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Abstract

Wigner’s “unreasonable effectiveness of mathematics” in physics can
be understood as a reflection of a deep and unexpected unity between
the fundamental structures of mathematics and of physics. Some of the
history of evidence for this is reviewed, emphasizing developments since
Wigner’s time and still poorly understood analogies between number the-
ory and quantum field theory.

1 Introduction

The question of the relationship of mathematics and physics is as old as the two
subjects, and remains very much a mystery. One point of view is that physics
and mathematics are very different subjects, with mathematics providing some
useful tools to physicists studying something quite different, while physics pro-
vides to mathematics only some interesting examples to study. In this essay
I’ll argue that unified theories of fundamental physics are closely linked with
some of the great unifying structures that mathematicians have found to under-
lie much of modern mathematics. This can be taken as evidence of a possible
“grand unified theory of physics and mathematics” and motivates the search
for a deeper understanding of the known points of contact between the two
subjects.

2 Quantum mechanics and mathematics

Eugene Wigner’s well known essay The Unreasonable Effectiveness of Mathe-
matics in the Natural Sciences [15] (based on a talk delivered in 1959) concluded
with the summary

The miracle of the appropriateness of the language of mathematics
for the formulation of the laws of physics is a wonderful gift which
we neither understand nor deserve.
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While he likely also had in mind Einstein’s dramatic success with general rel-
ativity and its formulation in terms of the language of differential geometry,
he repeatedly invokes examples from quantum mechanics, arguing that these
evidenced a miraculous coherence between mathematical formalism and funda-
mental physics.

Wigner was himself one of the leading figures in the early application of
techniques from group representation theory to the study of atomic spectra, with
his 1931 book [14] very influential in showing the power of this mathematical
language to describe aspects of the surprising and unintuitive new quantum
mechanics. A source for Wigner was mathematician Hermann Weyl’s book [13]
on groups and quantum mechanics, the first edition of which appeared in 1929.

The language of Lie groups, Lie algebras, and their unitary representations
provided a way to simply express the implications for quantum systems of their
symmetries, with for instance the behavior of angular momentum operators de-
termined by their role as operators for a unitary representation of the Lie algebra
so(3) of the rotation group. The significance of the mathematical language of
representation theory went even deeper though than just that of handling sym-
metries, with the fundamental Heisenberg commutation relations recognized by
Weyl as those of a unitary representation of a Lie algebra. Dirac’s remark-
able procedure for passing from Hamiltonian mechanics to quantum theory by
“canonical quantization” is precisely the passage from this Lie algebra to its
(unique) irreducible unitary representation (this point of view is developed in
detail in [21]).

3 Quantum mechanics and number theory

By the time of Wigner’s 1959 talk, quantum mechanics and the theory of group
representations had developed far beyond the initial insights of the 1920s, with a
myriad of close connections between the two subjects. A few years later connec-
tions to quantum mechanics appeared in a very different area of mathematics,
with number theorist and algebraic geometer André Weil’s work [12] applying
the same Lie group and representation that appears in canonical quantization
to questions in number theory. This involved extending the theory from the real
numbers to an arithmetic theory over the rational numbers Q. To do this, one
thinks of the ring of integers Z as a ring of functions on a space called Spec(Z),
whose points are the prime numbers p. Integers take values at p in the field Fp

of integers mod p. Elements of Q can be thought of as rational functions on
Spec(Z), and at each p one defines a new field called Qp which is the arithmetic
analog of Laurent series at the point p.

Weil took the representation of the Heisenberg group constructed by canoni-
cal quantization of a classical phase space as just the special case for the field R
of a more general story that could also be carried through for the local fields Qp

and the global field Q. He used the recently developed theory of adeles, which
packaged the local fields Qp and R into a single object, the adele ring AQ, and
extended canonical quantization over R to this ring. This formalism then gave
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a picture which explained a great deal of the theory of theta functions, includ-
ing results of Carl Ludwig Siegel on generalized theta functions depending on
a quadratic form. For some details of the theory of theta functions from this
point of view, see [11].

4 The Standard Model

Wigner writes at the end of his essay (referring to the miracle of the effectiveness
of mathematics)

We should be grateful for it and hope that it will remain valid in
future research...

The next decade or so bore out his hopes well, with the emergence by 1973 of
the Standard Model which remains to this day our best theory of fundamental
physics. The Standard Model is defined in terms of sophisticated geometrical
constructs that go well beyond those of general relativity, including the following
two central ideas.

4.1 Yang-Mills gauge theory

The electromagnetic force can be simply described in terms of a connection
on a U(1) principal bundle, the vector potential A. Electric and magnetic
fields are components of the curvature of this connection. The action functional
is the norm-squared of the curvature, with its Euler-Lagrange equations the
Maxwell equations. The quantization of the theory of just electromagnetic fields
(no charged particles) gives the theory of non-interacting photons, and can be
performed either in an infinite-dimensional version of canonical quantization or
by defining a path integral over the infinite-dimesional space A of connections.
Dealing with the infinite-dimensional gauge symmetry of the theory introduces
technical difficulties which can be dealt with in several possible ways.

The Standard Model includes electromagnetism, but also describes the weak
and strong forces using the same mathematical language, generalized to the
non-abelian case with not just U(1) but also SU(2) and SU(3) bundles. In
yet another demonstration of Wigner’s “unreasonable effectiveness,” the gen-
eral formalism of connections and curvature on principal bundles developed by
geometers during the 1950s turns out to be exactly the right language to for-
mulate this theory. Just as in the U(1) case, an infinite dimensional group (the
gauge group G) acts on the space of connections A, preserving the action func-
tional. Handling the implications of this group action is one of the thorniest
aspects of the theory. Unlike the U(1) theory, here even the theory without
matter particles is an interacting theory, and much remains to be understood,
with a $1 million Millenium prize for this problem still unclaimed. A great
mystery of the subject remains that of the explanation for this particular set of
Lie groups and the relative normalization of the Yang-Mills action terms (why
U(1) × SU(2) × SU(3)?, why the values of the three coupling constants?). Is
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there some more fundamental geometrical structure that would explain these
choices?

4.2 Spinor fields and the Dirac operator

In the Standard Model, matter fields are described by quantizing the infinite
dimensional linear space of solutions of a Dirac equation. Such solutions are
sections of certain vector bundles, with these vector bundles a tensor product of
the spinor bundle over space-time and associated bundles to the principal U(1)×
SU(2)× SU(3) bundles with connection that describe gauge fields. This is yet
again a construction that is very natural in the formalism of modern geometry,
leaving only a small number of unexplained and unmotivated choices (why just
the Weyl spinors, and why the intriguing pattern of U(1) hypercharges, together
with the fundamental SU(2) and SU(3) representations?) Again, it seems that
we are missing some piece of geometrical structure that would explain these
choices.

The field equation here is the Dirac equation, and shortly after Wigner’s
paper a dramatically new deep connection between mathematics and physics
appeared with the discovery by Atiyah and Singer that the Dirac operator plays
a fundamental role in their index theorem. The Atiyah-Singer index theorem is
one of the great unifying discoveries of twentieth-century mathematics, bringing
together analysis, geometry, and topology in a surprising and non-trivial way.
It soon became clear that K-theory was the right way to formalize some of these
ideas, with the Dirac operator playing the role of the fundamental class in K-
homology. For more about K-theory, index theory, and the Dirac operator, the
original papers in [2] are well-worth reading.

5 Gauge theory and mathematics

After 1973, particle physics became somewhat of a victim of its success, as ex-
periment after experiment confirmed precisely the predictions of the Standard
Model, culminating with the discovery at the LHC in 2012 of a Higgs particle
with the predicted properties. This period however saw a great deal of progress
in the understanding of quantum field theories showing deep and unexpected
connections to mathematics. Beginning with Witten’s 1982 paper on Supersym-
metry and Morse theory [16], the subject of “topological quantum field theory”
has continued to develop and expand, providing powerful new ideas that have
revolutionized several subfields of mathematics. Among the simplest such the-
ories are quantum mechanical examples with Hamiltonian the square of the
Dirac operator, providing a new perspective on the index theorem (see for in-
stance [4] and [1]). In 1990 Witten was awarded the Fields medal, largely for his
1988 work on Chern-Simons theory [19], a three-dimensional quantum field the-
ory that had revolutionary implications for knot theory and three-dimensional
topology. New insights into mathematics and physics continue to come out of
the study of this theory in many variants.
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These ideas have not been as fruitful in fundamental physics as in mathemat-
ics, but there are close connections between the quantum field theories being
used and the Standard Model. In particular, Witten’s original 1988 TQFT
[18] (which later led to the Seiberg-Witten equations and major results in four-
dimensional topology) is a four-dimensional theory with Yang-Mills and matter
fields. It differs from a potentially physical theory only by a subtlety (“twist-
ing” of the N = 2 supersymmetry), while carrying a very simple mathematical
interpretation in terms of the de Rham cohomology of a space of connections.

6 The Langlands program: number theory and
representation theory

The same period of the late 1960s-early 1970s that saw dramatic progress in
particle physics coming from the generalization to non-Abelian gauge fields saw
equally dramatic progress in number theory, also involving generalization to
non-Abelian groups. This subject has been described by Edward Frenkel [6] as
a “Grand Unified Theory of Mathematics”:

The Langlands Program has emerged in recent years as a blueprint
for a Grand Unified Theory of Mathematics. Conceived initially as a
bridge between Number Theory and Automorphic Representations,
it has now expanded into such areas as Geometry and Quantum
Field Theory, weaving together seemingly unrelated disciplines into
a web of tantalizing conjectures.

In the arithmetic Langlands program one works with objects that have intrigu-
ing analogies with the non-abelian gauge groups and spaces of connections of the
Standard Model. Instead of just the adele ring AQ used by Weil, adele groups
such as SL(2,AQ) appear, with different local groups SL(2,Qp) acting at each
point p ∈ Spec(Z). This is tantalizingly like Yang-Mills theory, with its local
gauge group acting independently at each point in space-time. In their 1983
work on the Yang-Mills theory for the case of two-dimensional Riemann sur-
faces, Atiyah and Bott [3] found intriguing analogies between moduli spaces of
connections and the adelic constructions that appear in the Langlands program.

A fundamental object of the Langlands theory is an “automorphic represen-
tation,” one aspect of which is that of a representation of the adele group (for
an introduction to the subject, see [5]). For mathematicians, automorphic rep-
resentations themselves present fascinating structures to study, with the added
interest of detailed conjectures linking them to representations of Galois groups
which determine much of the structure of number fields. In a hazy analogy with
Yang-Mills theory, automorphic representations would be analogous to some-
thing like representations of the infinite dimensional gauge group, an aspect of
the quantum gauge theory formalism that is very poorly understood. Witten
in 1987 [17] had noticed some striking analogies between two-dimensional quan-
tum field theories and automorphic representations, but finally decided not to
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pursue the subject, commenting recently [20] “I concluded reluctantly that the
analogy in the form I was developing was way too superficial, so I stopped.”

7 Geometric Langlands

Mathematicians have for a long time known that there was a detailed analogy
between number fields like Q and the field of functions on an algebraic curve over
a finite field. The Langlands program applied equally to both contexts, with the
second one often technically easier to handle. There is yet a third subject that
fits into this analogy, the subject of Riemann surfaces, thought of as algebraic
curves over the field C, and this was the sort of thing Witten was pursuing in
1987. The mid-90s saw the development of a much more succesful approach to
the subject, which now goes under the name “geometric Langlands.” It posits a
particular analog of the Langlands program in the context of Riemann surfaces,
and has led to a great deal of work bringing together different areas of math-
ematics, and motivating Frenkel’s “Grand Unification” characterization. This
remains a very active field of mathematical research, with some signs that ideas
developed in it may feed back into the continuing research on the arithmetic
case.

A 2004 workshop at the Institute for Advanced Study brought together
physicists and mathematicians working on the Langlands program. It inspired
Witten to find a way to relate one of the 4d supersymmetric Yang-Mills theories
studied in TQFT to the geometric Langlands context, with details worked out
in a paper of Kapustin and Witten [8]. This led to a large number of results
linking geometric Langlands and quantum field theories, and work on this topic
continues to this day.

8 Some speculation

Trying to look into the future, it is difficult to impossible to predict where
successful new ideas bringing together quantum field theory and mathematics
will come from, but some possibilities are

• Our current understanding of quantum field theory is dominated by the
idea of defining the theory by starting with a Lagrangian functional, then
applying canonical quantization or path integral methods. It appears how-
ever that many interesting QFTs cannot be defined this way, with one
example the six-dimensional superconformal N = (2, 0) theory that is the
focus of much current research. It seems possible that new definitions
of quantum field theory will be found, ones more directly encoding new
aspects of the role of representation theory in the subject.

• Homological methods have played a large role in modern developments in
both mathematics and quantum field theory. In recent years representa-
tion theory has seen the introduction of some new homological methods
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(“Dirac cohomology”, for details see [7] and [9]), with an algebraic analog
of the Dirac operator playing a central role. This may somehow lead to
better understanding of the role of the physical Dirac operator, making
clear its representation-theoretic significance.

• Better understanding of the relationships between geometric Langlands
and quantum field theory may arise, of a sort that would allow a unified
picture of the arithmetic case, the function field case and the geometric
case. While Spec(Z) is often thought of as analogous to a two-real di-
mensional space, it also can be thought of instead as analogous to a three
dimensional one (with primes analogous to knots, see [10]), and perhaps
it is three-dimensional quantum field theories related to Chern-Simons
theory for which new insight into analogies with number theory will be
found.

Much speculation about new ideas in fundamental physics involves radical
changes in our current theory, with the idea that the Standard Model is just
a low-energy effective theory approximating something quite different. While
the modern understanding of renormalization allows this possibility, it does not
require it, and one remarkable aspect of the Standard Model is that it is consis-
tent all the way up to much higher energies than we have any hope of probing
experimentally. One can take the theory’s consistency with all current data
as evidence that the Standard Model may be something rather close to a final
theory. If this is true, the goal is not to overthrow the Standard Model, but
to deepen our understanding of it, perhaps through reformulation that will un-
earth new aspects of its connection to mathematics, especially to representation
theory. Such deeper understanding may provide answers to questions the the-
ory currently cannot address. In some sense the suggestion here is much more
conservative and less radical than much of current theoretical work. The past
history of theoretical particle physics has been dominated by the discovery of
new symmetries and ways to exploit them, so the conjecture that this will con-
tinue is unexceptional. The Langlands program and other connected areas of
mathematics are based on a wealth of ideas about symmetries, with intriguing
relations to quantum field theory, so the hope that progress may come from that
direction is not an unreasonable one.

9 Conclusion

The possible existence of a conventional SO(10) grand unified theory of particle
physics would have no impact on virtually all of the rest of physics and the many
different ways in which physicists understand and explore the physical world.
It is equally true that the existence suggested here of a grand unified theory of
mathematics and physics would in no way affect most of what mathematicians
do as they explore the wide range of known interesting mathematical struc-
tures. Such a theory by itself would not say anything about most of the rich
phenomena that mathematicians study, but would just indicate the existence of
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a distinguished point in the space of all mathematical structures. The nature
of this point might however shed light on some new connections between such
structures. The lesson drawn here from history is that the fundamental laws of
physics point not to some randomly chosen mathematical structure, but to an
exceptionally special one, requiring a deep understanding of the mathematical
world in order to fully appreciate it.

New understanding of relations between mathematical ideas and ideas in
fundamental physics can lead to progress in either field. From the earliest
days of quantum mechanics, representation theory played a major role in the
elucidation of atomic spectra and many other physical questions. Ideas from
physics have had a huge impact on mathematics, with the Chern-Simons and
Seiberg-Witten theories a recent example of this. Going forward, information is
equally likely to flow from mathematics to physics, or physics to mathematics.

The huge success of the Standard Model has put particle theory in a difficult
position, with little in the way of experimental hints of the right direction to look
for a better theory. In the past history of the subject, progress has almost always
come from such experimental hints, but there always has been an alternative way
forward, that of pursuing connections to mathematics as a very different sort
of guidance. One can argue that Einstein’s successful development of general
relativity was an example of this. Little help came from experiment, but a
great deal from mathematicians and the powerful new formalism of Riemannian
geometry.

During the half-century since Wigner’s talk, the connections between quan-
tum field theory and mathematics that have come to light go far beyond any-
thing that Wigner could have even dreamed of. Mathematics research contin-
ues to progress at a rapid pace, with the last 20 years seeing proofs of some of
the most well-known long-standing conjectures (Fermat’s Last Theorem and the
Poincaré Conjecture). There seems no reason to believe that further insight into
the deep connections between the intertwined subjects of fundamental physics
and fundamental mathematics will not be found. Wigner’s “unreasonable effec-
tiveness” miracle is ultimately a claim that a unity of mathematics and physics
exists despite our lack of any good reason to expect it. We may not deserve to
be part of this miracle, but we can and should continue to try and understand
it.
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