I be a subset of Nn+l, and let

a*, b* be c-maximal for I. b* g-dominates a* if for
some c* c a*, we have g (b¥*) 2 g(c*). Eguivalently, if
b* = {bﬂ,...,br,*,...,*} and a* = I{au,...,as,*,...,*]r
then b* o-dominates a* if r =z s, and
bu+"'+bi = aD+...+ai for i =20,...,s.

A wild card b* is g-maximal for I if b* is

c-maximal, and no c-maximal a* distinct from b*

g—-dominates b*,.
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Note that if b* o-dominates a*, then the height
of b* bounds the height of a*.

In example (5.3), (2,0,0) is the only o-maximal
wild card for I. (1,0,*) is the only o-maximal wild card

for Isat‘

(5.6) Lemma : Let I c Hn+l be a Borel ideal. For each

c-maximal wild card a* associated to I, there exists a

g-maximal b* associated to I, which c-dominates a*.

Proof. Let a* = aﬂ*,...,ai*,... be an infinite sequence

of c-maximal wild cards so aI+l g-dominates ai* for
each 1i. We show that such a sequence is eventually con-
stant.

Let each ai* = [aﬂi,...,a e ,%) .  Assume

r it
i
inductively that for some g and all i = q,

a;¥ < b* = {bﬂ,...,bj,*,...,*}. If each ai* # b*, then
by the c-maximality of the a;*, b* n I is nonempty. Let

¢ = {cﬂ,...,cn] € b*¥* n I; we claim that for each i = a,

+ s s tC =

cj+l+ n aj+1 i Otherwise, by proposition (3.11),

ai* would intersect I, contrary to assumption. Now,

since for i = g, a is a monotone sequence, it must

J+1,1

eventually be constant. Thus we can choose a new g and

a new b* = {hﬂ,...,b *) so ai* e b* for all

j+lr*r---1
iz q.
Thus, there is a limiting b* so for all i =>> 0,

ai* = b*, From this we conclude that o-maximal wild cards

exist as claimed. 0
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+
(5.7) Lemma : Let I < N" 1 be a Borel ideal. If
a* = (aﬂ,...,ar,*,...,*} is a o-maximal wild card for I,
then
-+
a = {aD,...,ar_l,ar+l,0,...,ﬂ}

belongs to the minimal generating set for I.

Proof. a belongs to I, since no wild card can contain
a without o-dominating a%*.

i
However, a. = (a ,ar,ﬂ,...,ﬂl e a*, and so

ﬂr-t-
cannot belong to I. Similarly, if

-+ -+ =
a;, = {aﬂ,...,ai—l,..-,ar+l,0,...,ﬂ}, then a{ar} = u{ai},

so by proposition (3.11), gi cannot belong to I.

Thus a is a minimal generator for 1I. 0
(5.8) The following result is a companion for (5.7)
n+l .
Lemma : Let I N be a Borel ideal. If I has a

minimal generator a of degree d, then there exists a

c-maximal wild card b* for I, of height d-1.

Proof. Let a = {au,...,ar,ﬂ,...,ﬂ}, with au+...+ar = d,
and a > 0. Then b = (2 se-.,a =-1,0,...,0) cannot

r 0 r
belong to I, so b belongs to a c-maximal b* that

§ e M .
does not contain a. Such a b* must be contained in

the wild card {aﬁ,.-_,ar-l,*,...,*}, and thus has height

an+...+ar-l = d-1. O

n+l

(5.9) Proposition: et I < N be a Borel ideal.

Then there exists a unique finite set of disjoint wild
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cards whose union is the complement of 1I.

Proof. Let B consist of the c-maximal wild cards for
I. These are disjoint with union Nn+1 YW I, as noted in
(5.4). By (5.6) each a* ¢ B is o-dominated by, and thus

has height bounded by, a o-maximal b* ¢ B. This b* has
height bounded by the degree of some minimal generator for
I, by (5.7). Since S 1is noetherian, I has only
finitely many minimal generators, so the heights of wild
cards in B can be uniformly bounded. Thus B is finite.
Any finite wild card partition for I must consist
of c-maximal elements, since no wild card is the union of
finitely many wild cards it properly contains. Thus such

a partition is unique. 0

(5.10) Wild card partitions can be used as an aid to
understanding the subscheme structure of X < P" defined
by a Borel ideal I < S.

Such an X ¢ P" has each of its components
supported on one of the linear subspaces Lic Pn, defined

by the ideal {xu,...,x ), in the flag in P fixed

n=-i-1
by T(n+l). In terms of the wild card partition for I,
the component of X supported on Li (of dimension i)
has multiplicity given by the number of wild cards of
rank 1 in the partition. The exact nilpotent structure

of this component of X is given by specific knowledge of

these wild cards.
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The rank -1 wild cards do not occur in the
partition of a saturated ideal, as (6.2) will show, and
thus play no role in describing X.

X 1is easily wvisualized in terms of the degree 4
monomials not in I, for any sufficiently large d. We

sat

reexamine example (5.3), looking at a slice of I of

degree 4,

I ; degree 4

X c Pz defined by 1°8%  consists of a line corresponding

to the complete row of monomials contained in the wild
card (0,*,*) of rank 1, and an embedded point. This
point corresponds here to the monomial sz e (1,0,%),.
Thus, wild cards of rank = 0 describe the
appearance of a slice of an ideal, for any large degree,
which in turn describes the induced subscheme of P".
One can define wild cards more generally for
arbitrary monomial ideals. They do not then form a par-
tition, and otherwise behave less nicely, but in an
analogous way describe the induced subscheme structure,

and provide a useful proof technigque. We do not develop



this thecery here.
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§6 m-Regularity of Borel Ideals

(6.1) In this section we make a number of applications

of wild card partitions.

Lemma: Let I < Nn+1 be a Borel ideal, and let B be

the wild card partition of I given by proposition (5.9).
If c* ¢ B is O-maximal, then I u c* is also a Borel

ideal, with wild card partition B-{e*}.

Proof. This result follows directly from (5.2), since by

the o-maximality of ¢c*, no a* c© c¢* can become involved

in a test of condition (b) on I u c*. 0
n+l .
(6.2) Lemma : Let I N be a Borel ideal, and let

B Dbe the wild card partition for I. The following are
equivalent:
(a) I 1is saturated;

(b) B contains no rank -1 wild cards.

Proof. (b)== (a); Let b be a monomial not in I.

b must be contained in a wild card b* ¢ B of rank = 0,
but then E+[ﬂ,...,0,j} ¢ b* for each j =z 0. By (4.2)
and (4.3), b does not belong to Isat_ Thus I = Isat.

(a)=> (b): If B contains a rank -1 wild card

b* = {b}, where b = (bys+-+,b ), then by the c-maximality

of b*, {bﬁ""'bn—l'*} n I 1is nonempty. Thus by (4.2)
and (4.3), since E+{U,...,ﬂ,j} e I for some 37,
B e 15%%, ana 1 . 1S2%,
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Alternatively, b* 1is c-dominated by a o-maximal
wild card c* of rank -1, by (5.6). I u c* is an ideal,
by (6.1), and {I}z = (I v c*}z for all large degrees z,

since c* consists of a single monomial. Thus

I cIuecter1% ana 1«15,
(6.3) Lemma : If b* is a wild card of rank i = 0 and

z+i-j

i ] monomials of degree

height 3j, then b* contains [
z, for each 2z =z j-i. When =z < j-i, b* contains no
monomials of degree 2z, but the above expression is

negative.

Proof. The second statement is immediate. b* in fact
contains no monomials of degree =z < j, but this agrees
with the expression for Jj-i < z < j. Let

b* = (b . b * ...,%), where b.+...+b = j.

0"'"" 0 n-i-1
If z =z j, then the degree 2z monomials of b* are in

n-i-1"'

1:1 correspondence with the set of all degree z-j
monomials in i+l wvariables. These are [z+i-]] in

number. O

(6.4) Lemma : Let I c Nn+1 be a Borel ideal, and let

B be the wild card partition for I. If b* ¢ B has
rank i and height 3j > 0, then some a* ¢ B has rank = i

and height J-1.

Proof. Let b* = {bﬂ,...,bs,ﬂ,...,ﬂ,*,...,*}, with

bs = 0, and bﬂ+...+b5 = j. Then
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b = [bu,...,bs—l,ﬂ,...,ﬂ} is contained in some wild card
a* ¢ B, by proposition (3.11). By the c-maximality of b*,
a* must be contained in {bﬂ,...,bs-l,*,...,*J, and thus
has height j-1. a* must also have rank at least that of

b*, since b* o-dominates a*, by (5.2). O

. cis +
(6.5) Proposition: Let I < N" 1 be a saturated Borel

ideal, and let B be the wild card partition of I. Let
X < P" be the subscheme defined by I. Let

pl(z) = g{mu,-..,ms:z} be the Hilbert polynomial of ﬂx,
of equivalently of S/I, in the notation of (1.3). Let d

be the maximum of the heights of elements of B. Then

(a) my 2z ... z2m > 0;

(b) my = a+l;

(c) plz) = dim{SfI}z for all z = 4.
Proof. For all degrees =z =>> 0, p(z) 1is the number of
degree z monomials in Nl W I. This set is partitioned

by the wild cards in B, so p(z) is the sum of con-
tributions from each b* ¢ B.

By (6.3), p(z) = g(A,z) for a diagram A = {aij}
in the notation of (1.4), where aij is the number of
rank 1, height j wild cards in B. By (6.4), A can
be brought into monotonic form by a single application of
(1.10b) to each term corresponding to an element of B. A
now has bounds my 2 ... 2 mg 2 0, with my = d+l. By

lemmas (1.13), (1.14), A 1is eguivalent to a reduced

monotonic diagram, with bounds at least as large as
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> ... 2m_ > 0. This proves (a), (b).
(c¢) follows from (6.3), which asserts that for

z =z d, the above count is correct. O

(6.6) We follow the argument of (6.5) for an example.
Let I < 5 = k([x,y,2z] be defined by the wild card
partiticn {U;*r*}r {lrﬂr*} Il {lrlr*}r {zrﬂr*} - The dEgrEE

4 part of I is then

We compute the Hilbert polynomial p(z) of §/I:

0 1 2 3 4 0 1 2 3 4

Thus, plz) = g{mﬂ,ml;z} with my = 4, my = 1.
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(6.7) Let I © 5 be an ideal, and let 1 ¢ ﬂp be the
corresponding ideal sheaf. If 0y = GPKI, then dim{SKI}z
and hD{Gx[z}] are not necessarily equal, for all values
of z. However, they do share a common Hilbert polynomial
plz), so

dim(s/1) , = hﬂtﬂx{z}ll = plz)
for all large =z.

For all =z, we have

dim{s]z = hU{ﬂP{Z}] = [z;n]’
Thus if we define g(z) =[Z;n]—p{z}, then
aim(r) = h’(I(z)) = q(z)

for all large =z. Here, since 1 is a sheaf of ideals,
dim[I}z and hD{I{z}} are equal for all values of 2z:

in fact, {I}z = Hﬂ{I{z}].

(6.8) Lemma : Let I ¢ 8§ be an ideal, and let 1 < 0p
be the corresponding ideal sheaf. Suppose I 1is generated
by elements of degree <d, and let H = {h = 0} be a

hyperplane in p?, If 1 is the restriction of 1 to

H
H as in (2.2), and I;at is the corresponding saturated
ideal in Sy =5/hs, then Izat is generated by elements

of degree =4d.

Proof. Let I = (f,,...,f), and let fﬁ denote the
image of fi in Sy- Then I;at is the saturation of
{fl,...,?sl < Sy, and so is generated by elements of

degree = d. O
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(6.9) Proposition: Let I < n°*! be a saturated Borel

ideal. If 4 1is the largest degree of a minimal generator
for I, then the corresponding sheaf of ideals I < GP is

d-regular.

Proof. We proceed by induction on n. If n = 1, then
I 1is principal, so I = {xud], by (3.6). Thus,
I ~0(-d), which is d-regular.

In general, consider the exact sequence
0 — I(<1) —> 1T —> IH —_ 0

of (2.2). By (4.3), we can choose H to be the hyperplane

defined by X = 0. Then by (6.8), the minimal generators

of the corresponding ideal Iﬁat are all of degree = 4,
so IH is d-regular by induction.
Now, by (2.6b) and (6.7), I is d-regular if
0 _ tn+d-1 A
h (I{a=1)) = [ n } g[mﬂ,...,ms,d l), where mD,...,ms

give the Hilbert polynomial of S/I. By (5.7), the wild
card partition for I <consists of elements of height

< d-1. Thus, the desired identity follows from (6.5c). O

(6.10) Corollary: Let I be as in (6.9). If §S/I has

z+n]_ p(z) for

Hilbert polynomial p(z), then dim{I}z - [ n

all z = 4-1.

Proof. By (6.9), the corresponding ideal sheaf 1 is

d-regular. Thus, hu[I{z]] is equal to x(I(z)) for
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z 2 d-1, by (2.5). By (6.7),
aim(1) , = x(I(z)) = [z;n] - plz),
| J

yielding the result. 0

(6.11) Proposition: Let I c ﬂp correspond to a Borel

ideal I < 8. If S/I has Hilbert polynomial

g[mu,...,ms;z}, then I 1is mﬂ-regular.
Proof. Let d be the largest height of the elements of
the wild card partition for I. Then by (5.8), I is

generated by elements of degree < d+l1. Thus, by (6.9),

I is (d+l)-regular. By (6.5b), my = d+l. Thus, I 1is

mD-regular, by (2.3a). O
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§7 The Lexicographic Ideal

(7.1) We establish some further notational conventions,

before defining a lexicographic ideal.

n+l

Let Nn c N denote the inclusion of NU onto

+ . .
the subset of N 1 consisting of elements with last
. .. n n+1l
coordinate zero. Similarly, let Nd S Nd denote the

degree d part of the previous inclusion, for the usual
grading.
If I < S 1is an ideal, and H 1is a hyperplane in

P" defined by h =0, then let I denote the ideal

H
I < S/hS. Note that I, can fail to be saturated when
I is saturated. We shall write explicitly I;at when
the saturation is meant.
i + . . .
Definition: J ¢ NE 1 is a lexicographic subset of Ng+l
if J consists of the r greatest monomials of NE+1 in

the lexicographic order for some r.

1

=
lex'

L « N°F is a lexicographic ideal if L is an

n+1l

ideal, and (L) A

is a lexicographic subset of N for

d
each 4d.

Let H denote the hyperplane X, = 0. If

J < Ng+l is lexicographic, then clearly J, = J n s

H d
lexicographic. Similarly, if L < Nn+1 is a lexicographic

ideal, then L,=1Ln N® is a lexicographic ideal in N,

(7.2) Lemma : A lexicographic subset J ¢ NE+1 is a

. .. + .
Borel subset; a lexicographic ideal L < N 1 is a Borel
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ideal.
Proof. Suppose that a = {aﬂ,+..,an} e J, and
B= (by,...sb ) e N2, so o(B) 2o(3). If B =3, let

i be the first coordinate so G(E}i > G{E}i. Then

bu = aD,...

SO E € L.

b = a,
i

i-1 and bi > a,. Thus, b > 3,

-1’ lex

The ideal generated by J will be a Borel ideal
iff J 1is a Borel subset. Thus, by (3.11), J 1is Borel.

It follows immediately that L is a Borel ideal. ]

(7.3) We seek to describe the wild card partition of a
saturated lexicographic ideal; the following lemma is
preparatory.

Let H denote the hyperplane X = 0, and write
N" Nn+1 as in (6.1). For each wild card b* c N"+l of
rank = 0, let bﬁ c N® denote the wild card b* o N"
obtained by deleting the last coordinate of b*. For
example, {l,*,*}H = (1,%).

For each wild card c¢* c Nn, let (c*,*) denote

adjoining * as an nth coordinate to c*. For example,
((1,0),*) = (1,0,%).

. . n+1l
Lemma : Let I be a saturated Borel ideal in N , and

let H be the hyperplane X, = 0. If B 1is the wild card

partition for I, then Iy has the wild card partition

BH = {b*H | b* ¢ B},
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Proof. We have IH =1In Nn. Thus, if b* ¢ B, then

bﬁ n IH is empty. In the other direction, if c* n Iy

is empty for a wild card c* ¢ Nn, then (c*,*) n I ecan

be shown to be empty. Suppose on the contrary that

¢ = {cu,...,cn] e (c*,*) n I. Since I 1is saturated,
{Cﬂ""'cnul'n} belongs to I by (4.2) and (4.3), and
so to c* n IH. This is contrary to assumption, so

(c*,*) n I must in fact be empty.

By (5.9), the wild card partitions for I, I

H
consist of the c-maximal wild cards for I, IH’ respec-
tively. By the above argument, the result follows. 0
(7.4) Lemma : Let J be a Borel subset of N3+1, and

let I < 8 be the saturation of the ideal generated by J.
Then the wild card partition B for I can be computed

as follows.
sat

First, compute inductively By for Ia s and
adjoin to B each (c*,*) for c* ¢ B+
Second, for each b = {bﬂ,...,bn} € Ng+1 contained

in neither J nor B, adjoin to B the wild card

' *) .

* =
b (byseensb 3

Proof. First, each wild card (c*,*) is c-maximal for
I, by the proof of (7.3). Second, if b ¢ J, then
b* n I is empty, by (4.2) and (4.3), because I 1is

saturated. If b ¢ (c*,*) for each c¢* ¢ B then b*

HI‘

must also be c-maximal for I, again by the proof of (7.3).
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Since I 1is saturated, all c-maximal wild cards
for I have rank = 0, and are accounted for in one of
the above two cases. Thus by (5.9), we have computed

B. 0

(7.5) Example: Let J be the lexicographic subset of

Ng consisting of the monomials
{x5,x4y,xdz,x3y2,xayz,xEZE,xzya,xzyzz}:
sat : .
If I, IH are defined as in (7.4), then the
wild card partition for I:at is seen from the hyperplane
section

i cQ@L

to consist of (0,*) and (1,*). These account for the
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two complete rows of cells marked [:::] below:

Thus, by (7.4), the wild card partition for 1I

consists of
(0,*,*), (1,*%,*%), (2,0,*%), (2,1,%).

Following the discussion (5.10), the subscheme defined by
I in P? is therefore a line of multiplicity 2, with
an embedded point of multiplicity 2.

We compute the Hilbert polynomial of §/I, by the

method of (6.5):

0 1 2 3 4 0 1 2 3
0 1 1 1 1
1 1 h 1
Thus, plz) = g{mo,ml;z} with my = 4, m, = 2.

(7.6) The following is a continuation of (7.4).

+ . .
If J < Ng 1 15 a Borel subset, and b* < Nn+1 is
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a wild card, then define b* to be c-maximal for J if
b* has height < d, b* n J is empty, and no wild card
disjoint from J properly contains b*. This extends the

definition made in (5.4).

+
Lemma : let J < Ng 1 be a Borel subset, and let I be
the saturation of the ideal generated by J. Then the wild
card partition for I consists of the c-maximal wild cards

for J.

Proof. One can prove this inductively, following (7.4).
Alternatively, all elements of the wild card partition for
I have height < d, by (5.7), since I is generated by
monomials of degree < 4. Since I is saturated, all

elemtents of the wild card partition for I have rank

= 0, by (6.2). Rank = 0, height < d wild cards have a
nonempty intersection with Ng+1, and the inclusion

relationships among them are preserved by their inter-

n+1l
a -

J 1iff it is c-maximal for I, so the result follows by

sections with N Thus, a wild card is c-maximal for

the proof of (5.9). O
(7.7) Lemma : Let J ¢ N3+1 be a Borel subset, and let
Ic Nn+l be the saturation of the ideal generated by J.

Then the following are equivalent:

. . . n+
(a) J 1is a lexicographic subset of Nd 1;
(b) For nonnegative integers aﬂ,.._,an_l so

agt...+a _, < d, the wild card partition B for I is
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given by
B ={(agsev-vaj_qsb,*,.0.,%) i =0,...,n-1 and Osb<a;}.
Proof. (a)= (b): Let a = (ags+--,a ) be the least

element of J in the lexicographic order; Agreerd. g

are the desired integers. The union of the elements of B

is disjoint from J, and includes every monomial in

n+ . . ;
Nd 1 YW J. B consists of c-maximal wild cards for J, so

by the preceding remark, B consists of every c-maximal

wild card for J. By (7.6), B 1is the wild card partition

for 1I.
(b)=> (a): If we define a = d-ag=...-a _,, then
J = N3+l “ u B consists precisely of the monomials in
n+l ; . .
Nd which are Elex Eaﬁ,...,an}, so J 1is a lexico-

graphic subset. U

(7.8) Lemma : Let L c Nn+1 be an ideal generated by a
. . + . . .

lexicographic subset of NE 1. Then L 1is a lexicographic

ideal.

Proof. We need to show that {L}j is a lexicographic

n+l

subset of Hj for each j = 4. By (7.2), L is gen-

erated by a Borel subset of Ng+1, so L is a Borel
ideal. By (4.5), L 1is saturated in degrees = d, so for
j = 4, EL}j is described by the wild card partition for

Lsat‘ The result now follows by the reasoning of (7.7). [

(7.9) Proposition: There exists a unigque saturated
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1

. . . +
lexicographic ideal L = N" for each seguence

My 2 ... 2m_ > 0, with s < n-1, so §&/L has Hilbert
polynomial g{mﬂ,...,ms:z}, The highest degree of a

minimal generator for L is mg -

Proof. The form of the wild card partition B for any

such L 1is given by (7.7b). Given such integers
aﬂ""’an-l' we can compute mU"“'ms' B consists of
one wild card of each height h for 0 = 4§ < au+...+an_1.

In this order, the ranks of these wild cards form a

nonincreasing seguence, with a wild cards of each

n-1-1i

rank 1i. Following the computation of Mg re e Mg in

= G ¥ 1
(6.5), one sees that m, a; +a _, for each i, so by
adept choice of the integers agre-+sa8,_,s any sequence
My 2 .. 2m > 0 is obtainable.

Since the maximum height of a wild card for L is

m.-1, it follows from (5.7) and (5.8) that the highest

0
degree of a minimal generator for L is Mg |

It is helpful to follow this proof on example (7.5).

This result is due to Macaulay [Mac27].
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§8 The Extreme Behavior of the Lexicographic Ideal

n+l
d r
let L be a lexicographic subset with at most the same

(8.1) Lemma : Let J be a Borel subset of N and

number of elements: #(L) = #(J). Let H be the hyper-
_ _ n _ n
plane Xp = 0, so JH =Jn Nd’ and LH =L n Hd' Then

#{LH} s #[JH}.

n+1l : n n+1 .
Proof. Express Nd as the union, Nd U and-l' of its

elements with zero and nonzero last coordinate,

respectively. We construct J,L by removing elements from

n+l
d

framework, the lemma asserts that the number of elements

N until we are left with the desired sets. In this

removed from N© in the construction of L bounds the

d
number removed in the construction of J.
A wild card a* ¢ Nn+l will be said to complement

J f(or L) if a* 1is disjoint from J (or L), and a*
n+1l

intersects Nd ; i.e. has height = d. We specifically
include nonmaximal wild cards, with respect to inclusion,
in the following argument.

The number of elements removed from Ng in the
construction of J is then given by the number of rank 1
wild cards which complement J, and similarly for L.
Denote these guantities by rliJ}, rl{L). More generally,
let riEJ}, ri{L} dencte the number of rank 1 wild cards
which complement J,L.

Our inductive hypothesis is then that

ri{L} = ri{J} for each i =1,...,n. This claim is clear
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if J,L < Né or NE+1; we prove it for
n+l n n+1l : . .
Nd = Hd u xn“d-l' assuming the claim on these two pieces.

It is helpful to imagine the process of carving

+ .
Hg 1 down to J or L as a game, where after removing
each element, one must leave a Borel subset, and the object

is to remove as many elements as possible from N There

n
a
is no harm in imposing the additional requirement that a
Borel subset is left after each step, since the partial
order constructed from o and 2 in (3.11) can be refined
to a total order in such a way that J (or L) is a
section of the order. Then this order specifies a sequence
of monomials to remove from Hg+1, so each intermediate
step is a Borel subset. This additional reguirement makes
the following argument easier to visualize.

We describe the lexicographic strategy for this

. 3
game, using N,

z (4]
3 a 'E'"'a' 3
; EPoooNs

2
M
HOCOCOON

The cells on the right are numbered in increasing

as an example:

lexicographic order, the order in which they are removed
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under this strategy. We take away elements of (0,*,*)

. . . 2
until scoring a removal in Ny»

(1,*,*), etc.. When (3,*,*) is removed, the sole

then we work along

element of (4,%,*), in N2 can be removed without

4’
further preparation in zNg. This completes the removal of
the rank 2 wild card (*,%,%*).

Note that by the requirement that we leave a Borel
subset, the element {al,...,as,ﬂ,...,ﬂ} of the wild card
{al,...,as_l,*,...,*} must under any circumstances be

removed last.

We now refine our analysis of this game, to clarify

the induction. Further divide xnﬂgt% into parts
2. n+l n
x Nj_5 and X Naq®

s
2.3 2. .n+l
2N3 oo 2Ny  UxNg_5)

2 n
SOCOO0OR L

Once we have removed an element from ang_l, completing

a rank 1 wild card in angt%, it becomes permissible to
remove the corresponding element of Nn, completing that

same wild card in H2+1, as long as this leaves a Borel
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subset of Ng. The lexicographic strategy does so at the

next turn. Furthermore, if we have completed a rank 2 or

n+l
d-1" .
remove elements, without further preparation, from Nn.

. . . + .
completing these same wild cards in no 1. The lexico-

d
graphic strategy does so before playing back in xnﬁgti:

the removal of [aﬂ,...,as,ﬁ,...,ﬂ,l} is followed by the

higher wild card in x N it also becomes possible to

removal of {aﬂ,...,aS,D,...,ﬂ,l,G], P

{aﬂ,...,as+1,ﬂ,...,ﬂ}, completing the removal of

{Elﬁ;---;a *}

-

$_1I'*I'"'f
Thus, to receive maximum scoring potential from a

n+l
d-1"

maximize the number of wild cards of any rank = 1

n+l
d-1"

of moves then playable within the scoring zone Hg. By

given allocation of moves within an one wants to

completed within x N This sum is precisely the number

induction, there is no better allocation of moves within

xnﬂgti than that given by the lexicographic order.

Since the lexicographic strategy plays within NE

as soon as permissible, there can be no way to allocate

- . .
fewer moves to ang_% than the lexicographic strategy

does, and then to be able to play any extra moves as
n
a
The rest of the inductive assertion follows from

scoring moves within N Thus rl{L} > rliJ}.

two observations. First, LH is a lexicographic subset
n
df
rank i wild cards which complement L

of N s0 we can assume our results there. Second, the

) correspond

H  H

exactly to rank i+l wild cards complementing L,J.
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Thus, by applying the induction assertion to Ly rd we

H.F
find that ri{L} z ri{J] for i=1,,..,n.

This completes the proof. O

(8.2) Proposition: Let I < S be a Borel ideal,

generated by elements of degree < d. Let L < S be a
lexicographic ideal, also generated by elements of degree
< d.

{a) If dim{I}z z dim{L}z holds for =z = 4,
then this holds for all 2z = 4.

(b) If dim{I}z = dim{L}z holds for =z = 4,
then this holds for all =z = d.

() If diml{I}z = diml[L}lz holds for 2z = d and

A d+1l, then this holds for all =z = 4.

Proocf. Let H be the hyperplane X, = 0, and let 1I,L
be the sheafifications of I,L on P". By (2.2), (4.3)

we have exact sequences

0 — I(-1) — 1 — 1, —> 0,

H
0 — L(-1) —> L —> LH —> 0.
We have hn{I{z}} = dim{I}z for z =z d, since by (4.5) I

is saturated in degrees = d. Thus dim{I}z+l-dim[I]z
= dlm{IH}z+1 for z = d, and similarly for L,LH.

To prove (a), it suffices to show that
dim{I]d+l z dim{Ljd+l; higher degrees then follow by
induction, since {L}d+1 is a lexicographic subset by

(6.9). By the above, we need only to show that
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dim(I_) 12 dim(L It follows from (6.8) that

1 a+ o a+1°
H%lg dim{LH]a. The result, trivial when n = 1, now

dim(I
follows by induction.

To prove (b), note that if r:liml{I}c.i > dim[L}d,
then L can be enlarged in degree d, while preserving
the applicability of (a). Since L was already saturated
in degrees = d, these additional generators will increase
the dimension of L in every higher degree. This gives a
strict inequality for every 2z = d.

To prove (c), note that the hypothesis implies that

dim(I,) = dim{LH} Since by (6.8),

H d+1 d+1"
dim{IH}d = dim{LH]d, it follows from (b) that in fact,
dim{IH}ld = dim{LH}d. The result, trivial when n = 1,
now follows by induction. ]
(8.3) The reader may find the two dimensions of

klx,y,z], P2 inadequate for visualizing the proofs of
this section, or may wish to consider P3 for other
reasons, such as the desire to study space curves. By a
fortunate accident, Borel subsets of N; are easily
modeled.

Arrange the degree d monomials of klw,x,v,z] in
a pyramid with peak wd, and base corners xd,yﬂ,zd,
generalizing the discussion in (3.8). Consider the
complement of a Borel subset J ¢ N;, in terms of the
requirement given by (3.7). Each layer described by a

constant power w' of w must look like the complement of



84

a Borel subset of Ng_i: this can be imagined as described

in (3.8). Furthermore, if (gq,r,s,t) ¢4 J, with g = 0,

then none of
{q-lrr"'lrsrt:' I {q-l fr,8+1 rt} 1] {q—l ,r,s,t+l]l

can belong to J. This gives (q,r,s,t) a complete base

of monomials to rest on, in the layer for wq-l, if one

assumes gravity.

The gist of this is that one can build a model for
4
dr
hex nuts from a hardware store, and the resulting structure

the complement of any Borel subset of N by stacking
will be stable. Alternatively, one can draw overlapping
silhouettes for each layver, and make sense of the resulting
diagram. We draw the complements of two Borel subsets of
N:, where the peak w, rising out of the page, is not
labeled. One describes a'lexicographic subset, and the

other a different Borel subset; the complements of each

consist of 26 monomials:
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§9 ‘Characteristic Zero Results

(9.1) Throughout this section, we let § = k[xﬂ,...,xn],
where k 1is restricted to be an algebraically closed field
of characteristic zero.

The following lemma strengthens the argument made

in (3.6)
Lemma : Let S = k[x,y], and let V be a subspace of
Sd' Let char k = 0. Let gc e T(2) be the matrix

In terms of the coordinate system on Sd given by the
basis consisting of monomials, represent V by an rx(d+l)
matrix whose r rows are a basis for V. Then for all
but finitely many values of ¢, gcv has a matrix
representation whose rxr minor consisting of the first

r columns is nonzero.

Proof. The rxr minors of gcv, which projectively give
the Pliicker coordinates of gcv, can be computed by
applying a matrix derived from gc to the rxr minors of

V. We study this matrix.
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gc acts on Sd via the matrix

1 c c2 c3

2 3| 2
SRR
0 0 1 [g}c
0 0 0 1

The matrix which acts on the r*r minors of ¥ ia given
by the rxr minors of this matrix. We are only interested
in the minors obtained by choosing rows 1,...,r, and

columns il""'ir' These minors have the form

where 4§ = il+...+ir-1—...-r. By elementary row operations,
the determinant shown can be reduced to the Vandermonde

determinant
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LI

This determinant is known to be nonzero for distinct
integers il""'ir' Thus, given the rxr minors of WV,
the first rxr minor of gcv can be computed as a
polynomial in c.

It remains to be seen that this polynomial is not
identically zero; we do not want like powers of ¢ to
cancel. However, among the minors of V, there is a
unigque nonzero minor so i1+...+ir is minimal: choose
il"“’ir to be the columns containing lead ones when the
matrix for V 1is in row reduced form. Thus, the
corresponding power of ¢ has a nonzero coefficient.

Therefore, for any choice of ¢ not a root of this

polynomial, the first rxr minor of gcv is nonzero. 0

(9.2) Lemma : Let I be a homogeneous ideal. Let
char k = 0. There exists a change of coordinates

. +
g € T(n+l), and a multiplicative order > o©n N 1, so

in(gI) is a Borel ideal.
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Proof. Consider the subspace {I}d of Sd. Let >l ex
be the lexicographic order on ﬂ2+1. >1ex ©€an be induced
on mE*l by the grading q = ((a+1)®,...,a+1,1), by
(I,1.9). in{I}d is spanned by the monomials associated

with the lead terms of a basis for [I]d, if such a basis
is chosen so no two basis elements begin with the same
lead term. Define the weight of in{I}d to be the sum of
the degrees of its monomial basis, with respect to the
above grading g. Note that this weight is bounded.

Suppose that 1in(I) is not a Borel subset of

N2+1. Choose 1i,j so condition (3.7b) fails, and define

g£§ € T(n+l) to be an identity matrix except for an (1,3)

entry of c. Consider the decomposition Sq = Wy induced
b

;;, analogous to the decomposition studied in the

proof of (3.7).

by g

The monomials of in{I}d are partitioned according

to which summand Wp contains them. Consider the effect
c
i]
monomials; the occupancy numbers of the above partition

of g on the above basis for {I}d yielding these
are seen to be the same for in{g;glld. Within each
summand Wg by (7.1) all but finitely many choices for ¢
will yield the lexicographically greatest monomials as the
ar Choose a ¢ which does this for
each summand Wi since in{I}d failed condition (3.7b)

elements of in{g;gl}

on 1i,j, the weight of in{g;gl}d must be greater than

the weight of in{I}d. Since this weight is bounded, if
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we were only concerned with (I) we could realize the

d!’
g claimed in the lemma as the composition of finitely many
c
such 9;4-

The above argument extends to I < 8§ 1in all

degrees, by repeated use of the noetherian property of

S. U

(9.3) Consider I as a point on the appropriate Hilbert
scheme. The orbit of I under T(n+l) has points in its
closure which are fixed by T(n+l). 1In characteristic
zero, these points correspond to Borel ideals. One expects,
according to general principles, to be able to realize

such a point as a point in the closure of the orbit of I
by a one parameter subgroup of T(n+l) (see [Mum65,
chapter 2]). Such a one parameter subgroup, once
diagonalized by a suitable change of coordinates, can be
thought of as inducing a multiplicative order, based on the
weights it induces on monomials. While we have proved
(9.2) directly, its truth was first inferred by the above
reasoning. See chapter V for an elaboration of this line

of reasoning.

(9.4) Proposition: ILet 1 be an ideal sheaf on Pn,
with char k = 0. Suppose that y(0/1)(z) = g{mﬂ,...,ms:z].
Then

(a) My 2 ... 2m > 0;

(b) I is m.-regular.

0
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Proof. Following (9.2), we make a change of coordinates,
and choose a multiplicative order > so if

I = QHU{I{ZJJ, then in(I) is a Borel ideal. Since I
and in(I) have the same Hilbert function, by (I,1.5),
{(a) follows from (6.5a).

If in(I) denotes the ideal sheaf for in(I), then
in(I) 1is mﬂ—regular by (6.11). Using the flat family
constructed in (I,2.12), in(I) can be taken to be the
special fiber of a flat family of coherent sheaves with
general fibers all isomorphic to 1. It follows from the

upper semicontinuity of cohomology groups on flat families

that hl{in{I]{z}} =3 hl{I{z}} for every 1i,z. (See
[Har77,II112.8]). Thus, 1 is mﬂ—regular, proving
(b). U

The history of this result will be discussed in

(10.3).

(9.5) Proposition: Let I © S be an ideal, generated

by elements of degree < d. Let char k = 0. Let L c S
be a lexicographic ideal, alsoc generated by elements of

degree = d.

(a) If dim{I}z = dim{L}z holds for =z = 4,
then this holds for all =z =z 4.
(b) If dim[I}z > dim{L}z holds for =z = d, then
this holds for all =z = d.
= d and

(ec) If dim{Ijz = dimI[L}z holds for =z

z = d+1, then this holds for all =z = d.
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Proof. As in (9.2), we make a change of coordinates, and
choose a multiplicative order > so 1in(I) is a Borel
ideal. I and in(I) have the same Hilbert function, by
(I,1.5). Let J be the ideal generated by in{I}d. Then
dim(I) = dim{J}z for each 2z 2 d. (a) and (b) follow
from this inequality, and (8.2).

For (c), we have dim{J}z = dim(L}z for all
z 2z d, by (B.2c). The ideal sheaf associated with J is
d-regular, by (6.9). Since J itself is generated
entirely by monomials of degree d, it follows from (2.7)
that a minimal set of lEt syzygies among these monomials
are all of degree d+l.

We assert that a k-basis for [I}d, whose lead
terms generate J, is in fact a standard basis for 1I.

Let m ,mq be such a k-basis. It suffices by (I,2.9)

17"
to check that

Emi s mj} R ml,...,mq = 0

for all pairs 1i,j corresponding to the above degree d+1
syzygies. Since (1) 441 Dbas as small dimension as
possible, by part (a), there is no room for the above test

d+1’

so every element of {I}d+1 will have remainder zero with

respect to ml,...,mq, including the elements m. s mj

(I,2.9) to fail. In other words, dim{I}d+l = dim(J)

under consideration.
Thus, in{I}z = {JJZ for =z =z d. Since the result

holds for J, by (8.2c), and I and in(I} have the same
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Hilbert function, by (I,1.5), the result follows. a

The history of this result will be discussed in

(10.3).
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§10 Characteristic Free Results

(10.1) We allow k to be an algebraically closed field

of any characteristic.

Proposition: Let M = @ﬂpiei}, e, 2 0, be a free sheaf
i

on Pn, generated by global sections as an GP-module.
Let F be a coherent sheaf, generated by global
sections. F «can be considered as a guotient of M above,

for suitable choices of the e;-

Alternatively, fix M, and let 1 be a submodule

of M.
In either case, we obtain the exact sequence
0 — I — M — F — 0.
Let pl(z) = x(F(z)) be the Hilbert polynomial of F. Then
(a) p(z) = g(my,...,m ;z) for integers

M. 2 ... 2m > 0:
0 s '

(b) I 1is m_-regular;

0
(c) F is {mghl}-regular.
Proof. Let M be the S-module associated to M, and let

I be the saturated submodule of M associated to 1.
Choose a multiplicative order (I,1.1) on M, and form
in(I). Let in(I) be the associated coherent sheaf, which
is a submodule of M. M/in(I) has the same Hilbert
polynomial p(z) as F, by (I,1.5). M/in(I) is a direct
sum of nonnegatively twisted structure sheaves defined by

monomial ideals. Each such structure sheaf satisfies (a)
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by (8.2a), since the Hilbert function of the guotient of a
monomial ideal is independent of the characteristic of k,
being a combinatorial phenomenon inside Nn+1. By (1.14),
each structure sheaf still satisfies (a) after twisting

by ey z 0. Thus, the direct sum M/in(I) satisfies (a),

since by (1.13), the sum of polynomials of the form (a) is

again of the form (a). This proves (a).
Assume inductively that (b) holds on Pn_l. We
prove (b) first for monomial ideal sheaves I on P". If

x(0/1) (2) = g[mu,...,ms;z], then for a hyperplane H not
containing any associated primes of 1,

x[GHKIH}[z} = g{ml,...,msgzl by (2.8). Since my = my,
IH is mﬂ—rEgular, by (2.3a) and the inductive hypothesis.
To show that 1 is m,-regular, it suffices by (2.6b) to

show that

hD{ﬂfI}fmU-lil = glmg,...,m sm-1).

0
The corresponding ideal sheaf in characteristic zero is
mﬂ-regular, by (9.4b), so the above equality holds in
characteristic zero, by (2.5). As remarked above, Hilbert
functions of monomial ideals are independent of the
characteristic, so the above egquality always holds. Thus,
monomial ideals I are mﬂ-regular.

Now, if [ 1is an arbitrary submodule of M, by
(I,2.12) there exists a flat family of coherent sheaves
with general fibers all isomorphic to 1, and central fiber

in(I). in(I) 1is a direct sum of twisted monomial ideals,
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as remarked above. By the mﬂ—regularity of monomial ideal
sheaves, the twisting and addition formulas (1.13), (1.14),
and the property (2.3a) of m-regularity, it follows that
in(I}) is mD—regular.

We now argue as in (9.4b). On flat families, the
ranks of cohomology groups vary upper semicontinuously.
See [Har77,III12.8]. In particular, the vanishing of
certain cohomology groups for in(I) forces the
corresponding vanishing for I. Thus, 1 is mu—regular,
proving (b).

(c) is an immediate consequence of (b), using the

given exact sequence. 0

The history of this result will be discussed in
(10.3).

Note that the above argument in fact shows that
Hi{I{z—i}} = (0) for 1i=21, z zm.

This gives an

interpretation of each integer m, -

(10.2) The following result extends (9.5) to any

characteristic.

Proposition: Let I < S be an ideal, generated by

elements of degree < d. Let L ¢ 8 be a lexicographic
ideal, also generated by elements of degree = d.

(a) If dim{Ijz = dim{L]z holds for =z = 4, then
this holds for all =z =z 4.

(b} If dim{I]z > dim{L]z holds for =z = d, then
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this holds for all =z = 4.

(e) If dim{I}z = dim{L}z holds for =z = d and

(]

Z d+1l, then this holds for all =z > 4.

Proof. As in the proof of (10.1), note that the Hilbert
function of a monomial ideal is characteristic free. Thus,
(a), (b), (c) hold in any characteristiec for monomial
ideals.

We argue exactly as in (9.5), replacing the use of
Borel ideals by monomial ideals, and skipping the prelim-
inary change of coordinates.

Let J be generated by in{I}d; dim{I}z Z dim{J]z
for each z. The monomial ideal J satisfies (a), (b) ,
(c) by the above argument. This proves (a), (b).

In the case of (¢), it follows that J and L
have the same Hilbert polynomial. Let this polynomial be
gEmD,...,ms:z}. By (7.9), My < d, since L 1is generated
in degrees =< d. By (10.1) and (2.3a), the ideal sheaf J
assoclated to J 1is d-regular. Thus, (2.7) applies to J,
so a minimal set of 15° syzygies among the generators of
J are all of degree d+1. As in (9.5), it follows from
(I,2.9) and the minimum growth of J that in{I}lz = {J}z

for z =z 4, proving (c). O

(10.3) We discuss the history of (10.1), (10.2). Note
that (10.1) generalizes (9.4), and (10.2) generalizes (9.5).

(10.2a), (10.2b) were proved by Macaulay [Mac27].
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He used (I,1.5) to reduce to a monomial ideal, and then
proceeds with a direct combinatorial argument, which he

prefaced with the amusing disclaimer,

"Note.- This proof of the theorem
which has been assumed earlier is given
only to place it on record. It is too long
and complicated to provide any but the most

tedious reading."

A number of simpler proofs followed; see [Sta78] for a good
bibliography. The proof offered here, by reduction to
Borel ideals in characteristic zero, is more geometric

than preceding arguments. The combinatorics lacking a
geometric interpretation is confined to (8.1). It seems
that such an obvious statement as (8.1) should admit a
shorter proof, but this author has discarded many false
arguments for (8.1) without finding one.

(10.1a) was proved by Macaulay [Mac27] for the case
of an ideal, in the same manner that he proved (10.2a,b).
Hartshorne [Har66] gives an independent proof for the case
of an ideal, by considering special subschemes of BP"
called fans. The notation g{mc,...,ms:z} is from his
treatment; the present author has found it more workable
(see §1) than the alternatives in the literature.

(10.1b) was proved in the case where 1 1is an

ideal sheaf, by Gotzmann [Got78]. He combines {(10.2a,b)

with (2.6) to obtain an extremely short proof by induction.
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The deformation argument as given here for the general case
has been adapted to take advantage of the ideas in his
proof, which does not generalize without the tools
developed here.

(10.2¢c) was proved by Gotzmann [Got78]. We have
simplified his argument by the use of (I,2.9), as described

in the proof of (9.5c).

(10.4) The following result is essential to analyzing
the complexity of the division algorithm (I,§2). See

chapter III for further discussion.

Proposition: Let M be a free S-module, generated by

elements of degree = 0, and let I be a saturated
submodule of M, so M/I has Hilbert polynomial

plz) = g{mn,...,mg:z}. Then in(I) is generated by

elements of degree = My -

Proof. Let I « M be the coherent sheaves associated to
I < M. HNote that by (10.1), my 2 ... 2 m, > 0, and T is
mD-regular.

First, consider the case where I ¢ S is a satura-
ted ideal. 1in(I) need not be saturated; see example
(I,1.4). However, I and in(I) have the same Hilbert
function, by (I,1.5). Let L be the saturated lexico-
graphic ideal with the same Hilbert polynomial, as in (7.9).
By (7.9), L is generated in degrees = mg - By (2.5),

the Hilbert functions for I, in(I), L all agree in
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degrees = m,-l. Let J be the ideal generated by

0
in{I}m - Applying (10.2a), dim{J}z S dim{L}z for each
0
z 2 mg. Since J c in(I), in fact J and in(I) agree as
ideals for all degrees = mg - Thus, 1in(I) is generated
by elements of degree = ma -

In short, because in(I) is growing in dimension
at the slowest possible rate, given by (10.2), in degrees
2 my, there is no room for in(I) to have a generator of
degree > My«

Now, consider the general case where I is a sub-
module of M. The above argument carries over intact, with
the help of (1.13), (1.14). in(I) is a direct sum of
nonnegatively twisted monomial ideals. Each such twisted
ideal must be growing in dimension at the slowest possible

rate in degrees = m By the addition and twisting

0°
formulas (1.13), (1.14), any deviation from this rate would
show up as a discrepancy between the Hilbert function and

the Hilbert polynomial of in(I). By (2.5), this cannot

happen, since 1 is mﬂ-regular. Thus, there is no room

for in(I) to have a generator of degree > m O

0"

(10.5) The m-regularity bound given by (10.1) is precise.
By (7.9), the saturated lexicographic ideal with quotient

Hilbert polynomial g{mﬂ,...,ms;z} has a generator of

degree m By (2.3b), the associated ideal sheaf cannot

0
be better than mﬂ-regular.

Lexicographic ideals generally define nonreduced
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subschemes of P, with multiple embedded components. If
one puts additional assumptions on the subscheme X
defined by an ideal I, one finds that the cohomology of
I vanishes in considerably lower degrees. For example,
if X 1is a l-dimensional subscheme of Pn, of degree d

with arithmetic genus g, then by (1.17),

_ d
My = [2] + 1 - g.

On the other hand, if X 1is a reduced, irreducible curve
of codimension r in the smallest linear space containing

it, then 1 1is m-regqular for
m = d+ 1 - r.

This has been proved by Rob Lazarsfeld. It is suspected
by various people that this formula can be extended to
higher dimensional X.

Thus, multiple and embedded components tend to
increase the least m for which 1 is m-regular.

A lexicographic ideal L «can easily occur as
in(I) for an arbitrary ideal I, since L is Borel
fixed. From the proof of (9.2), one sees that in(I) will
be Borel fixed in characteristic zero for a generic
coordinate system. Thus, (10.4) not only gives a sharp
bound, but gives a good indication of usual behavior; by
the preceding discussion, Borel fixed ideals are likely

to be m-regular only for m relatively close to mg -



Chapter III

On the Complexity of the Division Algorithm
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§1 Problems Arising from Algebraic Geometry

(1.1) Within algebraic geometry, there are two related
categories for which the division algorithm is well-suited.
These are the category of subschemes of a fixed projective
space Pn, and the category of coherent sheaves defined on
a fixed projective space P". Both of these situations can

be studied via exact sequences
0 — I — M — F —> 0@

of the type considered in (II1,10.1), where I is a sub-
sheaf of the free GP*module M. The division algorithm
can be used to study this sequence, by considering the
corresponding saturated submodule I of the graded free
S-module M,

Two aspects of the typical situation turn out to
be crucial in determining the complexity of constructing a
standard basis for 1I.,. First, the n of P" is often
fixed. Second, one often knows the Hilbert polynomial
x(F(z)), or at least anticipates what it might be, so my
can be considered known.

It is precisely for fixed P", and for saturated
submodules I < M, that (II,10.4) can be applied to bound
the complexity of constructing a standard basis for I, in

terms of m If in(I) is constructed degree by degree,

0
one enumerates a minimal generating set for in(I), as a
standard basis for I is built. (II, 10.4) bounds this

generating set for in(I): its elements are all of degree
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I
=

The affine case I ¢ M, where M is a nongraded
A-module, as in the notation of chapter I, can be under-
stood in terms of this result. First, one can add a
homogenizing variable, to retreat to the graded case.

There is not a 1:1 correspondence between standard bases in
the two cases, as more simplifications become possible in
the affine setting where the distinction between powers of
the homogenizing variable is blurred, but a standard basis
for the graded case does dehomogenize into a standard
basis for the affine case. Second, by adding one more
variable and ignoring it completely, any graded submodule
of the original free module becomes a saturated submodule
of the new free module. Geometrically, this is because
any embedded components supported at the vertex of the
affine cone over the original projective object become
legitimate components, visible in the new projective space.
Thus, with suitable preparation, the cohomological inter-
pretation of the division algorithm given by (II ,10.4)
applies to the general case.

There are two motivations for the organization of
this chapter into the two groupings of algebraic geometry
and complexity theory. First, the number of wvariables
arising in problems from complexity theory is seldom fixed,
in contrast to problems from algebraic geometry; the
cohomological interpretation (II ,10.4) is insufficient to

yield interesting bounds on the behavior of the division
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algorithm when the number of variables is not fixed.
Second, while it is reasonable to group inputs to the
division algorithm according to m, in the case of
algebraic geometry, the relation of My to the size of
inputs arising from complexity theory is certainly erratic,
and not understood.

In the above algebraic geometry setting, the
division algorithm appears to be a tractable approach to
tackling natural problems, as (1.2), (1.3) reveal.

Experience is bearing this out.

(1.2) Proposition: Let I be a saturated submodule of

the free S-module M, so M/I has Hilbert polynomial
plz) = g{mD,--.,mE:z}. Then the construction of the
reduced standard basis for I requires a number of field

operations which is a polynomial in m .

Proof. We show that the number of terms collectively of
all members of the reduced standard basis for I is a
polynomial in m,. It is apparent, but we do not justify
rigorously, that the number of field operations involved in
the construction of this basis is a polynomial in the above
guantity.

The number of monomials in M of degree = m, is
a polynomial in my The reduced standard basis for 1 1is
in 1:1 correspondence with a minimal set of generators for
in(I). By (II,10.4), each element of this basis is of

degree = m Thus, the number of possible elements, and

0



104

the number of terms of each element, are each bounded by a
polynomial in mye The product of these polynomials bounds

the total number of possible terms in this basis. O

The above argument relies on a careful analysis of the
degrees of standard basis elements, and a very loose analy-
sis of the number of terms arising in the computation. One
does much better than the above analysis indicates, in
terms of the cardinality of in(I). For example, the first
generator of in(I) itself generates a principal submodule
of M, immediately reducing the degree of the polynomial
giving the number of remaining generators possible within
that summand of M. Our naive analysis simply subtracts

1l from the count. How much better one does, however, is
not understood.

Over a finite field, the cost of each field opera-
tion can be considered constant, as we are not making field
extensions; the above result asserts in this case that
the complexity of constructing a standard basis is
polynomial time. In characteristic zero, one sees already
in use of the euclidean algorithm a possible explosion in
the size of integer coefficients. We make no attempt to
analyze this effect. It is nice to be able to work in
characteristic zero, but one should be prepared to jump
ship when necessary. Characteristic p is for many rea-

sons computationally more attractive.
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(1.3) Corollary: Let I be a saturated ideal in S,

defining a degree d, genus g curve X ¢ P'. Then the
number of field operations required to construct a

standard basis for I is a polynomial in d.

Proof. By (II,1.17),

_ d _
My = [21 +1 g.
The result now follows from (1.2). O

Without further improvements, the study of curves in P3

may be by far the most reasonable application for the
division algorithm within algebraic geometry. Our estimate,

as it stands, is exponential in the n of Bp".

(1.4) Buchberger, in [Buc79], bounds the degrees of a
standard basis for I, when I is an ideal in kl[x,vy].

He does not assume that I is saturated.

(1.5) There is a practical point to studying the comple-
xity of algorithms: one cannot look for bargains until one
knows the going price of something. Here, the cohomology
interpretation (II ,10.4) of the complexity of the division
algorithm indicates that substantial savings in computation
can be achieved in certain situations where it is not
actually necessary to compute the entire standard basis.
Suppose I defines an irreducible, reduced curve

X ¢ Pn, and for example, we wish to either

(a) compute the ISt syzygies of I, or
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(b) compute the equations of the projection of

X to a subspace of p".

A minimal set of syzygies for (a), or a minimal set of
equations for (b), will consist of elements of degrees
bounded by roughly the actual m-regularity of I, rather
than the theoretical upper bound Mg given by (II ,10.1).
See (II ,2.2a), (I ,2.4) to establish these bounds. As
discussed in (II,10.5), the actual m-regularity of I

grows like d, whereas the bound m grows like dz, if

0
X 1is of degree 4.

When X 1s reduced, irreducible of higher dimen-
sion, the gulf widens considerably between the actual
m=-regularity of I, and Mg - As suggested in (1.3),
the very feasibility of using the division algorithm at
all for higher dimensional X may depend on exploiting
this gulf.

One takes advantage of the above situation by
computing the standard basis for I degree by degree, and
bailing out when the necessary information has been ob-
tained. This is only possible when the m-regularity of
I is known in advance. It is conceivable that a method
exists for deducing when enough of the standard basis has
been computed to yield whatever information is desired,

for an alien I, but it seems unlikely to this author.

The reader is encouraged to dispute this point.
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§2 Problems Arising from Complexity Theory

(2.1) Much of this section is speculative in nature: its
purpose is to indicate a number of questions that the
author has been unable to answer satisfactorily.

The problem of determining if a system of polyno-
mial equations has a common solution over an algebraically
closed field is NP-hard. The problem of determining if a
given polynomial belongs to a given ideal is exponential
space hard [MaM8l]. The division algorithm can be used to
solve either of these problems.

This would seem at first to suggest that the
division algorithm is an inappropriate method for the first
problem. However, the behavior of the division algorithm
is extremely variable; it takes very little time to
construct a standard basis for certain ideals involving an
arbitrary number of variables. Furthermore, the first
problem may itself be exponential space hard. In this
case, the systems of polynomials arising as images of
NP-complete problems would be of a simpler character than
those arising from exponential space complete problems.

What is the complexity of the division algorithm
when applied to NP-complete problems? Its ability to
handle harder problems is not necessarily an indication
of its behavior here, given the variability of the size of
standard bases. This question should be considered
separately from any attempt to identify circumstances when

the division algorithm could be of practical use; the



108

information obtained about the structure of NP-complete
problems would be of interest in any case.

Separately, can one delineate circumstances when
the division algorithm is of practical use? The spirit of
the method by which NP-complete problems are translated
into this setting can be used to guide other applications.

Finally, what can be said about the systems of
polynomials arising from NP-complete problems, using
methods of algebraic geometry? We suggest some specific

directions to explore.

(2.2) We describe how to translate two different
NP-complete problems into systems of polynomial equations.
For background, see [HoU79], [GaJ79]. This

NP-hardness result was first observed in [FrY77].

Example: A boolean expression in 3-conjunctive normal

form is defined as follows:

Let  %;/X,4.-. be logical variables, and let &,
v, ~ denote logical and, o1, not. Let a literal aij
denote either Xy or  ~X. and let a clause be the v
ij ij

of three literals. Then a 3-CNF boolean expression is the
# of arbitrarily many clauses involving arbitrarily

many variables. Specifically, it is of the form

A {ail W ai2 W ai3].

A 3-CNF boolean expression is satisfiable if there exist
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values for xl,xz,... making the expression fnue. Deter-
mining if 3-CNF boolean expressions are satisfiable is
NP-complete.

To translate a 3-CNF expression into a system of

polynomial eguations, let the involved variables x R ¢

10
generate the polynomial ring k[xl,...,xn] over an arbi-

n

trary field k.
Choose two field values T, F € k to represent
thue, false. Create an equation for each clause by replacing

each literal a.. = =x by (x

i3 tij - T), and a.. = ~x

t 1] t

ij ij

by {xt - F). Replace v by multiplication, and set the
i]
resulting expression equal to zero. For example,

(2, v ~x., ¥ =

1 2 )}  becomes {xl-T}[xz—F]{xB—TJ = 0.

3
Then the system of equations obtained has a solution over
the algebraic closure of k if and only if the original
3-CNF expression is satisfiable, so the division algorithm

is applicable.

(2.3) Example: Let G be an undirected graph on n
vertices. G 1is 3-colorable if its vertices can be labeled
from a palette of three colors, so no edge connects two
vertices of the same color. Determining if a graph G is
3-colorable is an NP-complete problem.

To translate this problem into a system of poly-
nomial equations, choose a field k containing three cube

roots of unity, and use these values as colors. Represent
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each vertex i of G by the variable X4 subject to

the equation
. =1 = 0,

Represent each edge (i1,j) of G by the eguation

2 2
. X, + , =
x; xlx] x] 0,

which enforces the requirement that adjacent vertices assume
distinct colors. Then the system of equations obtained has
a sclution over the algebraic closure of k if and only if
G 1is 3-colorable, so the division algorithm is applicable.

Consider the graph G shown, on n vertices

l,...,n
1 3 5 n=3 n-1
2 4 & n-2 n

G 1s 3-colorable, as is seen if we color each
vertex by its residue mod 3. We study the behavior of the
division algorithm on this specific input.

Let k be the algebraic closure of 2Z/2Z, chosen
for ease of computation. Assign wvariables X4 to each
vertex 1 of G. As described above, the input equations

to the division algorithm are:
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2
T+ XK.+ . = i = i i
X xlxj xj o, for 3 i+l or i+2.

The reduced standard basis with respect to the lexicoaraphic

order is found to be

xi+xn=ﬂl, l=i=n-2 and n-i=0 mod 3;
X3 v x4 =0, l<si<n-2 and n-i=1 mod 3;
X; v xp_q v x, =0, l<isn-2 and n-i:z2 mod 3;
2 2 _

Xp-1 t EFp %, tx,T = 0

3
X + 1 =20
Thus, G 1is found to be 3-colorable, by (I,3.4). The

possible 3-colorings can be obtained by (I,3.6).
If a standard basis is constructed inductively for

the equations which only involve x ..,xj, given a

1"

standard basis for the equations involwving a

xl""'xj-l’
fixed number of new equations are produced, independent of
j. In this sense, the computation of the above standard
basis is of length linear in n.

Suppose that 1 = n mod 3, and adjoin an extra
edge connecting vertex 1 +to vertex n. Then G is not
3-colorable, but every proper subgraph of G is 3-colorable.
The computation of the standard basis for this G yields a
machine verifiable proof that G is not 3-colorable, in the

form of a computation showing 1 to belong to the ideal we

associate with G. By the preceding discussion, the length
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of this proof is linear in n. Any proof needs to refer to
each vertex of G, so this length is optimal.

How special is this sequence of examples?

(2.4) It is shown in [MaMBl] that the problem of deter-
mining if a given polynomial f ¢ Q[xl,...,xn] belongs to
the ideal generated by given elements fl,...,fj is expo-
nential space hard. Here, as in the preceding examples, n
is not fixed. Within a given length input, one may name
as many variables as space permits.

They translate into this setting the word problem
for commutative semigroups, which they previously prove is

exponential space hard. A monomial %% € D[xl,...,xn] can

be thought of as a word in the commuting letters xl,...,xn.
To ask if x% ~ xbr given %€ ~ xd, x= ~ xf, ..., 1is the
same as to ask if x% - xb belongs to the ideal generated
b c d e f

Y oOX =X , %X =%, .

The division algorithm can determine ideal member-
ship, by (II ,2.6): the remainder of f with respect to a
standard basis constructed from fl,..
iff £ e {fl,..-,fj}. So we see that the size of a standard

"fj will be zero

basis can grow exponentially in the size of the input set of
polynomials to the division algorithm, if the number of
variables is not fixed. This does not always happen, as

(2.3) shows.
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(2.5) Let fl,...,fS € A= k[xl,...,xn]. Let dEg{fi}
denote the maximum of the degrees of terms of fi’ which
need not be homogeneous. If f belongs to the ideal

generated by fl""'f r then

s

It is shown in [Her26], [MaM81] that these g; can be

chosen so

on
deg(g;) =< deg(f) + (sd)” ,

where d = maxfdeg{fi}}.
i

Note that if fl""'fs is a standard basis, then

by (I,2.2), we get the corresponding bound

deg[gi} = degl(f).

(2.6) Let G be a graph which is not 3-colorable. 1If
we homogenize the equations of (2.3), via a homogenizing
variable Xg then G can be associated with the homo-
geneous ideal I < 8 = k[xu,...,xn] generated by a poly-

nomial

for each vertex 1, and a polynomial

2 4 X, + 2
for each edge (i,j). A proof that G 1is not 3-colorable

is provided by a computation showing that xDr e I for some
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r. This is because for any graph, the associated ideal I
defines a finite set of points in Pn, away from the hyper-

plane x 0, which correspond to the possible 3-colorings

0"
of the graph.

Since G 1is not 3-colorable, §/I is a finite
dimensional k-algebra. Its dimension is clearly related to
upper bounds on the complexity of determining the non-3-
colorablility of G. Does this dimension have a combinator-
ial interpretation, in terms of the graph G? What rates of
growth can be achieved for this dimension, in terms of the
size of G, in sequences of examples?

This gquestion could be posed in an analogous manner
for other NP-complete problems.

In a related vein, can the study of lengths of
proofs showing non-3-colorability, or the equivalent for
other NP-complete problems, be put on a rigorous footing
within the category of polynomial rings? In terms of the
discussion here, would a lower bound on the length of any
computation showing xﬂr e I translate into a lower bound
on the number of steps needed by a nondeterministic Turing

machine to infer that G is not 3-colorable? Such a bridge

could prove useful.

(2.7) One could apply the division algorithm to the
problem of integer factorization, by modeling a nondeter-
ministic digital circuit for integer multiplication by a

system of polynomial equations. For example, a subcircuit
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which handles one bit addition with carry is represented as

follows.

*1 *2
Y2 | € < Xq
carry out i’ carry 1in
¥

If each bit Xy X Xq Yyr ¥, is interpreted as a vari-

able over Z/2Z, then the above adder is represented by the

eguations
.2 #%x. = 0, i=1,2,3;
i l F r F £
vl 4y, = 0, i=1,2;
Yy = Xt Xyt Xgi
}"2 = lez + X1X3 + x2x3.

Now, to attempt to factor a given binary integer,
solve for the inputs to a multiplication circuit with the
integer to be factored as output. This should be attempted
separately for each possible position of lead ones for the
binary factors. No attempt should be made to eliminate
intermediate wvariables in the circuit before the output is
known, as this would cause an explosion in the size of the

system of equations.
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We do not know the complexity of the above
suggested algorithm, but have found it to be surprisingly
fast at small hand examples. We single out this application
for reasons entirely independent of an immediate desire to
find a fast factorization routine: the division algorithm
needs to be better understood as a practical tool. Integer
factorization would make an excellent opponent in an effort
to shake down an actual implementation of the division
algorithm, because it is presumed that the complexity of
factoring products of large primes is a fairly uniform
function of the size of the product. Thus, empirical
results would be easier to understand in this context than
in the study of an NP-complete problem, where the complexity
of specific instances is seen to vary wildly. On the other
hand, (1.2) indicates that the fewer solutions there are for
a system of equations, the easier it is to find them. This

favors integers with few factors.



Chapter IV

An Algorithm for Ccherent Sheaf Cohomology
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§1 Computing the Saturation of a Submodule.

(1.1) This chapter describes work in progress, and is
necessarily sketchy. We seek to realize an efficient
algorithm for the machine computation of the ranks of
coherent sheaf cohomology groups. This goal has been a
prime motivation for much of the preceding theory. At
present, a reasonable algorithm exists, but vast improve-
ments are possible. This project is being continued in
collaboration with Michael Stillman, and is in the process
of being implemented.

It will be assumed that the input to the algorithm
is a finitely presented coherent sheaf F, i.e. an exact

sequence

Ao
Ml —= Hﬂ —> F —> 0,

where M M are free GP—mcdules, and the map A is

0" "1 0
given. This sequence is represented by the corresponding

exact sequence of S-modules

o
Ml o MU —> F —> 0,

where 8§ = k{xD,...,xn].

Here, we encounter the first practical difficulty.

If I ¢ M, is the image of My via the map Ayr then I

may fail to be a saturated submodule of M in actual

GF
situations where we still wish to study the associated
coherent sheaf F. For example, it is easier to obtain

equations defining space curves if one need not worry about

saturation., This author anticipates that the machinery for
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the computer study of equations describing interesting
objects in algebraic geometry may soon get ahead of the
machinery for producing such equations. For example, a
recent unpublished result of Harris and Mumford reveals
intrinsic limitations to one's ability to write down the
general curve of a sufficiently high genus. Thus, our
algorithms should make as few assumptions as possible
about the equations they accept, to improve their appli-
cability.

With this motivation, we first describe how to
compute the saturation of a submodule I of the free

S-module M. See (II ,§4) for preliminaries.

(1.2) Let M be a finitely generated free S-module, and
let I < M be a homogeneous submodule. The saturation of
I is defined as in (II ,4.1). (IT ,4.2) extends to this
setting: if y = 0 defines a hyperplane H ¢ P" not
containing any associated primes of I, then f ¢ psat
iff yjf e I for some Jj. We use this fact to saturate

I.

First, we want to find such a hyperplane H. Since
the set of associated primes of I 1is a finite subset of
the scheme Pn,r a Zariski open subset of the candidates
for H will do, so we can choose H at random, repeating
until a successful choice is made. Here is a slight

guandry: what should random mean in this setting? What

does it even mean to pick a random integer? Before getting
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too lost in this question, try 1. One should be warned,
however, that in characteristic p, a Zariski open set
can turn out to have surprisingly few rational points over
a given finite field.

A candidate for H can be tested by comparing the
Hilbert polynomials of M/I, MHXIH. If M/I has Hilbert
polynomial p(z), then MHKIH will have Hilbert polyno-
mial p(z)-p(z-1) iff H contains no associated primes of
I. This extends (I ,2.8). Hilbert polynomials can be
determined by use of the division algorithm; this will be
discussed in §2.

Once H has been found, make a change of coordin-
ates so H 1is defined by x, = 0.

The geometric idea behind our method for saturating
I is as follows. If we restrict I +to the affine piece
of p" given by the complement of H, find a sufficiently
canonical description of I there, and then recompute a
projective object from this description, we should get
rsat back. This is because nothing gets thrown out with
H. (If, on the other hand, we want to throw away the
contents of a hypersurface, perhaps in an effort to break
something into primary components, then a generalization of
the following method is applicable.)

To follow the above program, the correct notion of
"sufficiently canonical" is a standard basis with respect

to a multiplicative order that orders first by total
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degree. Such a basis, when homogenized, will always yield
a saturated submodule. This is not quite what we do, but
it motivates the actual algorithm.

Choose a multiplicative order > on M that orders
first by the total degree of monomials, and then backwards
by the degree if X, is ignored. > can now be refined
to a total order in any way one likes; breaking ties
lexicographically is one choice. The idea behind this
order is closely related to the idea of (I,3.5): for
me M, we want in(m) to have a certain property iff m
has the same property. Here, in(m) is divisible by X
iff m 1is divisible by X for homogeneous m, since
least powers of X, ~are greatest for > within a given
total degree.

To compute the saturation of I, compute a
standard basis from I, with respect to the above order >.
Each time a basis element is found that is divisible by
X replace it by its quotient. Such an element belongs
to Isat, by the generalization of (I ,4.2) discussed

earlier. Moreover, if xnjf € I for some j, then in

terms of the modified standard basis My ress My cbtained,

xnjf = glml+"'+gpmp
by division. Since no m is divisible by X 0 it

follows from (I ,2.2) that each 9, is divisible by xnj.
Thus, £ belongs to the submodule generated by Myrese,m

sat

p*
This submodule is therefore I
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§2 Computing the Hilbert Function of a Module

(2.1) There are at least two approaches to obtaining the

Hilbert function of M/I, given an exact sequence
0 — I — M — M/I — 0

in terms of a generating set for I. One is to compute a
free resolution for M/I, and read the Hilbert function
off the degrees of the free generators for each Mi' where
M = M,. Another is to replace I by in(I), which is a
direct sum of twisted monomial ideals, susceptible to
combinatorial methods. The Hilbert functions for I,

in(I) are the same, by (I,1.5).

Recall from (III ,1.5) that one wants to avoid, if
at all possible, computing an entire standard basis when
the actual m-regularity of I is known. If this is the
case, then computing Hilbert functions via free resolutions
can be significantly faster than via in(I): by (II ,2.4),
the ith syzygies of the saturated submodule I are of
degree < m+i, if I 1is m-regular, so the standard bases
arising in their construction need only be computed up
through these degrees.

On the other hand, if the actual m-regularity of
I 1is not known, then the entire standard basis for I
needs to be computed in either case. From here, in(I) and
I are both available, and in(I) is a simpler object,

so one might as well switch over to it. This setting

favors a combinatorial approach.
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(2.2) We actually seek the generating function for the

Hilbert function of M/I, as described in [atME69]. If

a. = dim(M/I).
J (M/ ]

for each j, then the generating function for this

sequence can be written as

5 glt)
E. ajt = {1-t}n+l
]
where g(t) is a polynomial in Z[t]. This polynomial

is easily understood, if one remembers that tdfil-t}n+l
is the generating function for a free S-module generated by
a single element of degree d.

3

For example, the twisted cubic curve X < P is

cut out by three polynomials of degree 2, and has two
st

1 syzygies of degree 3. This is seen in the generating
function associated with ﬂx:
0 ] _ 1—3t2+2t3
Zh {ﬂX[]}}t {1—t}4

]

From the generating function for a Hilbert function,
the corresponding Hilbert polynomial is easily computed.
Make the substitution wu = (1-t), and expand the
generating function into a Laurent series

— ...+ — + b .+ b.u+ ... + b ud,
0 1 g

The polar part then yields the Hilbert polynomial
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_ z+s-1 z+0
plz) = b-s[ 5-1} e h-l[ 0 ]'
since l,f’u:I = lﬁtlht}] is the generating function for

z+3j-1
j=1 )"

After substituting back t = (l-u), the nonpolar part
describes the discrepancy between the Hilbert polynomial

and the Hilbert function.

(2.3) To compute Hilbert functions via free resolutions,
one first calculates a minimal free resolution for M/I,
by the metheod of (I,2.11). Following the discussion in
(2.1), we only calculate a standard basis for each stage
in the resolution, up through the highest degree in which
a minmial syzygy is expected. Each syzygy among standard
basis elements of the submodule under consideration needs
to be rewritten into a syzygy among the chosen minimal
generators for this submodule, and then this set needs

to be trimmed intc a minimal set of syzygies before we can
proceed with the next stage of the resolution.

Once a free resolution

0 —= Mr —F La. —> MU —_ M/I —= 0

is obtained, the desired generating function is easy to
write down. Denote the degrees of the free basis for each
Mi as an S-module by dil""'dip' Then the generating
function for the Hilbert function of M/I 1is given by
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. d,.
L (-1t e Y
i,]
{1-t]n+l
(2.4) The capacity to compute Hilbert functions via

in(I) relies on a capacity to determine the Hilbert

function of a monomial ideal I ¢ Nn+1.
. n+l . .

Let j : N —> {0,1} be the characteristic
function of I, so j(v) =1 if v ¢ I, and jiv) =0
otherwise. By Mobius inversion on Nn+l, we can compute

. + .
a second function g : N" . Z, so with respect to the
. -
natural partial order on N l,
L gu) = 3j(v).
u=v
. .. . . n+1l
g 1s nonzero for only finitely many monomials in N '

which are each the join of at most n+l generators of 1I.
Thus, g can be computed in a number of operations which
is polynomial in the number of generators of I, and
exponential in n. See [Rig79] for a detailed exposition
on Mobius inversion.

Naive inclusion-exclusion counting yields instead
an algorithm exponential in the number of generators of 1I.

Once g has been computed, the desired generating
function is easy to write down. The generating function
for the Hilbert function of the monomial ideal I is

given by
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L g(u) tﬂegiu}|

u

(1-t) "1

From this formula, we can obtain a formula for M/in(I).
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§3 Computing Coherent Sheaf Cohomology

i2.1) Given an exact segquence

A
Ml—:‘Mﬂ——}F-—} 0

of graded S-modules, where M M are finitely generated

0" 1
free S-modules, and the map AD is given, we want to
compute the ranks of the cohomology groups of the coherent

sheaf F on ©P" associated to F.

First, let I ¢ My be the image of A Using

0"
1 AU so I becomes saturated.

Now, compute a minimal free resolution

the method of §1, modify M

A, A,
ﬂ—>Mnn—:r ,,_—;M1—>Mﬂ—>F—>ﬂ

for F as an S-mecdule. This sequence corresponds natural-

ly to a minimal resolution of F by free ﬂP—modules,

0 —> M, —> ... —> M —> M, — F —> 0.

Such a resolution can be computed as described in (2.3),
using the division algorithm.

Each cohomology group Hi{F{z}} on P" is k-dual
to Extn"i{F{z},m}, where ® ~ 0(-n-1) is the dualizing
sheaf on Pn, so to obtain the ranks we seek, it suffices
to compute the ranks of these Ext groups. ® only serves
to introduce a grading shift, so we concentrate on com-
puting the ranks of Exti{F{z},ﬂ} for each i, =z.

Ext 1is the derived functor for Hom, so

Extl{F{z},ﬂ} ~ Extl{F{z},S} is the kernel mod image of
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the dualized sequence

a¥ x

i i-1
HDm{Mi+lfz],S} < Hom(M; (z),S) <= Hom{Mi_liZI;SI
obtained from the previous free resolution for F. Here,
Hom(M,S5) 1is the finite dimensional vector space of
degree preserving S-module homomorphisms from M to §.

More generally, define M* to be the dual S-module

M* = @Hom(M(-z),S).
Z

Note the reversal of the grading. Then if Exti is the

S-module defined by

Ext, (F,S) = ®Ext™ (F(-z),S),
Z

we can compute Exti as the kernel mod image of the se-
guence
* *
Al o, Pia

* — M* <—— M*
Mign <— Mf <= MI,

obtained from the resolution for F.

This approach has the advantage of obtaining
infinitely many ranks at once: what we seek is the Hilbert
function of each Exti{F,S}.

The actual module Exti{F,S} can be isolated at

this point. Each Mi is a free S-module: if

M, = ?Si-eij}

for integers eij' then
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M* = @85(e. .).
i r ij

Moreover, each matrix AY¥ is just the transpose of ﬂi.
A set of generators for the kernel of ﬂ; can be
found by computing the syzygies among the columns of A;,

using the division algorithm. To finitely present

i
Ext, (F,8), we use these generators as a basis for the
free S-module LD' in the exact sequence
1 0
L, — Ly —> Ext,(F,5) —> 0.

L, is constructed both from the syzygies among the gen-
erators of the kernel of A;, and from the columns of
ﬁ;_l.

The Hilbert function of Exti{F,S} can now be

computed, as described in §2.

(3.2) If the m-regularity of F 1is known, then a
minimal free resolution for F can be computed without
ever constructing an entire standard basis, as described
in (III,1.5). One should be able to infer bounds on the
m-regularity of each Exti(F,S} considered in (3.1), in
order to gquickly compute their Hilbert functions via free
resolutions. We do not know how to do this at this time,
so we are forced to compute their Hilbert functions by the
much more laborious process of constructing an entire
standard basis. This is a reasonable option for curves,
but the computer study of the cohomology of higher

dimensional varieties awaits a resolution of this gquestion.



Chapter V

Orbits of Hilbert Points



129

§1 The Structure of Maximal Torus Orbits

(1.1) In this chapter, we briefly describe a geometric
interpretation of the division algorithm, in terms of the
Hilbert scheme. The point of view expressed here was
arrived at in collaboration with Ian Morrison, in seeking
to better understand the stability of Hilbert points, in
the sense of geometric invariant theory [Mumé65], [Mum77],
[Eem78]. This point of view has since provided the

motivation for much of this thesis.

(1.2) Fix a coordinate system on Pn, and let
D(n+l) = SL(n+l) denote the maximal torus of diagonal
matrices. D(n+l) acts on the coordinate ring
§ = klxg,...,x ] for P", as described in (II,3.1).
Given a saturated ideal I < S corresponding to
a subscheme X < Pn, so S/1I has Hilbert polynomial
plz) = g{mn,.--,ms:z} in the notation of (II,1.2),
consider the degree d part Id of I, where 4 = Mg
Since the associated ideal sheaf 1 is mD-regular, by
(II,10.1), I 1is generated in degrees = mﬂ, so I can
be reconstructed from Id'
In general, I can be associated abstractly with
a point on the Hilbert scheme for p(z) on P". The
subspace Ig < Sd' considered as a point in the appropriate
Grassmanian, gives a point on this Hilbert scheme, as

embedded in this Grassmanian by uniformly representing all

such I by I3 84 This is called the degree d
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Hilbert point for 1I.

Questions about group orbits of points of the
Hilbert scheme become much more tangible, if considered for
Hilbert points of a given degree. We seek to describe the

structure of the orbit of the Hilbert point I, < 8 under

d a’
the action of the maximal torus D(n+l).

(1.3) Using the coordinate system on &S consisting of

d
. + .
the monomials HE l, represent Id c Ed by a matrix whose

rows give a basis for Id' The action of D(n+l) on S

induces an action on the minors of Id' Specifically, if

I has dimension g, then D(n+l) acts on the point

A 91 r9s . Let g e D(n+l) be the matrix with

a * a

diagonal entries a = {aﬂ,...,an}: the minor of Id
obtained by choosing columns corresponding to the monomials
El b +{El+...+_}5 )

X “,e..,x 3 is multiplied by a ! in gId'

Thus, we can associate the weight _El+...+'5q with this
minor.
For each nonzero minor of I;+ Pplot a point at

position b, +...+b in Zn+l. This corresponds formally

1 q
to considering the weight decomposition of I; with

respect to the characters of the action of D(n+l). Since
dEg(EI + ... +b) = qd,

this drawing actually lies in an n-dimensional hyperplane

of Zn+l.

Consider the convex hull of the points plotted
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above. If I defines two points in Pz, this hull can

look like

Choose a multiplicative order > on S. By
n+l

(I,1.8), choose a grading r = {rﬂ,...,rn} £ N+ which
induces the same order as > on the monomials of Sd'
r can be visualized as inducing a linear map Zn+l —> Z

on the above diagram. Now, consider the l-parameter

subgroup 2 € D(n+l) whose diagonal entries are

-rD —rn}

(t PR, - » Wwith parameter t. The limit %ig AT
-+

ar
as a point in the Grassmanian, is precisely in{I}d, where
in(I) 1is the monomial ideal of initial forms of I, for
the order =».

This follows because the monomials generating
inl{I}d give a minor of I':1 on which the map
r: Zn+l —> Z achieves a unique maximum. To see this,

consider a row reduced matrix representing Id' where the

columns are ordered according to the weight given them by
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r. The positions of lead ones in this matrix give the
desired minor. So, r is the link between } and >.

In terms of the above weight diagram, inI{I}d
corresponds to a vertex of the convex hull, specifically
the vertex on which the map r is maximal. 1In general,
monomial ideals yield one point weight diagrams, since Id
for a monomial ideal has only one nonzero minor, given by
the monomials in Iq-

(I,1.8) guarantees that every multiplicative order
> on S can be so represented. Conversely, given a
l-parameter subgroup X with monomial ideal limit for Id'
the associated grading r can be extended to a
multiplicative order > on S. There will be monomials of
equal grade for r in higher degrees, but we can refine
this grading to a total order by breaking ties lexico-
graphically, for example.

Thus, the possible monomial ideals in(I) that can
be obtained from I, as > ranges through all possible

multiplicative orders, are described by the vertices of the

convex hull of the above weight diagram for Id'

(1.4) Consider the point on the Hilbert scheme given by
Id' The orbit of this point under the action of D(n+l)
can be described in the above framework. The monomial
ideals given by vertices of the above convex hull

correspond to fixed points of this action, in the closure

of the orbit of Id' More generally, the faces of this
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convex hull correspond to components of the boundary of
this orbit. Their dimensions, and incidence relationships,

are exactly as described by this diagram.

(1.5) In questions such as arise in geometric invariant
theory, one sometimes wants to understand the behavior of
the sequence of weight diagrams obtained from Iy as

d + =. The discussion in (1l.3) yields a method for
obtaining information about this sequence.

The convex hulls considered here are completely
described by knowledge of the set of in(I) achievable
from I. This set can be described intrinsically,
independent of a choice of degree d. If J is a monomial
ideal from this set, then the sequence of unique weights
of the one point diagrams assicociated with each T g is a
polynomial in d, computable in terms of the function g
obtained by MObius inversion as described in (IV,2.4).
Thus, the entire sequence of convex hulls for each Id can
be described as wvarying in a polynomial manner in d.

The division algorithm provides a computer tool
for seeking the above description, in examples.

This is a situation where many standard bases have
to be computed in their entirety. Following the discussion
in (III ,1.5), this procedure is likely to only be

reasonable for curves.



Chapter VI

The Hilbert Scheme
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§1 Equations for the Hilbert Scheme

(1.1) This chapter describes work in progress, and is
necessarily sketchy. A goal is to ferret out information
about the component structure (number of components, their
dimensions, how they meet) of the Hilbert scheme, in
examples as needed. This goal remains out of reach, at
this time. We describe a possible attack, which applies
many of the ideas in chapter II.

We give explicit equations for an embedding of the
Hilbert scheme into projective space, with one possible
qualification: the image will be correct, set-theoretical-
ly, but we do not prove that the scheme structure is
correct. (The Hilbert scheme is known to have nonreduced
components; see [Mum62], where a space curve of degree 14,
genus 24 is studied.) The equations, however, are obtained
in a natural manner; we conjecture that they give the right
scheme structure.

From here, there are at least two possible direc-
tions to explore. As is, the equations we obtain involve
a number of variables beyond any conceivable computer's
reach, but they have a strong combinatorial pattern.
Hodge was able to find the Hilbert polynomials of
Grassmanians in their Pliicker embedding, by considering
combinatorial patterns to their equations. This approach
has been generalized considerably in [DEP82]. The Hilbert
scheme is a generalization of the Grassmanian; it might be

feasible to seek the Hilbert polynomials of the embeddings
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given here, by such methods.

Alternatively, the equations defining the tangent
cone of our equations around a point corresponding to a
monomial ideal, appear to be easily obtainable. (In
general, computing tangent cones is a difficult process,
analogous to constructing a standard basis (see [Mor8l]),
but in certain well-behaved situations one simply reads the
tangent cone off the original equations. There is some
evidence to suggest that the Hilbert scheme is such a
situation, but this needs justification.) 1In character-
istic zero, every component of the Hilbert scheme must
pass through a point corresponding to a Borel ideal, as
defined in chapter II. See (I,2.12),(II,9.2) to establish
this. Borel ideals were studied extensively in chapter II ,
are much better behaved than arbitrary monomial ideals,
and themselves have a strong combinatorial pattern that
may mesh well with the pattern underlying our equations.
Therefore, a concerted study of the tangent cone of the
Hilbert scheme around Borel ideals could yield useful local
data. One approach to combining such local data might be
to consider the fans employed by Hartshorne [Har66] to
prove the connectedness of the Hilbert scheme.

We describe here the egquations we have found. We
have adopted a visual notation precisely because algebraic
notation rapidly becomes convoluted and opague in this
setting. The author has only been able to appreciate the

combinatorial pattern in these equations by considering
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them wvisually.

(1.2) Let k be an algebraically closed field, and let

S = k[xﬂ,...,xn} be the graded ring associated with P";
5 = $Sd, where Sd is the degree d part of 8.
d
Fix a Hilbert polynomial p(z) = q{mﬂ,...,ms:z}.

Let I © 5 be a saturated ideal, so S/I has Hilbert
polynomial p(z). Then the associated ideal sheaf 1 is

mD—rEgular by (Ir,10.1), so {I}m has codimension p{mD}

0
in Smﬂ' by (I ,2.5). Also, I 1is the saturation of the
ideal generated by [I)mu, by (II ,2.3b). Thus, I can be
associated with a point in the Grassmanian
G{cmﬁ>—p{mﬂl,<mﬂ>1, where <d-> = dim'Ed = [n:d].

Which points in this CGrassmanian correspond to
ideals I < §, so S5/I has Hilbert polynomial p(z)?

By (II ,10.2), if the corresponding ideal 1 satisfies

dim{I}mD+1 < <mD+1>-p[mD+l},
then in fact, equality holds, and S/I has Hilbert poly-
nomial p(z). Thus, equations on the Grassmanian represen-
ting the above condition will cut out a subscheme whose
closed points correspond naturally to the closed points of
the Hilbert scheme for p(z) on P". This is the approach
we shall take.

(1.3) Let Id c Sd be a subspace of dimension £y Id

can be considered as a point in the Grassmanian G{rl,cd}}.
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Let I be the ideal generated by I4 and let I341 be

the degree d+1 part of this ideal. We seek equations in
the Pliucker coordinates of the Grassmanian G{r1,<d>] that
determine which Id satisfy dim Id+l S Iy

We have the commutative diagram

§,x8 ? Sa41

I

S.xI 3

where the horizontal maps are given by multiplication, and

1447 1s the subspace generated by the image of sl”Ia'

The multiplication maps factor through tensor

products over k, yielding the diagram

5. x5 —

4
| /\T/

where J = SIEId, and K 1is the kernel of the map

H-—~—9 75

Slﬁsd _ Sd+1'

J has dimension <1>rl, and maps onto Tas1-

Thus,

dim Id+1 < r,
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precisely when

dim(J n K) = <1>rl—r2.

The problem now divides into two parts. We
describe which J sufficiently intersect K by eguations
on the Grassmanian G[<1}r1,<1><d>}, which parametrizes

possible subspaces J < $,854, and we compute the map
G{rl,<d>} —_— G{{l:-rl,cl;-{dpj

which takes Id to J.

(1.4) Consider as an example S = k[x,y], d = 3.
51953 is 8-dimensional. Represent the k-basis for 51953,
x@x3 x@xzy x@xyz x@y3

3 2 2 3
yex yex'y y@xy~ yey

by cells as shown:

* * * &*
'El 'Ez EB Eq
% %*
eg s | ©7 eg
4 3 2 2 3 4
® X7y ®xy Xy v

We have arranged the cells in columns according to their
image wvia the map

5,85

> 8

1773 4

as labeled below the diagram. Denote this k-basis by
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e B listed in the product lexicographic order on

ll" BJ
the monomial pairs of 51953. To €pr---s8g We can
associate the dual basis el*,...,ea*, as shown in the

above diagram.

Let L ¢ 51353 be a 2-dimensional subspace, and
associate L with a matrix whose rows form a basis for
this subspace. Then

e3* A ES* @ L
denotes the (3,5)-minor of L, in the above coordinates.

Suppose we want to expand a more complicated expression

{93*+eﬁ*} A eS* @ L

to

EEE*ﬁE * - es*neﬁ*} ® L.

5
This can be done using the preceding diagram. Represent
{E3*+EE*J by a round marker (::) which moves freely to
either cell e.,* or e_*, and represent e_* by a sgquare

3 6 5
marker which stays put in cell e_.*. Each marker then

5

represents a term in the original egquation. Number the

markers in the order they occur in the original equation.
Under this identification, each term of the
expanded expression corresponds to a set of possible
positions for the markers on the diagram, where at most
one marker can occupy each cell. The sign of each term is
the sign of the permutation obtained from the order of the
markers, if cells are scanned in the product lexicographic

order. In the above example,
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= * * -
= e,* ne
3 5 '

* ¥*
'E5 -"\EE.

A0,

This notation for minors of a subspace of Slﬁsd

will be used from now on. For § = k[xﬂ""'xn]' one

uses the corresponding diagram whose cells are arranged

by staggering n-pyramids in 2n dimensions.

(1.5) Let el,...,ej be a basis for a vector space V,

with corresponding dual basis el*,...,ej*. Let the

subspace K < V be the span of € r-ensC.n If J <V is
an arbitrary subspace of V, then J n K has dimension

= r precisely when every minor of J involving fewer
than r terms from el*,--.,ei* vanishes.

For example, if V = k3, and K 1is the x-axis
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then a 2-dimensional J ¢ V contains K precisely when

the (y,z)-minor of J wvanishes.

{1.6) Which J sufficiently intersect K? We describe

the exact sequence

i
0 — K —> sl@sd —_— Sd+l —= 0.

Take as a k-basis for Sj the monomials of degree j. 1If

1

+ . . )
a,b e N are monomials in Sl'sd respectively, then

the projection 7 takes a®b to c ¢ where

n+1l

Sd+lIr

c = atbh as elements of N Fix e, and let

SRR denote in the product lexicographic order all

a®b mapping to c¢. Then the elements

e.—-e

i 1 j.=2,-....,j.

form a basis for K, as ¢ ranges over all monomials in

Sd+l' This basis extends to a basis for Sl@Sd, if we

adjoin the el corresponding to each c.

This choice of basis for Slﬁsd yields the dual

basis
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* L .. ,el*,

(e, *+...+a. %), .
3 ) e, j

1
again as ¢ ranges over all possibilities.
Consider this dual basis in terms of the visual
notation of (1.4). Each term [el*+...+ej*} can be
represented by a round marker (:)  free to range over

an entire column corresponding to a choice of ¢. Each

term e;*, 1 = 2, can be represented by a square marker

, stuck in the specific cell ei*, not at the top of

its column.

In terms of this new basis for S.@s which also

17"4d
describes K, we follow (1.5). An arbitrary J < Slﬁsd
intersects K with dimension = <1>r1-r2 precisely when
each minor of J involving fewer than <1>rl-r2 terms of

the form e;*» 1i.e. involving fewer than <l>r,-r, square

markers, wvanishes.

(1.7) We continue the example studied in (1.4). Let

5 =kilx,y], 4 =3, r, = 3, r, = 4. Then <l:>rl-r2 = 2.
J ¢ 51953 is 6-dimensional. At most one round marker can
occupy a column, so to achieve dim(J n K) = 2, we con-

sider equations on the minors of J obtained by arrange-
ments of one sgquare and five round markers on the diagram
from (1.4). There are three equations, obtained from the
three possible positions of the square marker. We consider

one such equation:



143

®

®

®
1]

®

®©

[

* *
©1236787 2135678

*re %,
8

*
€123468"

©134568"

- *
€123678"

*
€135678

)eJ = 0,

yields
* *
©123468%%134568"
* .
where 6123463 is shorthand for
* * *
El hEz hE3 neq*ne
(1.8) What is the map between Grassmanians

G[rl"{d}] —> G[<l>rl,<1><:d>]
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which takes Id to J? This map in fact extends to a map

between the projective spaces of their Pliicker embeddings,
which in turn factors into a <l>-uple embedding followed
by a linear inclusion.

This is seen by taking a basis for I4 consisting

of r, Vvectors in the coordinate system given by the

monomials of Sd' Tensoring by Sl yields a basis of

flbrl vectors for J, which can be written in the

coordinate system given by monomial pairs in Slesd, in

the product lexicographic order. Following example (1.7),

we have Id > J represented by the matrices

a b ¢ d c d
e £f g h f— f g h 0
j k 1 i i k 1
b c d
0 e f g h
i j k 1

The only minors of J that do not vanish are those

which involve exactly ry columns from every block of <d-

columns corresponding to a monomial in S Oor a row in

1!‘
the diagrams we have been using. These minors are easily
identified as degree <1> monomials in the minors of I
take the product of the minors from I4 associated with

each block of <d> columns in J.

{(1.9) Using (1.8), we can pull back equations from
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G[<1>r1,f1><d>} to G{rl,¢d>]. In terms of the diagrams
of (1.7), the only terms that pull back to nonzero terms
are those where the same number of markers occupy each
row. These terms pull back to the product of the minors
represented by each row, retaining their original sign.
We continue example (1.7). Let

€1237 €124 134

4) . .
Ch34 denote the [3} possible minors of I3 [ 53. The

terms of the equation considered in (1.7) pull back to

terms

@ ® 6 c
@ I @ 134 71247

e

110310,

= T C123 234
11 ®|G
so we obtain the equation
€123%124 7 ©123%234 = O
on the minors of Iy« 53. Similarly, from

@0 |® @10|®
U®| |® [ (®|®
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we obtain

2
€124 ~ ©123%134

and from

®] [@le JE
®| |mle] ®

C|©
©

we obtain

2
€134 T ©124%234

These equations are recognized as cutting out a twisted
cubic curve in P3.

The interpretation of this example is as follows.

If 13 = 53 satisfies

dim 14 = 4,

then I is an ideal so S/I has Hilbert polynomial
p(z) = 1. The Hilbert scheme parametrizing such ideals is

isomorphic to Pl; we have realized this Hilbert scheme as

a 3-uple embedding of Pl.
(1.10) In (1.6), instead of requiring fewer than

<l>rl-r sguare markers, we can egquivalently require

2
exactly <1>r1-r2-1 square markers, and permit them to
occupy any cell. This creates redundant equations, but
yields a more symmetric set of equations.

In general, the Grassmanian Gtr1,<d>] is properly

contained in the projective space of its Pliicker embedding,
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so to realize a projective embedding of the Hilbert scheme,

we must also consider the

equations cutting out the

Grassmanian. These are well known.

The tangent space

to the Grassmanian is particu-

larly easy to describe around points corresponding to

monomial ideals: it is flush with the monomial coordinate

system, consisting of the
In local guestions around
equations serve simply to
and are not a hindrance.

We have chosen an

span of certain basis vectors.
monomial ideals, the Grassmanian

eliminate most of the wvariables,

example from Pl for simplicity.

Once one adjusts to some planar representation of the

diagrams needed for Pn,

n » 1, the discussion in this

chapter carries over intact.
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