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Chapter 1

Introduction

These notes are a work in progress, course notes for a spring 2024 “Topics in
Representation Theory” course oriented towards explaining quantum mechanics,
quantum field theory, and the Standard Model to mathematicians, emphasiz-
ing the relations to representation theory. A sizable part of the early version
of these notes is an extract from notes on material covered in a spring 2023
graduate course on Lie groups and representations at Columbia University. For
the full version of those notes, see https://www.math.columbia.edu/~woit/

LieGroups-2023/qmnumbertheory.pdf.
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Chapter 2

Classical Mechanics

The classical mechanics description of a physical system involves an “equation
of motion”, a differential equation which determines the state of the system at
later times given its state at some initial time. There are two quite different
formalisms used for this purpose, the Hamiltonian and Lagrangian. In this
chapter we’ll outline the Hamiltonian version, which is closely related to Lie
algebras, and then discuss the Lagrangian version.

2.1 Hamiltonian mechanics

In the Hamiltonian formalism, the state of a physical system at a given time is
determined by a point in a space called “phase space”. The equation of motion
is a first order equation in time determined by a function on phase space called
the “Hamiltonian.” One can also think of phase space as the space of solutions
of the equation of motion.

In the cases we are most interested in, phase space is an even dimensional
vector space P = R2n, with coordinates qj , pj for j = 1, 2, · · · , n. Then one can
define:

Definition (Poisson bracket). The Poisson bracket of two functions f1, f2 on
P is the function

{f1, f2} =

nX

j=1

�
∂f1
∂qj

∂f2
∂pj

− ∂f2
∂qj

∂f1
∂pj

�

Given a Hamiltonian function h on P , the time dependence of any function
f on P will satisfy

df

dt
= {f, h}

In particular, for coordinate functions, one gets Hamilton’s equations

q̇j = {qj , h} =
∂h

∂pj

2



ṗj = {pj , h} = − ∂h

∂qj

These are the equations of motion in Hamiltonian form. For h = 1
2m |p|2+V (q)

(V is the potential energy) these give the elementary physics definition of the
momentum

p = mq̇

and Newton’s second law
ṗ = mq̈ = −∇V

The Poisson bracket can easily be seen to satisfy the following properties:

• Antisymmetry:
{f1, f2} = −{f2, f1}

• Jacobi identity:

{f1, {f2, f3}}+ {f3, {f1, f2}}+ {f2, {f3, f1}} = 0

• Leibniz rule (derivation property)

{f1, f2f3} = {f1, f2}f3 + f2{f1, f3}

The first two properties imply that the Poisson bracket provides a Lie algebra
structure on the space of functions on P . This is an infinite-dimensional Lie
algebra.

We’ll mainly be interested in the case where P is a linear space, but the
whole formalism works equally well for a manifold of the following kind:

Definition (Symplectic manifold). A symplectic manifold P is a manifold with
a two-form ω ∈ Ω2(P ) such that:

• ω is non-degenerate. At each p ∈ P it gives an isomorphism between
tangent vectors and cotangent vectors.

• ω is closed: dω = 0

For the case of P = R2n and its standard Poisson bracket, one has

ω =

nX

j=1

(dqj ⊗ dpj − dpj ⊗ dqj) =

nX

j=1

dqj ∧ dpj

Note that, up to a change of coordinates, this is the unique antisymmetric non-
degenerate bilinear form on R2n. This is analogous to the case of Riemannian
geometry, where instead the inner product provides a non-degenerate symmetric
bilinear form, and this analogy will play an important role later.

A simple non-linear example of a symplectic manifold is given by P = S2,
with ω the area two-form. A large class of examples is given by cotangent
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bundles P = T ∗M of manifolds M , with ω = dθ where θ is the canonical
one-form on M .

On a symplectic manifold the non-degeneracy condition allows one to asso-
ciate to a function f a vector field Xf by

df = ω(Xf , ·) = iXf
ω

This is a “symplectic gradient”, an analog of the usual gradient for a Riemannian
manifold, which associates a vector to field to f by using the metric to identify
the one-form df with a vector field. Not all vector fields are of the form Xf .
Those that are are called “Hamiltonian vector fields”.

The Poisson bracket can then be defined by

{f1, f2} = ω(Xf1 , Xf2)

Writing out explicitly the conditon that the three form dω = 0, one gets the
Jacobi identity for the Poisson bracket, and thus a Lie algebra structure on the
functions on P . The map

f → Xf

is a Lie algebra homomorphism from this Lie algebra of functions to the Lie
algebra of vector fields on P .

These are infinite dimensional Lie algebras, which one can locally exponenti-
ate to get a group law (actually a “pseudogroup”). Such a group action preserves
ω since the Lie derivative satisfies

LXf
ω = (diXf

+ iXf
d)ω = diXf

ω = dω(Xf , ·) = ddf = 0 (2.1)

This (pseudo)-group preserving ω is a sub (pseudo)-group of the group of dif-
feomorphisms of P (the “symplectomorphisms” to mathematicians, “canonical
transformations” to physicists).

By 2.1, for any vector field X preserving ω one has diXω = 0. When
H1(M) = 0 the vector field X will be a Hamiltonian vector field Xf for a
function f determined by iXω = df . This function f is determined only up to
a constant (for P connected).

In the physicist’s language the Hamiltonian function h “generates” an action
of the Lie group R on P given by the vector field Xh. This Lie group R is the
group of time translations acting on the physical system. Whenever one has
an action of a Lie group G on P that preserves ω, differentiating this gives
a Hamiltonian vector field XL for each L ∈ g, the Lie algebra of G. Thus,
when H1(M) = 0, for each L ∈ g one can find (ambiguous up to a constant) a
function fL that generates the action infinitesimally given by the action of L.
It turns out that when H2(g) = 0 (Lie algebra cohomology), the constants can
be chosen so that the map L → fL is a Lie algebra isomorphism between g and
a sub-Lie algebra of the Lie algebra of functions on P . This map is known as
the “moment map”.

When a function f on P Poisson-commutes with the Hamiltonian ({f, h} =
0), then df

dt = 0 and the function f is a constant along the physical trajectories
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of time evolution generated by the Hamiltonian h. In such a case f is said
to be a “conserved quantity”. When we have an action of a Lie group G on P
preserving ω that commutes with the action of the group R of time translations,
the functions fL for each L ∈ g will be conserved quantities. This is how
conservation laws corresponding to symmetries come about in the Hamiltonian
formalism.

Some important examples:

• For a particle in 3 dimensions, P = R6 with the usual Poisson bracket.
There is a Hamiltonian action of R3 by translation in the q coordinates,
generated by the p coordinates. When the hamiltonian h is independent
of a coordinate qj , the corresponding pj is a conserved quantity: the
momentum in the j direction.

• In the same case there is a Hamiltonian action of SO(3), by simultaneous
rotation of the q and p. The functions that generate rotations about the
axes are

l1 = q2p3 − p2q3, l2 = q3p1 − p3q1, l3 = q1p2 − p1q2

These are the components of the angular momentum. When the Hamil-
tonian is invariant under rotations about the j-axis, lj is a conserved
quantity.

For any LIe algebra g, one can takeP = g∗. Lie algebra elements X,Y ∈ g
are linear functions on P . On these linear functions the Lie bracket is a Poisson
bracket

{X,Y } = [X,Y ]

and this can be extended using the derivation property to a Poisson bracket on
S∗(g), the polynomials on g∗ = P . P is not a symplectic manifold, since this
construction does not give a non-degenerate two-form (instead, it’s a “Poisson
manifold). A Lie group G acts on its LIe algebra g by the adjoint action,
and there is a corresponding co-adjoint action on g∗. On the orbits of the co-
adjoint action, one does have a non-degenerate symplectic form, and these orbits
are symplectic manifolds. The example of S2 mentioned above is the case of
G = SO(3), where the co-adjoint orbits are spheres in R3 = so(3)∗.

2.2 Lagrangian mechanics

In the Lagrangian formalism, instead of a phase space P = R2n of positions
qj and momenta pj , one considers just the position (or configuration) space
M = Rn. Instead of a Hamiltonian function h on P , one has a functional S[γ]
of parametrized paths γ in M called the “action”. The action is defined by
integrating a function of position and velocity called the Lagrangian.

Definition (Action). The action S for a path γ is

S[γ] =

Z t2

t1

L(q(t), q̇(t))dt

5



Here the path is parametrized by t ∈ [t1, t2] and the Lagrangian L is a function
of t that depends on the position at t and its t-derivative. More generally, one
can formulate this for configuration space a manifold M , with L(t) depending
on the velocity vector, which takes values in the tangent space of M .

The fundamental principle of classical mechanics in the Lagrangian formal-
ism is that classical trajectories are given by critical points of the action func-
tional.

Definition (Critical point for S). A path γ is a critical point of the functional
S[γ] if

δS(γ) ≡ d

ds
S(γs)|s=0 = 0

where
γs : [t1, t2] → Rn

is a smooth family of paths parametrized by an interval s ∈ (−ϵ, ϵ), with γ0 = γ.

Critical points will be given by solutions to the Euler-Lagrange equations,
which will be the equations of motion for the system:

Theorem (Euler-Lagrange equations). One has

δS[γ] = 0

for all variations of γ with endpoints γ(t1) and γ(t2) fixed if

∂L

∂qj
(q(t), q̇(t))− d

dt

�
∂L

∂q̇j
(q(t), q̇(t))

�
= 0

for j = 1, · · · , d. These are called the Euler-Lagrange equations.

Proof. Ignoring analytical details, the Euler-Lagrange equations follow from the
following calculations, which we’ll just do for n = 1, with the generalization to
higher d straightforward. We are calculating the first-order change in S due to
an infinitesimal change δγ = (δq(t), δq̇(t))

δS[γ] =

Z t2

t1

δL(q(t), q̇(t))dt

=

Z t2

t1

�
∂L

∂q
(q(t), q̇(t))δq(t) +

∂L

∂q̇
(q(t), q̇(t))δq̇(t)

�
dt

But

δq̇(t) =
d

dt
δq(t)

and, using integration by parts

∂L

∂q̇
δq̇(t) =

d

dt

�
∂L

∂q̇
δq

�
−

�
d

dt

∂L

∂q̇

�
δq

6



so

δS[γ] =

Z t2

t1

��
∂L

∂q
− d

dt

∂L

∂q̇

�
δq − d

dt

�
∂L

∂q̇
δq

��
dt

=

Z t2

t1

�
∂L

∂q
− d

dt

∂L

∂q̇

�
δqdt−

�
∂L

∂q̇
δq

�
(t2) +

�
∂L

∂q̇
δq

�
(t1) (2.2)

If we keep the endpoints fixed so δq(t1) = δq(t2) = 0, then for solutions to

∂L

∂q
(q(t), q̇(t))− d

dt

�
∂L

∂q̇
(q(t), q̇(t))

�
= 0

the integral will be zero for arbitrary variations δq.

As an example, a particle moving in a potential V (q) will be described by a
Lagrangian

L(q, q̇) =
1

2
m|q̇|2 − V (q)

for which the Euler-Lagrange equations will be Newton’s second law:

−∂V

∂qj
=

d

dt
(mq̇j) = mq̈j

Given a Lagrangian classical mechanical system, one would like to be able
to find a corresponding Hamiltonian system that will give the same equations
of motion. To do this, we proceed by defining for each qj a corresponding
momentum coordinate pj by

pj =
∂L

∂q̇j

Then, instead of working with trajectories characterized at time t by

(q(t), q̇(t)) ∈ R2n

we would like to instead use

(q(t),p(t)) ∈ R2n

where pj =
∂L
∂q̇j

and identify this R2n (for example at t = 0) as the phase space

of the conventional Hamiltonian formalism.
The transformation

(qj , q̇k) →
�
qj , pk =

∂L

∂q̇k

�

between position-velocity and phase space (in greater generality TM and T ∗M)
is known as the Legendre transform, and in good cases (for instance when L is
quadratic in all the velocities) it is an isomorphism. In general though, this is
not an isomorphism, with the Legendre transform often taking position-velocity
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space to a lower dimensional subspace of phase space. Such cases are not unusual
and require a much more complicated formalism, even as classical mechanical
systems (this subject is known as “constrained Hamiltonian dynamics”).

Besides a phase space, for a Hamiltonian system one needs a Hamiltonian
function. Choosing

h =

dX

j=1

pj q̇j − L(q, q̇)

will work, provided the relation

pj =
∂L

∂q̇j

can be used to solve for the velocities q̇j and express them in terms of the
momentum variables. In that case, computing the differential of h one finds
(for d = 1, the generalization to higher d is straightforward)

dh =pdq̇ + q̇dp− ∂L

∂q
dq − ∂L

∂q̇
dq̇

=q̇dp− ∂L

∂q
dq

So one has
∂h

∂p
= q̇,

∂h

∂q
= −∂L

∂q

but these are precisely Hamilton’s equations since the Euler-Lagrange equations
imply

∂L

∂q
=

d

dt

∂L

∂q̇
= ṗ

While the Legendre transform method given above works in some situations,
more generally and more abstractly, one can pass from the Lagrangian to the
Hamiltonian formalism by taking as phase space the space of solutions of the
Euler-Lagrange equations. This is sometimes called the “covariant phase space”,
and it can often concretely be realized by fixing a time t = 0 and parametrizing
solutions by their initial conditions. Only for a special class of Lagrangians
though will one get a non-degenerate Poisson bracket on a linear phase space
and recover the usual properties of the standard Hamiltonian formalism. For
greater generality one needs a more complicated formalism to recover the desired
features of the Hamiltonian formalism.

2.2.1 Noether’s theorem and symmetries in the Lagrangian
formalism

The derivation of the Euler-Lagrange equations given above can also be used to
study the implications of Lie group symmetries of a Lagrangian system. When
a Lie group G acts on the space of paths, preserving the action S, it will take

8



classical trajectories to classical trajectories, so we have a Lie group action on
the space of solutions to the equations of motion (the Euler-Lagrange equations).
On this space of solutions, we have, from equation 2.2 (generalized to multiple
coordinate variables),

δS[γ] =




dX

j=1

∂L

∂q̇j
δqj(X)


 (t1)−




dX

j=1

∂L

∂q̇j
δqj(X)


 (t2)

where now δqj(X) is the infinitesimal change in a classical trajectory coming
from the infinitesimal group action by an element X in the Lie algebra of G.
From invariance of the action S under G we must have δS=0, so




dX

j=1

∂L

∂q̇j
δqj(X)


 (t2) =




dX

j=1

∂L

∂q̇j
δqj(X)


 (t1)

This is an example of a result known as “Noether’s theorem”. In this context
it says that given a Lie group action on a Lagrangian system that leaves the
action invariant, for each element X of the Lie algebra we will have a conserved
quantity

dX

j=1

∂L

∂q̇j
δqj(X)

which is independent of time along the trajectory.
When the Lagrangian L is translation invariant (depends on q̇, not q), one

recovers by the Noether method the definition of momentum and its conserva-
tion law. When L is rotation invariant, one gets angular momentum and its
conservation.

The Lagrangian formalism has the advantage that the dynamics depends
only on the choice of action functional on the space of possible trajectories, and
it can be straightforwardly generalized to theories where the configuration space
is an infinite dimensional space of classical fields. Unlike the usual Hamiltonian
formalism for such theories, the Lagrangian formalism allows one to treat space
and time symmetrically. For relativistic field theories, this allows one to exploit
the full set of space-time symmetries, which can mix space and time directions.
In such theories, Noether’s theorem provides a powerful tool for finding the
conserved quantities corresponding to symmetries of the system that are due to
invariance of the action under some group of transformations.

On the other hand, in the Lagrangian formalism, since Noether’s theorem
only considers group actions on configuration space, it does not cover the case
of Hamiltonian group actions that mix position and momentum coordinates,
something that occurs most notably in the case of the harmonic oscillator.
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Chapter 3

Introduction to
Quantization

In this chapter we’ll begin our discussion of quantum theory with some basic
examples covered in all physics textbooks, followed by some generalities about
the role of quantization in representation theory. The three examples here
incorporate three important aspects of the quantum field theories we plan to
study later in the course.

3.1 Canonical quantization: some examples

What physicists call “canonical quantization” can be understood in terms of
the unique non-trivial representation of the Heisenberg group and Lie algebra,
which will be described in detail in the next chapter. In this one, we’ll motivate
the later representation theory with a standard description of the basic examples
of quantum systems.

The space of possible states for a quantum system is a complex vector space
H (generally infinite-dimensional) with Hermitian inner product. For one degree
of freedom this space can be taken to be the space of wavefunctions (complex-
valued functions ψ(q) of a position variable q) in L2(R). This version of the
state space is called the Schrödinger representation and acting on it are powers
of the self-adjoint operators

Q = q, P = −iℏ
d

dq

which satisfy the Heisenberg commutation relations

[Q,P ] = iℏ1

Here ℏ is a constant which depends on one’s choice of units, so later we will
often use units in which ℏ = 1.

10



The dynamics of the system is determined by specification of an operator
(defined in terms of the Q,P operators), the Hamiltonian H. This operator
generates translations in time, with wavefunctions evolving in time according
to the Schrödinger equation

iℏ
d

dt
ψ = Hψ

The connection between this formalism and what ones observes, measures
and often interprets in a classical picture of the world is given by two principles:

• Self-adjoint operators like Q and P correspond to observable quantities,
with eigenfunctions of such an operator states with a well-defined measur-
able value of the observable quantity, given by the eigenvalue.

• If one tries to measure the value of an observable quantity when the state
is not an eigenfunction, the result will be one of the eigenvalues, with
probability given by the norm-squared of the inner product between the
(normalized) state and eigenfunction with that eigenvalue (this is called
the “Born rule”).

For a single quantum particle moving in one dimension, subject to a potential
V (q), the Hamiltonian is

H =
1

2m
P 2 + V (Q) = − ℏ2

2m

d2

dq2
+ V (q)

One would like to find the eigenfunctions and eigenvalues of this operator, i.e.
find E,ψE(q) such that

(− ℏ2

2m

d2

dq2
+ V (q))ψE(q) = EψE(q)

and then expand wavefunctions at an initial time t = 0 in terms of the energy
eigenfunctions ψE(q). The Schrödinger equation implies that these evolve in
time as

ψE(q)e
− i

ℏEt

For much more detail about the following basic examples, see any physics
textbook on quantum mechanics, or [31].

3.1.1 The free particle

The case of the free particle is the case V (q) = 0. Using Fourier analysis, one
finds that the energy eigenvalues and eigenfunctions are parametrized by p ∈ R
and are given by

Ep =
p2

2m
, ψEp(q) = ei

p
ℏ q

The spectrum of the Hamiltonian is continuous, all non-negative values in R.
The eigenfunctions of H are also eigenfunctions of the momentum operator

P with eigenvalue p. P commutes with H, so if one prepares a state at time 0
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with wavefunction ψEp(q) and measures its momentum at any later time, one
will always get the value p (the momentum is a conserved quantity). Just as
H is the generator of time-translations on states, P is the generator of spatial
translations.

The eigenfunctions of the operator Q are delta-functions δ(q − q′), with
eigenvalue q′ ∈ R. Unlike the case for momentum P , one has [Q,H] ̸= 0 and
these are not energy eigenfunctions. If one prepares a state at time 0 with
wavefunction δ(q − q′), so localized at q = q′, it will immediately evolve into a
linear combination of states with all possible eigenvalues of Q. Measurement of
position at later times t may give all possible different values.

Note that the eigenfunctions of Q and P are not functions in L2(R) and in
addition, the operators Q and P don’t preserve L2(R) (multiplying or differ-
entiating by q can take a function that is square-integrable to one that isn’t).
To deal with these problems simultaneously, one can define the Schwartz space
S(R) of functions such that the function and its derivatives fall off faster than
any power at ±∞. The dual space S ′(R) of continuous linear functionals on
S(R) is called the space of tempered distributions, and includes the eigenfunc-
tions of Q and P . One has the sequence of dense inclusions

S(R) ⊂ L2(R) ⊂ S ′(R)

The Fourier transform takes each term in this sequence to itself.
A problem here is that elements of S ′(R) like the eigenfunctions of Q and P

are not in L2(R). They do not have well-defined norms, so will not be vectors
in a unitary representation and the Born rule can’t be used for them. However,
they are linear functionals on S(R) and one can use this to play the role of their
inner products with elements of S(R).

To get a well-defined formalism one has two options:

• Work with states ψ ∈ L2(R), taking great care with domains and ranges
of operators like P,Q and H that are applied to states. In this case,
eigenfunctions of these operators are not in the state space.

• Work with the space S′(R) and distributional states, but be careful to
properly pair these only with physical states in S(R) (sometimes called
“wavepackets”).

3.1.2 The harmonic oscillator

The quantum harmonic oscillator is the case of a particle moving in a quadratic
potential V (q) = 1

2mω2q2

H =
1

2m
P 2 +

1

2
mω2Q2

The energy eigenvalues and eigenfunctions are given by

En = ℏω(n+
1

2
), ψn(q) = Hn

�r
mω

ℏ
q

�
e−

mω
2ℏ q2
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where n = 0, 1, 2, . . . and Hn(q) are Hermite polynomials. In this case the
spectrum of the operator H is discrete, energy eigenfunctions are in L2(R), and
arbitrary t = 0 wavefunctions in L2(R) can be written as linear combinations
of the ψEn

(q).
The easiest way to get these results is to work not with Q and P , but

with complex linear combinations of these. For simplicity, rescaling so that
ℏ = m = ω = 1, one can choose

a =
1√
2
(Q+ iP ) =

1√
2
(q +

d

dq
), a† =

1√
2
(Q− iP ) =

1√
2
(q − d

dq
)

a, a† are each others adjoints and satisfy the commutation relation

[a, a†] = 1

The Hamiltonian is

H =
1

2
(Q2 + P 2) =

1

2
(a†a+ aa†) = a†a+

1

2

One can easily see (using [H, a†] = a† and [H, a] = −a) that a† increases the
eigenvalue of H by 1, a reduces it by 1. To have a spectrum bounded below,
one needs a non-zero state ψ0(q) satisfying

aψ0(q) =
1√
2
(q +

d

dq
)ψ0(q) = 0

This state will have energy 1
2 and by given by

ψ0(q) = e−
1
2 q

2

The other energy eigenstates will have energy n+ 1
2 for n = 1, 2, · · · and can be

found explicitly by applying the operator a† n-times to ψ0(q), so evaluating

(q − d

dq
)ne−

1
2 q

2

Note that for the harmonic oscillator, V (q) is not translation invariant, and one
has [P,H] ̸= 0 as well as [Q,H] ̸= 0 so neither position nor momentum are
conserved quantities.

For more general potentials one can have both discrete (with eigenfunctions
in L2(R)) and continuous (with eigenfunctions not in L2(R)) components of the
spectrum. The physical interpretation will involve both “bound states” which
correspond to particles localized in some regions of R and “scattering states”
which correspond to particles with possible positions extending to +∞ or −∞.

3.2 The spin 1
2 quantum system

A very simple and very important example of a quantum system is the spin
1
2 system that describes a highly non-classical degree of freedom shared by all
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matter particles. Unlike the previous two examples, this one is not in any sense
a quantization of a classical Hamiltonian system with phase space R2n. This
system is characterized by

• The state space is H = C2.

• The operators corresponding to observables (including the Hamiltonian
operator H) are the self-adjoint operators on C2, so (real) linear combi-
nations of

1, σ1 =

�
0 1
1 0

�
, σ2 =

�
0 −i
i 0

�
, σ3 =

�
1 0
0 −1

�

Here the σj are the Pauli matrices, the physicist’s convention for a basis
of self-adjoint two by two matrices.

This same system describes any quantum system with C2, for which H can
be an arbitrary self-adjoint two by two matrix. The solution to the Schrödinger
equation will be given by

e−iHtψ(0)

where ψ(0) ∈ C2 is the state at t = 0. Here e−iHt will be a unitary matrix, so
an element of the group U(2).

This system is described as “spin 1
2” since it is the spinor representation of

the group Spin(3) = SU(2), the double cover of the rotation group SO(3). It
thus describes a degree of freedom which transforms non-trivially under rota-
tions of space. If one normalizes the observable operators by

Sj =
1

2
σj

then eiθSj will give the behavior of a state under a rotation by an angle θ about
the j-axis. These are called “spin” operators and have eigenvalues ± 1

2 , which by
the principles connecting quantum theory to observation should describe the two
possible values one can observe for the spin observable. The subtleties of this
become apparent once one notes that the different Sj don’t commute so can’t
be simultaneously diagonalized. Unlike in classical mechanics where a system
at a given time has three well-defined components of its angular momentum,
here something very different is going on.

There are two different ways to think of this system as the “quantization”
of something:

• Take phase space to be P = S2, a co-adjoint orbit in R3 = su(2)
∗
, and

develop a theory of how to “quantize” such symplectic manifolds.

• Take phase space to beR3 but using “anti-commuting” variables, a subject
we will develop later.

In either case, it is as a quantum system that there is a very simple description,
with any possible classical analog something much more complicated to describe.
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3.3 Quantization and representation theory

3.3.1 Dirac quantization as a Lie algebra representation

In the previous chapter we saw that the polynomial functions on phase space
P = R2n form a Lie algebra, with Lie bracket the Poisson bracket. Very
soon after Heisenberg’s 1925 development of quantum theory based upon non-
commuting operators corresponding to position and momentum, Dirac proposed
a general rule for such operators. If Of is the quantum operator corresponding
to the classical phase space function f , then he proposed that

O{f,g} = − i

ℏ
[Of , Og] (3.1)

generalizing the Heisenberg commutation relations for operators Qj , Pj corre-
sponding to coordinates qj , pj . In the language of Lie algebras and represen-
tations, this proposal was that quantization is a unitary representation on the
state space H of the infinite dimensional Lie algebra of functions on phase space.
The passage from classical to quantum is nothing but the passage from a Lie
algebra to one of its representations.

Recall that a complex representation π′ of a Lie algebra L is a Lie algebra
homomorphism

π′ : L → End(V )

Here End(V ) is the Lie algebra of linear operators on V , with Lie bracket the
commutator. The Lie algebra homomorphism condition is that π′ preserves Lie
brackets:

π′([X,Y ]) = [π′(X),π′(Y )]

Such a representation will be unitary when there is a Hermitian form on V and
the π′(X) are skew-adjoint operators (π′(X)† = −π′(X)).

Such a Lie algebra representation may come from a representation π of a
group G with Lie algebra L = Lie(G) (in which case it is called “integrable”).
Then π is a group homomorphism

π : G → GL(V )

from the group G to the group of invertible linear operators on V . G and
GL(V ) are smooth manifolds, and π′ will be the derivative of π, evaluated at
the identity. When the representation is unitary π takes values in the group
U(V ) of unitary transformations.

The Dirac quantization rule (setting ℏ = 1) says that

f → π′(f) = −iℏOf

is a Lie algebra homomorphism, since the homomorphism property is

π′({f, g}) = −iℏO{f,g} = [π′(f),π′(g)] = [−iℏOf ,−iℏOg] = −ℏ2[Of , Og]
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which is Dirac’s 3.1. Note that the operators Of favored by physicists are self-
adjoint (so have real eigenvalues), while the π′(f) = −iℏOf are skew-adjoint.

It turns out that Dirac’s proposal is flawed. In the next chapter we will see
that there is a representation π′ which has the right properties for polynomials of
degree up to two (so, for n = 1, the Lie subalgebra with basis 1, q, p, q2, p2, qp),
but cannot be extended consistently to higher order polynomials. This is a
theorem (called the Groenewold-van Hove no-go theorem) and well-known to
physicists in the form of the existence of “operator-ordering ambiguities” occur-
ring when one tries to implement Dirac’s proposal.

3.3.2 Some generalities about quantization and represen-
tation theory

We will study in the next chapter “canonical quantization” which is the general
case of a representation of the Lie algebra of polynomials of degree up to two on
R2n. More generally, if one starts with a general classical Hamiltonian system
with P a general symplectic manifold, one will still have a Poisson bracket and
can ask for a notion of quantization that gives a state space with operators sat-
isfying commutation relations corresponding to the Poisson bracket relations.
The subject of “geometric quantization” attempts to provide such generaliza-
tion, but so far has shown limited applicability, especially in providing the full
range of observable operators one would like. Mathematicians studying the rep-
resentation theory of Lie groups and Lie algebras draw inspiration from quantum
systems studied by physicists. These often are “quantizations” of some classic
system, potentially providing an example of a new way to construct represen-
tations.

We discussed earlier co-adjoint orbits in P = g∗. Here the question of
how to get operators has a compelling answer: the algebra of operators in
the quantization of g∗ should be the universal enveloping algebra U(g). The
problem is that one has to represent these operators on a complex vector space
V , and this is precisely the general problem of representation theory for Lie
algebras, that of how to classify and construct all possible representations. It
is a well-known principle that a fruitful way to approach the problem is the
“orbit method”. Here one uses the decomposition of g∗ into co-adjoint orbits
and tries to associate to each co-adjoint orbit an irreducible representation, by
“quantizing” the classical Hamiltonians system with phase space that orbit.
This returns one to the problem of quantizing phase spaces P that are not
linear, but for examples that have a great deal of extra structure governed by
the Lie algebra g. The subject of “geometric quantization” has been motivated
by efforts to solve this problem of quantizing co-adjoint orbits.

In what follows we will stick to a special case of this general problem, using
the Lie algebra of Heisenberg group, for which the co-adjoint orbits are exactly
the linear phase spaces P = R2n.

For a summary of the orbit philosophy and how it mostly (but not always)
leads to constructions of irreducible representations, see [13].
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Chapter 4

Canonical quantization:
bosons

4.1 The Heisenberg group and its representa-
tions

Quantum mechanics as we know it was born in 1925 in a series of conceptual
breakthroughs which began with Heisenberg’s creation of a theory involving non-
commuting quantities, soon reformulated (by Max Born) in terms of position
and momentum operators Q and P satisfying the commutation relations

[Q,P ] = iℏ1

(known as the Heisenberg commutation relations). We are for now considering
just one degree of freedom. The constant ℏ depends on units used to measure
position and momentum. We will choose units such that ℏ = 1. The mathe-
matician Hermann Weyl soon recognized these relations as those of a unitary
representation of a Lie algebra now known as the Heisenberg Lie algebra, and
described the corresponding Heisenberg group.

Late in 1925, Schrödinger formulated a seemingly different version of quan-
tum mechanics, in terms of wave-functions satisfying a differential equation.
What Schrödinger had found was a construction of a representation of the
Heisenberg Lie algebra on the vector space of functions ψ(q) of a position vari-
able q, with Q the multiplication by q operator and P the differential operator

P = −i
d

dq

We’ll begin with the Lie algebra corresponding to the Heisenberg com-
mutation relations, then find the group with this Lie algebra and show that
Schrödinger’s wave-functions give an irreducible unitary representation of the
Lie algebra and group. It turns out that any irreducible unitary representation
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of the Heisenberg group is essentially equivalent to this one (Stone-von Neumann
theorem), but the family of different ways of constructing these representations
carries an intricate structure.

4.1.1 The Heisenberg Lie algebra and Lie group

The Lie algebra spanned by 1, q, p will be the three-dimensional Lie algebra with
a basis X,Y, Z and Lie bracket relations

[X,Z] = [Y, Z] = 0, [X,Y ] = Z

This Lie algebra can be identified with the Lie algebra of three by three strictly
upper-triangular matrices by

X =



0 1 0
0 0 0
0 0 0


 , Y =



0 0 0
0 0 1
0 0 0


 , , Z =



0 0 1
0 0 0
0 0 0




It is called the Heisenberg Lie algebra by mathematicians, and we’ll use the
notation h3.

A unitary representation (which we’ll call π′) will be given by three skew-
adjoint operator π′(X),π′(Y ),π′(Z) satisfying

[π′(X),π′(Y )] = π′(Z), [π′(X),π′(Z)] = 0, [π′(Y ),π′(Z)] = 0

These become the Heisenberg commutation relations if we identify

π′(X) = −iQ, π′(Y ) = −iP, π′(Z) = −i1

Note that factors of i appear because physicists like to work with self-adjoint
operators (since their eigenvalues are real), but for unitary representations the
Lie algebra representation operators are skew-adjoint.

In terms of matrices, exponentiating elements of h3 as in

exp



0 x z
0 0 y
0 0 0


 =



1 x z + 1

2xy
0 1 y
0 0 1




gives the elements of the Heisenberg group H3 (physicists often call this the
“Weyl group”, but this means something different to mathematicians). This is
the group of upper triangular matrices with 1s on the diagonal. Using x, y, z as
“exponential” coordinates on the group, H3 is the space R3 with multiplication
law

(x, y, z)(x′, y′, z′) = (x+ x′, y + y′, z + z′ +
1

2
(xy′ − x′y))

For computations with the Heisenberg group it is often convenient to use the
Baker-Campbell-Hausdorf formula, which simplifies greatly in this case since all
Lie brackets except [X,Y ] = Z vanish. As a result, for A,B ∈ h3 one has

eAeB = eA+B+ 1
2 [A,B]
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The group H3 is a central extension

0 → (R,+) → H3 → (R2,+) → 0

of the additive group of R2 by the additive group of R (which is the center of
the group).

A slightly different version of the Heisenberg goup (which we’ll call H3,red)
that is sometimes used takes a quotient by Z and replaces the central R with a
central U(1), so is a central extension

0 → U(1) → H3,red → (R2,+) → 0

Elements are labeled by (x, y, u) where x and y are in R and u ∈ U(1), and the
group law is

(x, y, u)(x′, y′, u′) = (x+ x′, y + y′, uu′ei
1
2 (xy

′−x′y))

4.1.2 The Schrödinger representation

The Schrödinger representation πS is a representation on a vector space H of
complex valued functions ψ(q) on R, with derivative the Lie algebra represen-
tation

π′
S(X) = −iQ = −iq, π′

S(Y ) = −iP = − d

dq
, π′

S(Z) = −i1

Exponentiating these operators gives unitary operators that generate πS

πS(x) = e−ixq, πS(y) = e−y d
dq , πS(z) = e−iz1 (4.1)

Note that πS(y) acts on the representation space by translation

πS(y)ψ(q) = ψ(q − y)

Definition (Schrödinger representation). The Schrödinger representation of the
Heisenberg group H is given by

πS(x, y, z)ψ(q) = e−izei
1
2xye−ixqψ(q − y) (4.2)

for (x, y, z) ∈ H.

One can easily check that this is a representation, since it satisfies the ho-
momorphism property

πS(x, y, z)πS(x
′, y′, z′) = πS(x+ x′, y + y′, z + z′ +

1

2
(xy′ − x′y))

Taking as representation space H = L2(R), for the Lie algebra representation
π′
S there will be domain problems (functions on which operators not defined)

and range problems (operators take something in L2(R) to something not in
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L2(R)). As an alternative, one can take H = S(R) so that the representation
operators are well-defined (but then the dual space is something different, the
tempered distributions S′(R)). For the group representation, the operators πS

are well-defined on H = L2(R). Giving up on a well-defined inner-product and
unitarity, one can take H = S ′(R) and have both a Lie algebra and Lie group
representation.

This multiplicity of closely related versions of the representation is a general
phenomenon for infinite-dimensional representations of non-compact Lie groups,
where one has inequivalent representations on a sequence of dense inclusions of
representation spaces, here

S(R) ⊂ L2(R) ⊂ S ′(R)

4.1.3 The Stone-von Neumann theorem

The remarkable fact about representations of the Heisenberg group is that there
is essentially only one representation (once one has specified the constant by
which Z acts, but non-zero choices are related by a rescaling). More specif-
ically, any irreducible representation of H3 will be unitarily equivalent to the
Schrödinger representation. One has the following theorem

Theorem (Stone-von Neumann). For any irreducible unitary representation π
of H3 (with action of the center π(0, 0, z) = e−iz) on a Hilbert space H, there is
a unitary operator U : H → L2(R) such that

UπU−1 = πS

We will not give a proof here, since the analysis is somewhat involved, but
what follows should make clear some problems that any proof needs to overcome
and motivate the strategy for an actual proof.

Recall that one can define the adjoint pair of operators

a =
1√
2
(Q+ iP ) =

1√
2
(q +

d

dq
), a† =

1√
2
(Q− iP ) =

1√
2
(q − d

dq
)

and for the harmonic oscillator Hamiltonian the lowest energy eigenspace is the
one-dimensional space of solutions in L2(R) of

aψ0(q) = 0

These are all proportional to

ψ0 = e−
1
2 q

2

The rest of the state space can be generated by repeatedly applying the operator
a† to ψ0.

Exercise. Use this basis to prove that the Schrödinger representation is irre-
ducible.
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For some motivation for why the Stone-von Neumann theorem might be
true, for π′ one can construct analogs of the a, a†

b =
1

2
(iπ′(X)− π′(Y ))

and its adjoint b†. These will satisfy [b, b†] = 1 and by the argument given for the
harmonic oscillator state space, there should be a state |0b⟩ satisfying b |0b⟩ = 0,
which together with the (b†)k |0b⟩ should give an orthonormal basis of the state
space in the π′ representation. There will be a unitary operator U : H → L2(R)
taking the basis constructing using the b, b† operators to the standard basis
of harmonic oscillator energy eigenstates in the Schrödinger representation. A
possible approach to the Stone-von Neumann theorem would be to note that

UbU−1 = a, Ub†U−1 = a†

that b has a one-dimensional kernel (irreducibility), and that the rest of the
representation is given by repeated applications of b†. The U would then give
the desired unitary equivalence.

Unfortunately, this can’t work, since there is no guarantee that vectors in
the range of b† will be in its domain, so one can’t generate the representation
by repeatedly applying b† (it is not hard to construct examples of this using
wave-functions with specific boundary conditions). It turns out that the Stone-
von Neumann theorem is not true for general Lie algebra representations of
h3, only works for Lie algebra representations that integrate to give a group
representation. To get a proof that does work, one needs to work not with b, b†

and a, a†, but with their exponentiated versions. For details, see [10], chapter
14.

An important example of an irreducible representation unitarily equivalent
to the Schrödinger representation is given by using the Fourier transform F

ψ(q) → eψ(p) = (Fψ)(p) =
1√
2π

Z

R

e−ipqψ(q)dq

This is a unitary transformation on L2(R), with inverse eF given by Fourier
inversion

eψ(p) → ( eF eψ)(q) = 1√
2π

Z

R

eipq eψ(p)dp

The Stone-von Neumann theorem applies, with U = eF , U−1 = F .
Note that we will generically refer to the essentially unique representation

of the Heisenberg using H for the representation space and π for the homomor-
phism from the group to operators on H, with π′ for the Lie algebra represen-
tation. When we want to specify a specific construction, the π may acquire
a subscript (e.g. πS for the Schrödinger construction) and H may get further
specified (e.g. L2(R)). Terminology in this subject can be a bit confusing, since
instead of the usual multiple representations to keep track of, there is only one,
but with multiple different constructions.
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4.1.4 The Bargmann-Fock representation

The Stone-von Neumann theorem also applies to constructions of representa-
tions on other versions of Hilbert space. In particular, it is clear from looking
at the harmonic oscillator calculations that energy eigenstates can be identified
with monomials in a complex variable, with a and a† decreasing and increasing
the degree. To find a construction of the Heisenberg group irreducible repre-
sentation on C[w], one needs a Hilbert space structure, which one can define as
follows:

Definition (Fock Space). Fock space HF is the space of entire functions on C,
with finite norm in the inner product

⟨f(w), g(w)⟩ = 1

π

Z

C

f(w)g(w)e−|w|2

An orthonormal basis of HF is given by apropriately normalized monomials.
Since

⟨wm, wn⟩ =
1

π

Z

C

wmwne−|w|2

=
1

π

Z ∞

0

(

Z 2π

0

eiθ(n−m)dθ)rn+me−r2rdr

= n!δn,m

we see that the functions wn
√
n!

are orthonormal.

To get a representation of the (complexified) Heisenberg Lie algebra on this
space, define

a =
d

dw
, a† = w

Exercise. Show that these operators are each other’s adjoints with respect to
the inner product on Fock space.

On the real Heisenberg Lie algebra, this representation exponentiates to a
representation of the Heisenberg group. By the Stone-von Neumann theorem it
is unitarily equivalent to the Schrödinger representation on L2(R).

To explicitly write the Bargmann-Fock representation of the Heisenberg Lie
algebra, one can complexify and work with operators that depend on com-
plex linear combinations of the real basis X,Y, Z. If one does this first in the
Schrödinger representation one has

π′
S(iX) = Q, π′

S(iY ) = P, π′
S(iZ) = 1

and so

π′
S(

1√
2
(iX + i(iY ))) = a =

1√
2
(q +

d

dq
)
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(with at similar formula for a†). To get Bargmann-Fock one wants a π′
BF that

takes the same linear combinations to d
dw and w, acting on HF . Thus

π′
BF (

1√
2
(iX+i(iY )) = a =

d

dw
, π′

BF (
1√
2
(iX−i(iY )) = a† = w, π′

BF (iZ) = 1

We won’t work this out here, but these operators can be exponentiated to get
operators for a Heisenberg Lie group representation. By Stone-von Neumann,
there will be a unitary operators

U : HF → L2(R), U−1 : L2(R) → HF

These operators are quite non-trivial and interesting in analysis, giving unitary
isomorphisms between two very different kinds of function spaces. The explicit
form for U−1 is often called the Bargmann transform and is given by

(U−1ψ)(w) =

�
1

π

� 1
4

e−
1
2w

2

Z ∞

−∞
e−

1
2 q

2

e
√
2wqψ(q)dq

The relation between the Schrödinger and Bargmann-Fock operators is given by

U
d

dw
U−1 =

1√
2
(q +

d

dq
), UwU−1 =

1√
2
(q − d

dq
)

Note that what we have been calling the Bargmann Fock representation is
defined in terms of polynomials on a complex vector space of dimension n. Using
the isomorphism between polynomials on a vector space V and the symmetric
tensor product S∗(V ∗), one can instead define this in terms of tensor products
(in which case it often is called the “Fock representation.” We will later write
this out in detail, since it becomes important in quantum field theory, where
one deals with the case of V infinite-dimensional.

For more on the Bargmann-Fock representation and the Bargmann trans-
form a good source is Chapter 1, Section 6 of [7].

4.1.5 The Weyl algebra

A closely related algebra to the Heisenberg Lie algebra is the Weyl algebra,
which can be defined as the non-commutative algebra of polynomial coefficient
differential operators for a complex variable w. The generators of the algebra
are

• Multiplication by w.

• Differentiation by w: d
dw

These satisfy the same commutation relations as a, a†

[
d

dw
,w] = 1
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since
d

dw
(wf)− w

df

dw
= f

Recall that one can think of representations of a Lie algebra g as modules
for the associative algebra U(g) (the universal enveloping algebra of g). It is
convenient here also to complexify, and for any Lie algebra we’ll use the notation
U(g) to refer to U(g)⊗C = U(g⊗C). For the Heisenberg Lie algebra h3, U(h3)
is given by all complex linear combinations of products of basis elementsX,Y, Z,
modulo the relations

[X,Z] = [Y, Z] = 0, [X,Y ] = Z

The center of U(h3) (denoted here Z(h3)) is the commutative algebra C[Z]
of polynomials in Z. In any irreducible representation π′ of a Lie algebra g,
by Schur’s lemma elements of the center Z(g) act by scalars. This gives a
homomorphism

χπ′ : Z(g) → C

called the infinitesimal character of the representation. In the case of g =
h3, since Z(h3) is an algebra of the polynomial functions in one variable, the
infinitesimal character is evaluation of the polynomial at some c ∈ C. This
c is the scalar given by the action of π′(Z) on the representation space. The
Schrödinger representation as we have defined it is an irreducible representation
with c = −i.

For general Lie algebra representations of the complexified Lie algebra h3⊗C,
for each c ̸= 0 we have the irreducible representation unitarily equivalent to the
Schrödinger representation (rescaled from c = −i). These will be unitary for c
imaginary.

Z acts by a scalar we’ll call cπ′ . Polynomials in Z also act by a scalar, the
evaluation of the polynomial at cπ′ . The Schrödinger representation as we have
defined it is an irreducible representation with cπ′

S
= −i. Restricting attention

to Lie algebra representations for which π′(Z) = c1 for a chosen c ∈ C, these
will be modules for the quotient algebra

U(h3)/(Z − c)

By rescaling X and Y , for c ̸= 0, we get the Weyl algebra, and so an irreducible
Heisenberg algebra representation will be a module for the Weyl algebra. Among
these modules is the standard one on polynomials on w, which corresponds to
the one we have studying, which is integrable to a unitary Heisenberg group
representation. But there are many different modules for the Weyl algebra,
with the study of these modules the beginning of the subject of D-modules in
algebraic geometry.

4.1.6 The Heisenberg group and symplectic geometry

The three-dimensional Heisenberg group that we have been studying has a sim-
ple generalization that behaves in much the same way. For any n, define the
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2n+1 dimensional Heisenberg Lie algebra h2n+1 to be the Lie algebra with basis
Xj , Yj , Z (j = 1, 2, · · · , n) and all Lie brackets zero except

[Xj , Yk] = δjkZ

One can easily easily get a corresponding Heisenberg Lie group H2n+1 general-
izing the n = 1 case by exponentiating.

Instead of working with a basis like this, one can define this Lie group in a
more coordinate-invariant way, starting with any symplectic form on M = R2n

(note that M corresponds to P ∗, the dual of phase space, since coordinates on
phase space are a basis of M).

Definition (Symplectic form). A symplectic form Ω on a vector space M is a
non-degenerate anti-symmetric bilinear form

(v1, v2) ∈ M ×M → Ω(v1, v2) ∈ R

on M .

This is the same definition as that of an inner product on a vector space V ,
with “symmetric” replaced by “antisymmetric.” For any even-dimensional real
vector space M with a symplectic form Ω, one can define a Lie algebra structure
on M ⊕R by taking the Lie bracket to be

[(v, z), (v′, z′)] = (0,Ω(v, v′))

where (v, z) are elements of M ⊕ R. One gets a corresponding Lie group by
taking as group law on M ⊕R

(v, z) · (v′, z′) = (v + v′, z + z′ +
1

2
Ω(v, v′))

In the inner product case, by Gram-Schmidt orthonormalization one can
always find an orthonormal basis of V , with any other basis related to this one
by an element of GL(V ). The subgroup of GL(V ) preserving the inner product
and thus taking orthonormal bases to orthonormal bases is the orthogonal group
O(V ). In the symplectic case, M has to be even-dimensional (to have a non-
degenerate Ω).

Exercise. Show that one can always find a “symplectic basis”: Xj and Yj for
j = 1, 2, · · · , n satisfying

Ω(Xj , Xk) = Ω(Yj , Yk) = 0, Ω(Xj , Yk) = δjk

and that in this basis one recovers the earlier definition of the Heisenberg Lie
algebra and Lie group of dimension 2n+ 1.

The subgroup of GL(M) preserving Ω and taking symplectic bases to sym-
plectic bases is by definition the symplectic group Sp(M). Choosing a basis,
this group will be a matrix group that can be denoted Sp(2n,R). Note that this
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is different than the group often written as Sp(n), the group of n by n quater-
nionic matrices preserving the standard hermitian form on Hn. The groups
Sp(n) and Sp(2n,R) are different real forms of the group Sp(2n,C) of linear
transformations preserving a non-degenerate anti-symmetric bilinear form on
C2n.

4.2 The symplectic group and the oscillator rep-
resentation

The irreducible representation of the Heisenberg group we have been studying
provides a projective representation of the symplectic group, which we’ll con-
struct in this section. This has various names, of which we’ll choose Roger
Howe’s “oscillator representation.” For more details, a good source is [7].

4.2.1 The Poisson bracket and the Lie algebras h2n+1 and
sp(2n,R)

In the last section we studied the Lie algebra of the Heisenberg group, which
is 2n + 1 dimensional. As a Lie subalgebra of the functions on phase space P ,
it has basis 1, qj , pj for j = 1, . . . , n, with non-zero Lie brackets the Poisson
brackets

{qj , pk} = δjk

In this section we’ll extend this to the Lie algebra of monomials of degree up to
two.

The space of degree two monomials on P has as basis elements qjpk for all
j, k, and qjqk, pjpk for j ≤ k. The Poisson bracket of two of these is a linear
combination of degree two monomials, so these provide a real Lie algebra of
dimension 2n2 + n. This will turn out to be the Lie algebra sp(2n,R) of the
symplectic group Sp(2n,R).

Here we will work out explicitly what happens for n = 1. The symplectic
Lie algebra sp(2,R) has basis q2, p2, qp with non-zero Lie brackets

{q
2

2
,
p2

2
} = qp, {qp, p2} = 2p2, {qp, q2} = −2q2

This is isomorphic to the Lie algebra sl(2,R) of 2 by 2 traceless real matrices,
with bracket the commutator, where a conventional basis is

E =

�
0 1
0 0

�
, F =

�
0 0
1 0

�
, G =

�
1 0
0 −1

�

The isomorphism is explicitly given by

q2

2
↔ E, −p2

2
↔ F, −qp ↔ G
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or by

−aqp+
bq2

2
− cp2

2
↔

�
a b
c −a

�

Putting together the Lie algebras h3 and sp(2,R), we get not the direct sum
of the Lie algebras but something more interesting, due to the non-zero Poisson
brackets between degree two and degree one monomials:

{qp, q} = −q. {qp, p} = p

{p
2

2
, q} = −p, {q

2

2
, p} = q

These are the infinitesimal expression of the fact that we are looking not at the
product group H3×Sp(2,R), but at a semidirect product H3⋊Sp(2,R), which
uses the fact that the action of Sp(2,R) on phase space gives an action on H3

by automorphisms.
From these relations one can see that

−qp ↔
�
1 0
0 −1

�

generates a group R acting on the q direction in the qp plane by et, on the p
direction by e−t. The element

1

2
(q2 + p2) ↔

�
0 1
−1 0

�

generates an SO(2) subgroup of rotations in the qp plane.

4.2.2 The Schrödinger model for the oscillator represen-
tation

We have seen that the Schrödinger representation is given as a representation
of h3 by the operators

π′
S(q) = −iQ = −iq, π′

S(p) = −iP = − d

dq
, π′

S(1) = −i1

Dirac’s original definition of “quantization” asked for an extension of this rep-
resentation from linear functions to all functions on phase space, i.e. a choice
of operators that would take any polynomial in q and p to an operator, with
Poisson bracket of functions going to commutator of operators, so a Lie algebra
homomorphism. But going from functions of q and p to operators built out of
Q and P , one runs into “operator-ordering” ambiguities since Q and P do not
commute. It turns out that one can get a Lie algebra homomorphism for poly-
nomials up to degree two, but this is impossible in higher degree (Groenewold-
van Hove theorem).
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What works in degree two is to extend the Schrödinger representation to a
representation of sl(2,R) (and of the semi-direct product with h3) by taking

π′
S(q

2) = −iQ2 = −iq2, π′
S(p

2) = −iP 2 = i
d2

dq2

and making the choice

π′
S(qp) = −i

1

2
(QP + PQ) = −i

1

2
(2QP − i1) = −q

d

dq
− 1

2
1

(which gives a skew-adjoint operator).
These operators will satisfy the commutation relations given by the Lie

bracket of sl(2,R), so give a representation, which is the oscillator represen-
tation (it has many other names, including the “Weil representation”). The
representation will be on the same space as the Schrödinger representation, ex-
tending the action of the Heisenberg Lie algebra, so we will often denote it by
the same symbol πS .

One would like to exponentiate the Lie algebra representation operators to
get a representation of the Lie group SL(2,R). In the case of π′

S(qp) the operator
exponentiates to an operator on functions which rescales in the q variable. It is
though not so easy to exponentiate the second order differential operator

−iP 2 = i
d2

dq2

If one takes a Fourier transform to turn derivatives in q into multiplication
operators, the problem just moves to the operator −iQ2 which changes from a
multiplication operator to a second-order differential operator.

The problem is best thought of as having to do with exponentiating the Lie
algebra element

1

2
(q2 + p2)

which generates the SO(2) ⊂ SL(2,R) subgroup of rotations in the qp plane.
So, for the oscillator representation, we need to explictly construct the operator

eθπ
′
S( 1

2 (q
2+p2))

where

π′
S

�
1

2
(q2 + p2)

�
= −i

1

2
(Q2 + P 2) = −i

1

2
(q2 − d2

dq2
)

Changing notation from θ to t, this is just the standard physics problem of
solving the Schrödinger equation for the Hamiltonian H = 1

2 (Q
2 + P 2) and so

constructing the unitary operator

U(t) = e−it 1
2 (Q

2+P 2) (4.3)
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With some effort (see for instance exercises 4 and 5 of chapter III of [12]), one can
derive a formula for the kernel Kt(q, q

′) (known in physics as the “propagator”)
where

(U(t)ψ)(q) =

Z

R

Kt(q, q
′)ψ(q′)dq′

One finds

Kt(q, q
′) =

1√
2π sin t

exp

�
−1

2

�
q q′

�� cos t
sin t − 1

sin t
− 1

sin t
cos t
sin t

��
q
q′

��
(4.4)

This expression requires interpretation as a distribution defined as a boundary
value of a holomorphic function, replacing t by t − iϵ and taking the limit as
positive ϵ vanishes.

One can show that
lim

ϵ→0+
U(

π

2
− iϵ) = ei

π
4 F

This is the oscillator representation operator for an element of the symplectic
group corresponding to a π

2 rotation in the q, p plane, interchanging the role
of q and p. As expected from the Stone-von Neumann theorem, one gets the
Fourier transform, up to a phase factor. The calculation of the propagator fixes
the phase factor. In some sense, rotations by arbitrary values of t will give
“fractional Fourier transforms.”

Rotation by π in the q, p plane is given by

iF2

The F2 is as expected since F2 acts on functions by

ψ(q) → F2ψ(q) = ψ(−q)

corresponding to a rotation by π taking q to −q. Rotation by 2π is given by
−F4 = −1 rather than the 1 expected if U(t) is to be a true (rather than
up to ±1) representation of SO(2) ⊂ SL(2,R). This is a precise analog of
what happens when we take the spinor Lie algebra representation of SO(3) and
exponentiate: we find that rotating around an axis by 2π gives a factor of −1.
The representation is only a projective (up to sign) representation of SO(3). To
get a true representation, one needs the double cover Spin(3) = SU(2). Here
again we have a representation up to sign and need a double cover of Sp(2,R).
This will be the metaplectic group Mp(2,R), which is not a matrix group.

4.2.3 The Bargmann-Fock model for the oscillator repre-
sentation

The best way to calculate the phase factors in the exponentiated version of the
oscillator representation is not to use the Schrödinger version of the representa-
tion and the complicated formula 4.4 for the propagator, but to instead use the
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Bargmann-Fock version. Here the representation is on the space of polynomials
C[w] (with the Bargmann-Fock inner product) and the operators

a =
1√
2
(Q+ iP ) =

d

dw
, a† =

1√
2
(Q− iP ) = w

provide a representation of the complexified Heisenberg Lie algebra (which is
the standard one on the real Lie algebra).

As in the Schrödinger case, one can extend this representation to the os-
cillator representation of sp(2n,R) by taking quadratic combinations of the
Heisenberg Lie algebra operators. In particular, using

1

2
(Q2 + P 2) =

1

2
(a†a+ aa†) = a†a+

1

2

one has (writing elements of sl(2,R) both as quadratic polynomials and as
matrices)

π′
BF (

1

2
(q2 + p2)) = π′

BF (

�
0 1
−1 0

�
) = −i(a†a+

1

2
) = −i(w

d

dw
+

1

2
)

This operator can easily be exponentiated:

eθπ
′
BF ( 1

2 (q
2+p2))

acts on C[w] by multiplying the monomial wn by e−iθ(n+ 1
2 ). This gives the

minus sign previously discussed for θ = 2π.
In this representation the other two basis elements of sl(2,R) are

π′
BF (−qp) = π′

BF (

�
1 0
0 −1

�
) = −1

2
((a†)2 − a2)

π′
BF (q

2 − p2) = π′
BF (

�
0 1
1 0

�
) = − i

2
((a†)2 + a2)

Note that these operators do not change the parity of monomials they act
on, and you can get from any monomial of a given parity to any other other
of the same parity by applying these operators repeatedly. So, the oscillator
representations we have constructed here is the sum of two irreducibles (all
polynomials of even degree, and all polynomials of odd degree).

4.2.4 The symplectic group and automorphisms of the
Heisenberg Lie group

Since the definition of the Heisenberg Lie algebra and Lie group only depend on
the antisymmetric bilinear form Ω on M = R2n, the group Sp(2n,R) of linear
maps preserving Ω acts on this Lie algebra and group as automorphisms. Using
(v, z) ∈ V ⊕ R as coordinates on H2n+1, the action of g ∈ Sp(2n,R) on the
Heisenberg group is

Φg(v, z) = (gv, z)
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Using this automorphism, one can construct the semi-direct product

H2n+1 ⋊ Sp(2n,R)

which is sometimes called the “Jacobi group.”
We also can use these automorphisms to act on the set of representations of

H2n+1, taking
π → πg

where
πg(v, z) = π(Φg(v, z))

If π is irreducible, πg will also be irreducible, and by the Stone-von Neumann
theorem there will be unitary operators Ug such that

πg = UgπSU
−1
g

By Schur’s lemma, these operators will be unique up to a phase factor. They
will then provide a representation of Sp(2n,R) up to a phase factor (a projective
representation)

Ug1Ug2 = eiθ(g1,g2)Ug1g2

By changing the Ug by a phase factor

Ug → V (g) = eiϕ(g)U(g)

one can try to remove the projective factor from the multiplication law. As we
have seen explicitly in the case n = 1, this can only be done up to sign, a problem
much like that which occurs in the case of the spin representation of the rotation
group. As in the case of the rotation group, one can get a true representation
by going to a double cover of Sp(2n,R), which we’ll denote Mp(2n,R) and call
the “metaplectic group.” Two differences from the rotation group case are:

• In the rotation group case π1(SO(n)) = Z2 and the double cover Spin(n)
is the universal cover. In the symplectic case π1(Sp(2n,R)) = Z and the
metaplectic double cover is just one of many possible covering groups.

• Spin(n) can be identified with a group of finite-dimensional matrices. This
is not true for Mp(2n,R), a group which has no finite-dimensional faithful
representations. It provides a very unusual example of where thinking of
Lie theory just in terms of matrix groups is inadequate.

We will refer to the representation of Mp(2n,R) as the “oscillator repre-
sentation (it goes my many other names, including Weil representation, Segal-
Shale-Weil representation, etc.). The representation will be on the same space
H as the Schrödinger representation, extending the action of the Heisenberg
Lie group, so we will often denote it by the same symbol πS and also call the
representation of the Heisenberg group by the same name. We will also describe
this representation as being “essentially unique”, meaning that all versions of it
are the same up to unitary transformations, possible rescaling, and differences
in the definition of H related by dense inclusions.

31



4.3 Choice of polarization

4.3.1 Real polarizations and the Schrödinger representa-
tion

From the discussion in section 4.1.6, the real symplectic vector space M can be
written as

M = L⊕ L∗

where L is an n-dimensional vector space with basis Xj and L∗ is the dual
vector space with basis elements Yj dual to the Xj (i.e. Yj(Xk) = δjk). Note
that for any vectors x, x′ ∈ L ⊂ M one has Ω(x, x′) = 0. A subspace with this
property is called “isotropic”. The maximal dimension of a subspace of M on
which Ω is zero is n, and such isotropic subspaces are called “Lagrangian”. L∗

is also Lagrangian.
Since the definitions of the Heisenberg Lie algebra and Lie group depend

only on the symplectic form Ω, and by Stone-von Neumann there is only one ir-
reducible representation, one might expect that the definition of this irreducible
representation should depend just on Ω. It turns out though that all construc-
tions of this representation depend upon a choice of additional structure. We
have seen that the construction of the Schrödinger representation depends on
a choice of n position coordinates qj , corresponding to the basis elements Xj

of the Lie algebra, which span a Lagrangian subspace of R2n. The Fourier
transform takes this construction to a different one, depending on n momentum
coordinates pj , corresponding to the basis elements Yj of the Lie algebra, which
span a complementary Lagrangian subspace of R2n.

More generally, one can construct a version of the Schrödinger representation
for any choice of Lagrangian subspace ℓ ⊂ R2n. By the Stone-von Neumann
theorem, for each ℓ there will be an operator Uℓ giving a unitary equivalence
with the construction for the standard Schrödinger choice of ℓ = L spanned by
the Xj . For ℓ = L∗ spanned by the Yj , Uℓ will be the Fourier transform, but for
more general ℓ its construction is rather non-trivial. A choice of a Lagrangian ℓ
and thus a decomposition M = ℓ⊕ ℓ∗ is called a “real polarization” of M .

Exercise. Show that the choices of Lagrangian subspace ℓ are parametrized by
the space U(n)/O(n).

For the case n = 1, U(1)/O(1) = RP1, which is a circle, so real polarizations
l are parametrized by an angle θ. The operators Uℓ are the operators U(θ) of
equation 4.3, going once around RP1 as θ goes from 0 to π.

4.3.2 Complex polarizations

The Bargmann-Fock construction involves a different sort of polarization, called
a “complex polarization.” Here one complexifies M and asks for Lagrangian
subspaces W and W such that

M ⊗R C = W ⊕W
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where W and W are interchanged by the conjugation map on C.
Such a decomposition is equivalent to the choice of a compatible complex

structure on M .

Definition (Complex structure). A complex structure on a real vector space M
is a (real)-linear map

J : M → M

satisfying J2 = −1.

Definition (Compatible complex structure). A complex structure on M is com-
patible with a symplectic form Ω on M when

Ω(Jv1, Jv2) = Ω(v1, v2)

Such J only exist if the dimension of M is even and one can think of them
as ways of making M a complex vector space (so identifying R2n = Cn), with
multiplication by i given by J . J has no eigenvectors in M , but it does have
complex eigenvalues ±i, giving a decomposition

M ⊗C = M+
J ⊕M−

J

into ±i eigenspaces for J . This will be a polarization of M when J is compatible
with Ω since then M+

J and M−
J are Lagrangian subspaces. To see this, note

that for w1, w2 ∈ V +
J

Ω(w1, w2) = Ω(Jw1, Jw2) = Ω(iw1, iw2) = −Ω(w1, w2)

so must be zero.
Given both a symplectic form Ω and a compatible complex structure J on

M , M becomes not just a complex vector space, but a complex vector space
with Hermitian inner product, defined by

⟨v1, v2⟩J = Ω(v1, Jv2) + iΩ(v1, v2)

One can easily check that this is Hermitian, but it is not necessarily positive. To
get a positive Hermitian structure one needs to impose an additional condition
on J , that, for non-zero v ∈ M one has

Ω(v, Jv) > 0

The possible choices of general complex structure J are parametrized by

GL(2n,R)/GL(n,C)

The compatibility condition implies that J ∈ Sp(2n,R).

Exercise. Show that the space of possible positive complex structures compatible
with Ω is Sp(2n,R)/U(n). This is called the Siegel upper half space.
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The n = 1 case

For the case n = 1, the geometry of the space SL(2,R)/U(1) is best understood
in terms of the geometry of CP1, the space of complex lines in C2. This is also
the best way to understand the holomorphic line bundles on SL(2,R)/U(1) and
how representations of SL(2,R) can be constructed geometrically.

SL(2,C) acts linearly on C2 and transitively on the the space CP1. The
space CP1 is a complex manifold, the Riemann version of the sphere S2, and
the action of SL(2,C) is holomorphic and thus an action by conformal trans-
formations. One can choose the coordinate of the line in C2 generated by

�
z1
z2

�

to be z = z1/z2. This gives a good coordinate system away from one point, that
of the line generated by z1 = 1, z2 = 0.

�
α β
γ δ

�
∈ SL(2,C)

acts on this coordinate by the fractional linear transformation

z →
�
α β
γ δ

�
· z =

αz + β

γz + δ

The subgroup SL(2,R) of real matrices acts in the coordinate z preserving
the sign of Im z and so does not act transitively. There are three orbits of the
action: the upper and lower open half planes, and the real line. On CP1, the
three orbits are two open hemispheres and the equator separating them. The
correspondence of the three orbits in the z coordinate with the three orbits on
CP1 is that the point where z is not a good coordinate is on the equator orbit,
and approached as one goes off to infinity in any direction in the z-plane.

Picking the point z = i in the upper half plane, the subgroup of elements
of SL(2,R) of elements stabilizing the point is the an SO(2) = U(1) subgroup
given by elements of the form

�
cos θ sin θ
− sin θ cos θ

�

We can identify the upper half plane (which we’ll denote H) with SL(2,R)/U(1).
The Cayley transform

z → z′ =
z − i

z + i

takes the upper half plane to the unit disk. Conjugating an element of SL(2,R)
by this transformation gives a matrix of the form

�
α β

β α

�
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where α,β are complex numbers satisfying |α|2 − |β|2 = 1. Such matrices give
the subgroup SU(1, 1) of SL(2,C) preserving a (1, 1) signature Hermitian form.
It is isomorphic to SL(2,R) by the conjugation map. At each point in the open
unit disk, SU(1, 1) acts with stabilizer a U(1) subgroup. The Cayley transform
takes z = i to z′ = 0, which is stabilized by elements of the form

�
eiθ 0
0 e−iθ

�

The subgroup of such elements acts by rotation of the unit disk about its center.
In this n = 1 case, changing complex polarization corresponds to changing

the linear combinations of Q and P that define annihilation and creation oper-
ators. One gets an analog of the Bargmann-Fock construction for any τ ∈ C
with positive imaginary part by changing

a =
1√
2
(Q− iP ) → aτ =

1√
2

|τ |√
Im τ

(Q− 1

τ
P )

a† =
1√
2
(Q+ iP ) → a†τ =

1√
2

|τ |√
Im τ

(Q− 1

τ
P )

aτ and a†τ are adjoint operators satisfying the commutation relation

[aτ , a
†
τ ] = 1

and the representation is constructed by starting with a distinguished vector
annihilated by aτ and generating the rest of the representation by applying
powers of a†τ .

The unitary transformation to the Schrödinger representation will then take
the distinguished vector to a solution of

aτψ(q) =
1√
2

|τ |√
Im τ

(Q− 1

τ
P )ψ(q) =

1√
2

|τ |√
Im τ

(q +
i

τ

d

dq
)ψ(q) = 0

Solutions will be proportional to

ψ(q) = e
i
2 τq

2

and normalizable for Im τ > 0.
To visualize the entire space of possible choices of polarization that give

constructions of the oscillator representation for n = 1, one should think of the
unit disk, with interior points corresponding to complex polarizations and the
Bargmann-Fock construction for different τ given above. As one approaches the
boundary, the distinguished vectors annihilated by aτ become non-normalizable
and leave the space L2(R) (they will still be distributions in S ′(R).

For more details and to see how this picture generalizes to n ≥ 1, see Graeme
Segal’s notes on Symplectic manifolds and quantization [23].
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4.4 Representations and holomorphic line bun-
dles

While the oscillator representation is essentially unique, any construction of the
representation requires specification of an additional structure. For complex
polarizations, this additional structure is a complex subspace

W ⊂ M ⊗C

There are corresponding operators on the oscillator representation, the annihi-
lation operators, and a distinguished vector

|0⟩τ ⊂ H

annhilated by these operators. Here the notation reflects that in the physical
intepretation in which annihilation and creation operators annihilate and create
quanta, this is the state with zero quanta. The subscript τ in general labels
points in the Siegel upper half space. In the n = 1 case, τ is a complex number
with positive imaginary part, and in the Schrödinger representation one has
explicitly

|0⟩τ = e
i
2 τq

2

More precisely, what the choice of τ picks out is the one-dimensional complex
line in H generated by |0⟩τ ⊂ H. The space of these complex lines gives a
complex line bundle L over Sp(2n,R)/U(n). This is not quite an Sp(2n,R)
equivariant line bundle (i.e. with an action of Sp(2n,R) on L that projects to
the action by left multiplication on the base Sp(2n,R)), since only the double
cover Mp(2n,R) of Sp(2n,R) acts on H. L is a Mp(2n,R) equivariant bundle

over the Siegel upper half space, described as Mp(2n,R)/]U(n) where ]U(n) is a
double-cover of U(n).

In the case n = 1, recall that SL(2,C) acts on CP1, with a subgroup SU(2)
acting transitively, identifying SU(2)/U(1) = CP1. Two ways to form SU(2)
equivariant line bundles over CP1 are

• Consider the product
SU(2)×C

and quotient by the action

(g, w) → (ghθ, e
ikθw)

of U(1), where

hθ =

�
eiθ 0
0 e−iθ

�

This will give a line bundle we’ll call Lk, with sections

Γ(Lk) = {ϕ : SU(2) → C, ϕ(ghθ) = eikθϕ(g)}
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• Since a point in CP 1 is a complex line, one tautologically gets a line
bundle (the fiber above a point is the point).

One can show that the tautological line bundle is isomorphic with L−1, which
is the dual line bundle to L = L1. The bundle of holomorphic one-forms CP 1

is the line bundle L2, so in some sense L is the bundle of 1/2-forms (the spinors
in this two-dimensional geometry).

The Lk for all k ∈ Z can be thought of as tensor powers of L or L−1. It
turns out that these are holomorphic line bundles and one can consider their
holomorphic sections

Γhol(L
k)

(in the algebraic geometer’s notation, this is H0(CP1,O(k))). The action of
SU(2) takes holomorphic sections to holomorphic sections and one finds (this
is a simple example of the Borel-Weil theorem) that

Γhol(L
k) =

(
V k k ≥ 0

0 k < 0

where V k is the irreducible representation of SU(2) of dimension k + 1 (in
physicist’s language, the spin k

2 representation).
For the subgroup SU(1, 1) ⊂ SL(2,C), the story is quite different, since the

action of SU(1, 1) on CP1 is not transitive. Instead there are three orbits: two
hemispheres and the equator between them. On a hemisphere D, one can use
the same definition of the line bundle Lk as a quotient given above (replacing
SU(2) by U(1)) and get an irreducible representation of SU(1, 1) on Γhol(L

k)
but this space of sections is now infinite dimensional. This representation will
be the discrete series representation D+

k .
The even irreducible component of the oscillator representation can be re-

alized as holomorphic sections of the line bundle L, and one can show that
L ⊗ L = L. L is a square root of L, and a fourth-root of the holomorphic
one-forms.

On the subset D ⊂ CP1 the line bundle L is the trivial bundle D ×C, so
one can choose coordinates on D and work with the first description of L given
above, in which sections are holomorphic functions on D. L is an equivariant
bundle under the action of SL(2,R) and one wants to choose coordinates that
transform simply under SL(2,R).
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Chapter 5

Canonical quantization:
fermions

In this chapter we’ll discuss a precise analog of the canonical quantization for-
malism, in which one replaces the antisymmetric bilinear form by a symmetric
one, and finds the spinor representation as an analog of the oscillator represen-
tation.

5.1 Anticommuting Variables and Pseudo-classical
Mechanics

In the last chapter we studied canonical quantization for bosons starting with
a classical phase space P = R2n and a Poisson bracket determined by a non-
degenerate antisymmetric bilinear form. We took as functions on phase space
the polynomial functions, isomorphic to the symmetric tensor product S∗(P ∗).
In this section we’ll begin the study of canonical quantization for fermions with
pseudo-classical mechanics, an analog of Hamiltonian mechanics based instead
on a non-degenerate symmetric bilinear form.

5.1.1 The Grassmann algebra of polynomials on anticom-
muting generators

Instead of looking at polynomial functions on P = R2n, given by symmetric
expressions in coordinates qj , pj , and identified with elements of the symmetric
tensor algebra S∗(P ∗), one can consider a vector space V = Rm, not necessarily
of even dimension, and look at the algebra Λ∗(V ∗) of anti-symmetric tensor
products on V ∗. Taking a basis ξj of elements of V ∗, one can identify Λ∗(V ∗)
with what physicists call the “Grassmann algebra” (or sometimes the “exterior
algebra”), thinking of this as polynomials in anti-commuting variables ξj :
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Definition (Grassmann algebra). The algebra over the real numbers generated
by ξj , j = 1, . . . , n, satisfying the relations

ξjξk + ξkξj = 0

is called the Grassmann algebra.

Unlike the polynomial algebra, this algebra is finite dimensional over R, with
basis

1, ξj , ξjξk, ξjξkξl, · · · , ξ1ξ2 · · · ξm
for indices j < k < l < · · · taking values 1, 2, . . . ,m.

Remarkably, an analog of calculus can be defined on such functions. For the
case n = 1, an arbitrary function is

F (ξ) = c0 + c1ξ

and one can take its derivative to be

∂

∂ξ
F = c1

For larger values of n, an arbitrary function can be written as

F (ξ1, ξ2, . . . , ξn) = FA + ξjFB

where FA, FB are functions that do not depend on the chosen ξj (one gets FB

by using the anticommutation relations to move ξj all the way to the left). Then
one can define

∂

∂ξj
F = FB

This derivative operator has many of the same properties as the conventional
derivative, although there are unconventional signs one must keep track of. An
unusual property of this derivative that is easy to see is that one has

∂

∂ξj

∂

∂ξj
= 0

Taking the derivative of a product one finds this version of the Leibniz rule
for monomials F and G

∂

∂ξj
(FG) =

�
∂

∂ξj
F

�
G+ (−1)|F |F

�
∂

∂ξj
G

�

where |F | is the degree of the monomial F .
A notion of integration (often called the “Berezin integral”) with many of the

usual properties of an integral can also be defined. It has the peculiar feature
of being the same operation as differentiation, defined in the n = 1 case by

Z
(c0 + c1ξ)dξ = c1
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and for larger n by
Z

F (ξ1, ξ2, · · · , ξn)dξ1dξ2 · · · dξn =
∂

∂ξn

∂

∂ξn−1
· · · ∂

∂ξ1
F = cn

where cn is the coefficient of the basis element ξ1ξ2 · · · ξn in the expression of F
in terms of basis elements.

This notion of integration is a linear operator on functions, and it satisfies
an analog of integration by parts, since if

F =
∂

∂ξj
G

then Z
Fdξj =

∂

∂ξj
F =

∂

∂ξj

∂

∂ξj
G = 0

using the fact that repeated derivatives give zero.

5.1.2 Pseudo-classical mechanics and the fermionic Pois-
son bracket

Given an inner product (non-degenerate symmetric bilinear form) on V = Rm,
one can (Gram-Schmidt orthonormalization) choose an orthonormal basis with
signature r, s (r elements have norm-squared +1, s have norm-squared −1 and
r+ s = m. Taking ξj ∈ V ∗ to be the coordinates with respect to this basis, one
can define a fermionic version of the Poisson bracket on elements of V ∗ by

{ξj , ξk}+ = ±δjk

with a plus sign for j = k = 1, · · · , r and a minus sign for j = k = r+1, · · · ,m,
This is just the inner product on V ∗ corresponding to our choice of inner product
on V . One can extend the definition of this inner product to all elements of
Λ∗(V ∗) by imposing a symmetry propert and Leibniz rule (derivation property)
that has signs consistent with the anticommutativity of the generators. For
monomials F1, F2, F3, define

•
{F1F2, F3}+ = F1{F2, F3}+ + (−1)|F2||F3|{F1, F3}+F2

where |F2| and |F3| are the degrees of F2 and F3.

•
{F1, F2}+ = −(−1)|F1||F2|{F2, F1}+

These two properties can be used to compute the fermionic Poisson bracket for
arbitrary functions in terms of the relations for generators.

Taking the case of a positive-definite inner product for simplicity, one can
calculate explicitly the fermionic Poisson brackets for linear and quadratic com-
binations of the generators. One finds

{ξjξk, ξl}+ = ξj{ξk, ξl}+ − {ξj , ξl}+ξk = δklξj − δjlξk (5.1)
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and

{ξjξk, ξlξm}+ ={ξjξk, ξl}+ξm + ξl{ξjξk, ξm}+
=δklξjξm − δjlξkξm + δkmξlξj − δjmξlξk (5.2)

The second of these equations shows that the quadratic combinations of the
generators ξj satisfy the relations of the Lie algebra of the group of rotations in
n dimensions (so(n) = spin(n)). The first shows that the ξkξl acts on the ξj as
infinitesimal rotations in the kl plane.

While the Poisson bracket defines a Lie algebra on S∗(P ∗), the fermionic
Poisson bracket on Λ∗(V ∗) provides an example of something called a Lie su-
peralgebra. These can be defined for vector spaces with some usual and some
fermionic coordinates:

Definition (Lie superalgebra). A Lie superalgebra structure on a real or com-
plex vector space V is given by a Lie superbracket [·, ·]±. This is a bilinear
map on V which on generators X,Y, Z (which may be usual or fermionic ones)
satisfies

[X,Y ]± = −(−1)|X||Y |[Y,X]±

and a super-Jacobi identity

[X, [Y, Z]±]± = [[X,Y ]±, Z]± + (−1)|X||Y |[Y, [X,Z]±]±

where |X| takes value 0 for a usual generator, 1 for a fermionic generator.

Analogously to the bosonic case, the polynomials of order less than or equal
to two provide a sub-Lie superalgebra of dimension 1 + n + 1

2 (n
2 − n) (since

there is one constant, n linear terms ξj and 1
2 (n

2 − n) quadratic terms ξjξk).
On functions of order two this Lie superalgebra is a Lie algebra, so(n). We will
see in chapter 5.3 that the definition of a representation can be generalized to
Lie superalgebras, and quantization will give a distinguished representation of
this Lie superalgebra, in a manner quite parallel to that of the Schrödinger or
Bargmann-Fock constructions of a representation in the bosonic case.

5.1.3 Examples of pseudo-classical mechanics

In pseudo-classical mechanics, the dynamics will be determined by choosing a
Hamiltonian h in Λ∗(V ∗). Observables will be other functions F ∈ Λ∗(V ∗), and
they will satisfy the analog of Hamilton’s equations

d

dt
F = {F, h}+

We’ll consider two of the simplest possible examples.
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The pseudo-classical spin degree of freedom

Using pseudo-classical mechanics, a “classical” analog can be found for some-
thing that is quintessentially quantum: the degree of freedom described by the
spin 1

2 system of section 3.2. Taking V = R3 with the standard inner product
as fermionic phase space, one has three generators ξ1, ξ2, ξ3 ∈ V ∗ satisfying the
relations

{ξj , ξk}+ = δjk

and an 8 dimensional space of functions with basis

1, ξ1, ξ2, ξ3, ξ1ξ2, ξ1ξ3, ξ2ξ3, ξ1ξ2ξ3

For the Hamiltonian function to be non-trivial and of even degree, it will
have to be a linear combination

h = B12ξ1ξ2 +B13ξ1ξ3 +B23ξ2ξ3

for some constants B12, B13, B23. This can be written

h =
1

2

3X

j,k=1

Ljkξjξk

where Ljk are the entries of the matrix

L =




0 B12 B13

−B12 0 B23

−B13 −B23 0




The equations of motion on generators will be

d

dt
ξj(t) = {ξj , h}+ = −{h, ξj}+

with solution
ξj(t) = etLξj(0)

This will be a time-dependent rotation of the ξj in the plane perpendicular to

B = (B23,−B13, B12)

at a constant speed proportional to |B|.

The pseudo-classical fermionic oscillator

To get a fermionic analog of the classical harmonic oscillator, for the case of d
oscillators, take V = R2d and Hamiltonian

h =
1

2

dX

j=1

(ξ2jξ2j−1 − ξ2j−1ξ2j) =

dX

j=1

ξ2jξ2j−1
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From 5.1 and 5.2, quadratic products ξjξk act on the generators by infinitesimal
rotations in the jk plane, and satisfy the commutation relations of so(2d).

As in the bosonic case, we can make the standard choice of complex structure
J = J0 on R2d and get a decomposition

V ∗ ⊗C = R2d ⊗C = Cd ⊕Cd

into eigenspaces of J of eigenvalue ±i. This is done by defining

θj =
1√
2
(ξ2j−1 − iξ2j), θj =

1√
2
(ξ2j−1 + iξ2j)

for j = 1, . . . , d. These satisfy the fermionic Poisson bracket relations

{θj , θk}+ = {θj , θk}+ = 0, {θj , θk}+ = δjk

(where we have extended the inner product {·, ·}+ to V ∗ ⊗ C by complex lin-
earity).

In terms of the θj , the Hamiltonian is

h = − i

2

dX

j=1

(θjθj − θjθj) = −i

dX

j=1

θjθj

Using the derivation property of {·, ·}+ one finds

{h, θj}+ = −i

dX

k=1

(θk{θk, θj}+ − {θk, θj}+θk) = −iθj

and, similarly,
{h, θj}+ = iθj

so one sees that h is the generator of U(1) ⊂ U(d) phase rotations on the
variables θj . The equations of motion are

d

dt
θj = {θj , h}+ = iθj ,

d

dt
θj = {θj , h}+ = −iθj

with solutions
θj(t) = eitθj(0), θj(t) = e−itθj(0)

5.2 Clifford Algebras

In the bosonic case, quantization was a homomorphism of Lie algebras takng
coordinates qj , pj with Poisson bracket {qj , pk} = δjk to operators −iQj ,−iPj

with commutator
[−iQj ,−iPk] = −iδjk1

In the fermionic case we will have a homomorphism of Lie superalgebras, taking
ξj with fermionic Poisson bracket {ξj , ξk} = ±δjk to operators γj satisfying
anticommutation relations

These operators are the generators of a Clifford algebra, which we’ll now
turn to.
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5.2.1 Real Clifford algebras

We can define real Clifford algebras Cliff(r, s,R) for an inner product of arbi-
trary signature by

Definition (Real Clifford algebras, arbitrary signature). The real Clifford al-
gebra in m = r + s variables is the algebra Cliff(r, s,R) over the real numbers
generated by 1, γj for j = 1, 2, . . . ,m satisfying the relations

[γj , γk]+ = ±2δjk1

where we choose the + sign when j = k = 1, . . . , r and the − sign when j = k =
r + 1, . . . ,m.

In other words, different γj anticommute, but only the first r of them satisfy
γ2
j = 1, with the other s of them satisfying γ2

j = −1.
Working out some of the low dimensional examples, one finds:

• Cliff(0, 1,R). This has generators 1 and γ1, satisfying

γ2
1 = −1

Taking real linear combinations of these two generators, the algebra one
gets is just the algebra C of complex numbers, with γ1 playing the role of
i =

√
−1.

• Cliff(0, 2,R). This has generators 1, γ1, γ2 and a basis

1, γ1, γ2, γ1γ2

with

γ2
1 = −1, γ2

2 = −1, (γ1γ2)
2 = γ1γ2γ1γ2 = −γ2

1γ
2
2 = −1

This four dimensional algebra over the real numbers can be identified with
the algebra H of quaternions by taking

γ1 ↔ i, γ2 ↔ j, γ1γ2 ↔ k

• Cliff(1, 1,R). This is the algebra M(2,R) of real 2 by 2 matrices, with
one possible identification as follows

1 ↔
�
1 0
0 1

�
, γ1 ↔

�
0 1
1 0

�
, γ2 ↔

�
0 −1
1 0

�
, γ1γ2 ↔

�
1 0
0 −1

�

• Cliff(3, 0,R). This is the algebra M(2,C) of complex 2 by 2 matrices,
with one possible identification using Pauli matrices given by

1 ↔
�
1 0
0 1

�
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γ1 ↔ σ1 =

�
0 1
1 0

�
, γ2 ↔ σ2 =

�
0 −i
i 0

�
, γ3 ↔ σ3 =

�
1 0
0 −1

�

γ1γ2 ↔ iσ3 =

�
i 0
0 −i

�
, γ2γ3 ↔ iσ1 =

�
0 i
i 0

�
, γ1γ3 ↔ −iσ2 =

�
0 −1
1 0

�

γ1γ2γ3 ↔
�
i 0
0 i

�

It turns out that Cliff(r, s,R) is always one or two copies of matrices of real,
complex or quaternionic elements, of dimension a power of 2, but this requires
a rather intricate algebraic argument that we will not enter into here. For the
details of this and the resulting pattern of algebras one gets, see for instance
[15]. One special case where the pattern is relatively simple is when one has
r = s. Then n = 2r is even dimensional and one finds

Cliff(r, r,R) = M(2r,R)

5.2.2 Clifford algebras and geometry

The Clifford algebra was defined above in terms of generators and relations,
but it also has a coordinate invariant definition, based on the choice of a non-
degenerate symmetric bilinear form (·, ·), i.e., an inner product. It gives a
powerful tool for the study of the orthogonal group of transformations that
preserve the inner product.

To see the relation between Clifford algebras and geometry, consider first
the positive definite case Cliff(m,R) = Cliff(m, 0,R) with the standard inner
product. In a later chapter we’ll discuss the geometry of Minkowski spacetime
and special relativity, which uses the case m = 4 with signature 3, 1. The
generators of the Clifford algebra are well-known in that case as the Dirac γ-
matrices.

To an arbitrary vector

v = (v1, v2, . . . , vm) ∈ Rm

one can associate the Clifford algebra element /v = γ(v) where γ is the map

v ∈ Rm → γ(v) = v1γ1 + v2γ2 + · · ·+ vnγm ∈ Cliff(m,R) (5.3)

Using the Clifford algebra relations for the γj , given two vectors v, w the
product of their associated Clifford algebra elements satisfies

/v /w + /w/v = [v1γ1 + v2γ2 + · · ·+ vnγn, w1γ1 + w2γ2 + · · ·+ wnγn]+

= 2(v1w1 + v2w2 + · · ·+ vmwm)

= 2(v,w) (5.4)

Note that taking v = w one has

/v
2 = (v,v) = ||v||2
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The Clifford algebra Cliff(m,R) thus contains Rm as the subspace of linear
combinations of the generators γj . It can be thought of as a sort of enhancement
of the vector space Rm that encodes information about the inner product, and
it will sometimes be written Cliff(Rm, (·, ·)). In this larger structure vectors can
be multiplied as well as added, with the multiplication determined by the inner
product (equation 5.4). Note that different people use different conventions,
with

/v /w + /w/v = −2(v,w)

another common choice. One also sees variants without the factor of 2.
We’ll consider two different ways of seeing the relationship between the Clif-

ford algebra Cliff(n,R) and the group O(m) of rotations in Rm. The first is
based upon the geometrical fact (known as the Cartan-Dieudonné theorem) that
one can get any rotation by doing at most m orthogonal reflections in different
hyperplanes. Orthogonal reflection in the hyperplane perpendicular to a vector
w takes a vector v to the vector

v′ = v − 2
(v,w)

(w,w)
w

something that can easily be seen from the following picture

v
w

v′

(v,w)

(w,w)

−2
(v,w)

(w,w)
w

Figure 5.1: Orthogonal reflection in the hyperplane perpendicular to w.

From now on we identify vectors v,v′,w with the corresponding Clifford
algebra elements by the map γ of equation 5.3. The linear transformation given
by reflection in w is

/v → /v
′ =/v − 2

(v,w)

(w,w)
/w

=/v − (/v /w + /w/v)
/w

(w,w)

Since

/w
/w

(w,w)
=

(w,w)

(w,w)
= 1
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we have (for non-zero vectors w)

/w
−1 =

/w

(w,w)

and the reflection transformation is just conjugation by /w times a minus sign

/v → /v
′ = /v − /v − /w/v /w

−1 = − /w/v /w
−1

Identifying vectors with Clifford algebra elements, the orthogonal transfor-
mation that is the result of one reflection is given by a conjugation (with a
minus sign). These reflections lie in the group O(m), but not in the subgroup
SO(m), since they change orientation. The result of two reflections in hyper-
planes orthogonal to w1 and w2 will be a conjugation by /w2 /w1

/v → /v
′ = − /w2(− /w1/v /w

−1
1 ) /w

−1
2 = ( /w2 /w1)/v( /w2 /w1)

−1

This will be a rotation preserving the orientation, so of determinant one and in
the group SO(n).

This construction not only gives an efficient way of representing rotations
(as conjugations in the Clifford algebra), but it also provides a construction of
the group Spin(n) in arbitrary dimension n. One can define:

Definition (Spin(m)). The group Spin(m) is the group of invertible elements
of the Clifford algebra Cliff(m) of the form

/w1 /w2 · · · /wk

where the vectors wj for j = 1, · · · , k (k ≤ n) are vectors in Rm satisfying
|wj |2 = 1 and k is even. Group multiplication is Clifford algebra multiplication.

The action of Spin(m) on vectors v ∈ Rn will be given by conjugation

/v → ( /w1 /w2 · · · /wk)/v( /w1 /w2 · · · /wk)
−1 (5.5)

and this will correspond to a rotation of the vector v. One can see here the
characteristic fact that there are two elements of the Spin(m) group giving
the same rotation in SO(m) by noticing that changing the sign of the Clifford
algebra element /w1 /w2 · · · /wk does not change the conjugation action, where
signs cancel.

For a second approach to understanding rotations in arbitrary dimension,
one can use the fact that these are generated by taking products of rotations
in the coordinate planes. A rotation by an angle θ in the jk coordinate plane
(j < k) will be given by

v → eθϵjkv

where ϵjk is an m by m matrix with only two non-zero entries: jk entry −1 and
kj entry +1. Restricting attention to the jk plane, eθϵjk acts as the standard
rotation matrix in the plane

�
vj
vk

�
→

�
cos θ − sin θ
sin θ cos θ

��
vj
vk

�
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In the SO(3) case there are three of these matrices

ϵ23 = l1, ϵ13 = −l2, ϵ12 = l3

providing a basis of the Lie algebra so(3). In m dimensions there will be 1
2 (m

2−
m) of them, providing a basis of the Lie algebra so(m).

In dimension m we can use elements of the Clifford algebra to get these
same rotation transformations, but as conjugations in the Clifford algebra. To
see how this works, consider the quadratic Clifford algebra element γjγk for
j ̸= k and notice that

(γjγk)
2 = γjγkγjγk = −γjγjγkγk = −1

so one has

e
θ
2 γjγk =

�
1− (θ/2)2

2!
+ · · ·

�
+ γjγk

�
θ/2− (θ/2)3

3!
+ · · ·

�

=cos

�
θ

2

�
+ γjγk sin

�
θ

2

�

Conjugating a vector vjγj + vkγk in the jk plane by this, one can show that

e−
θ
2 γjγk(vjγj + vkγk)e

θ
2 γjγk = (vj cos θ − vk sin θ)γj + (vj sin θ + vk cos θ)γk

which is a rotation by θ in the jk plane. Such a conjugation will also leave
invariant the γl for l ̸= j, k. Thus one has

e−
θ
2 γjγkγ(v)e

θ
2 γjγk = γ(eθϵjkv) (5.6)

and, taking the derivative at θ = 0, the infinitesimal version

�
−1

2
γjγk, γ(v)

�
= γ(ϵjkv) (5.7)

One gets a double cover of the group of rotations, with here the elements
e

θ
2 γjγk of the Clifford algebra giving a double cover of the group of rotations in

the jk plane (as θ goes from 0 to 2π). General elements of the spin group can
be constructed by multiplying these for different angles in different coordinate
planes. The Lie algebra spin(n) can be identified with the Lie algebra so(n) by

ϵjk ↔ −1

2
γjγk

Yet another way to see this would be to compute the commutators of the − 1
2γjγk

for different values of j, k and show that they satisfy the same commutation
relations as the corresponding matrices ϵjk.
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5.2.3 Complex Clifford algebras

If one allows complex coefficients in a real Clifford algebra Cliff(r, s,R), then
one gets a complex Clifford algebra:

Definition (Complex Clifford algebras). The complex Clifford algebra in m
variables is the algebra Cliff(m,C) over the complex numbers generated by 1, γj
for j = 1, 2, . . . ,m satisfying the relations

[γj , γk]+ = 2δjk

When one complexifies, the signature of the inner product no longer matters,
since one can multiply a generator by i to change the sign of its square. One
can write this fact as

Cliff(r, s,R)⊗R C = Cliff(m,C)

In a situation like this of several different real algebras that complexify to the
sam complex algebra, these real algebras are called “real forms” of the complex
algebra.

While the structure of real Clifford algebras depends in a complicated way
on r and s, the structure of the complex Clifford algebras is much simpler. We
will not prove this here, but one has algebra isomorphisms:

• In the even dimensional case

Cliff(2d,C) ↔ M(2d,C)

• In the odd dimensional case

Cliff(2d+ 1,C) ↔ M(2d,C)⊕M(2d,C)

Two properties of Cliff(n,C) are

• As a vector space over C, a basis of Cliff(m,C) is the set of elements

1, γj , γjγk, γjγkγl, . . . , γ1γ2γ3 · · · γm−1γm

for indices j, k, l, · · · ∈ 1, 2, . . . , n, with j < k < l < · · · . To show this,
consider all products of the generators, and use the commutation relations
for the γj to identify any such product with an element of this basis. The
relation γ2

j = 1 shows that repeated occurrences of a γj can be removed.
The relation γjγk = −γkγj can then be used to put elements of the product
in the order of a basis element as above.

• As a vector space over C, Cliff(m,C) has dimension 2m. One way to see
this is to consider the product

(1 + γ1)(1 + γ2) · · · (1 + γm)

which will have 2m terms that are exactly those of the basis listed above.
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When n = 2d is even, there is an alternate definition of the complex Clifford
algebra in terms of fermionic versions of annihilation and creation operators.
For the case d = 1, one can define

aF =
1

2
(γ1 + iγ2), a†F =

1

2
(γ1 − iγ2)

The aF and a†F will satisfy canonical anticommutation relations (CAR)

[aF , a
†
F ]+ = 1, [aF , aF ]+ = [a†F , a

†
F ]+ = 0

called the “canonical anticommutation relations” (CAR).

The algebra generated over C, by the aF , a
†
F is four-dimensional, with basis.

1, aF , a†F , a†FaF

It is isomorphic to the complex Clifford algebra Cliff(2,C) and can be identified
with the algebra M(2,C) of 2 by 2 complex matrices, using

1 ↔
�
1 0
0 1

�
, aF ↔

�
0 0
1 0

�
, a†F ↔

�
0 1
0 0

�
, a†FaF ↔

�
1 0
0 0

�
(5.8)

For arbitrary d, one can define

aF j =
1

2
(γ2j−1 + iγ2j), aF

†
j =

1

2
(γ2j−1 − iγ2j)

and get an alternate definition of the complex Clifford algebra:

Definition (Complex Clifford algebras, using annihilation and creation opera-
tors). The complex Clifford algebra Cliff(2d,C) is the algebra over C generated

by 1, aF j , aF
†
j for j = 1, 2, . . . , d satisfying the CAR

[aF j , aF
†
k]+ = δjk1, [aF j , aF k]+ = [aF

†
j , aF

†
k]+ = 0

This shows that the complex Clifford algebra is a close analog of the Weyl
algebra in the bosonic case, which could have been defined by

Definition (Complex Weyl algebras). The complex Weyl algebra is the alge-

bra Weyl(2n,C) generated by the elements 1, aj , a
†
j, j = 1, . . . , n satisfying the

canonical commutation relations (CCR)

[aj , a
†
k] = δjk1, [aj , ak] = [a†j , a

†
k] = 0

Unlike the Clifford algebra, as a vector space over C, Weyl(2n,C) is in-
finite dimensional. Recall from the Bargmann-Fock construction that taking
aj =

∂
∂wj

, a†j = wj one can identify this algebra with the algebra of polynomial

coefficient differential operators. We will see later that the complex Clifford
algebra in this case can be identified with “differential operators in fermionic
variables θj”, analogous to what happens in the bosonic (Weyl algebra) case.
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5.3 Fermionic Quantization and Spinors

In this chapter we’ll begin by investigating the fermionic analog of the notion
of quantization, which takes functions of anticommuting variables on a phase
space with symmetric bilinear form (·, ·) and gives an algebra of operators with
generators satisfying the relations of the corresponding Clifford algebra. We
will then consider analogs of the constructions used in the bosonic case which
there gave us the Schrödinger and Bargmann-Fock representations of the Weyl
algebra on a space of states.

We know that for a fermionic oscillator with d degrees of freedom, the al-
gebra of operators will be Cliff(2d,C), the algebra generated by annihilation

and creation operators aF j , aF
†
j . These operators will act on HF = F+

d , a com-

plex vector space of dimension 2d, and this will provide a fermionic analog of the
bosonic Γ′

BF acting on Fd. Since the spin group consists of invertible elements of
the Clifford algebra, it has a representation on F+

d . This is known as the “spinor
representation”, and it can be constructed by analogy with the construction of
the metaplectic representation in the bosonic case. We’ll also consider the ana-
log in the fermionic case of the Schrödinger representation, which turns out to
have a problem with unitarity, but finds a use in physics as “ghost” degrees of
freedom.

5.3.1 Quantization of pseudo-classical systems

In the bosonic case, quantization was based on finding a representation of the
Heisenberg Lie algebra of linear functions on phase space, or more explicitly,
for basis elements qj , pj of this Lie algebra finding operators Qj , Pj satisfying
the Heisenberg commutation relations. In the fermionic case, the analog of
the Heisenberg Lie algebra is not a Lie algebra, but a Lie superalgebra, with
basis elements 1, ξj , j = 1, . . . , n and a Lie superbracket given by the fermionic
Poisson bracket, which on basis elements is

{ξj , ξk}+ = ±δjk, {ξj , 1}+ = 0, {1, 1}+ = 0

Quantization is given by finding a representation of this Lie superalgebra. The
definition of a Lie algebra representation can be generalized to that of a Lie
superalgebra representation by:

Definition (Representation of a Lie superalgebra). A representation of a Lie
superalgebra is a homomorphism Φ preserving the superbracket

[Φ(X),Φ(Y )]± = Φ([X,Y ]±)

This takes values in a Lie superalgebra of linear operators, with |Φ(X)| = |X|
and [·, ·]± the supercommutator

[Φ(X),Φ(Y )]± = Φ(X)Φ(Y )− (−)|X||Y |Φ(Y )Φ(X)
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A representation of the pseudo-classical Lie superalgebra (and thus a quan-
tization of the pseudo-classical system) will be given by finding a linear map Γ+

that takes basis elements ξj to operators Γ+(ξj) satisfying the relations

[Γ+(ξj),Γ
+(ξk)]+ = ±δjkΓ

+(1), [Γ+(ξj),Γ
+(1)] = [Γ+(1),Γ+(1)] = 0

These relations can be satisfied by taking

Γ+(ξj) =
1√
2
γj , Γ+(1) = 1

since then

[Γ+(ξj),Γ
+(ξk)]+ =

1

2
[γj , γk]+ = ±δjk

are exactly the Clifford algebra relations. This can be extended to a represen-
tation of the functions of the ξj of order two or less by

Theorem. A representation of the Lie superalgebra of anticommuting functions
of coordinates ξj on Rn of order two or less is given by

Γ+(1) = 1, Γ+(ξj) =
1√
2
γj , Γ+(ξjξk) =

1

2
γjγk

Proof. We have already seen that this is a representation for polynomials in ξj
of degree zero and one. For simplicity just considering the case s = 0 (positive
definite inner product), in degree two the fermionic Poisson bracket relations
are given by equations 5.1 and 5.2. For 5.1, one can show that the products of
Clifford algebra generators

Γ+(ξjξk) =
1

2
γjγk

satisfy �
1

2
γjγk, γl

�
= δklγj − δjlγk

by using the Clifford algebra relations, or by noting that this is the special case
of equation 5.7 for v = el. That equation shows that commuting by − 1

2γjγk
acts by the infinitesimal rotation ϵjk in the jk coordinate plane.

For 5.2, the Clifford algebra relations can again be used to show

�
1

2
γjγk,

1

2
γlγm

�
= δkl

1

2
γjγm − δjl

1

2
γkγm + δkm

1

2
γlγj − δjm

1

2
γlγk

One could instead use the commutation relations for the so(n) Lie algebra sat-
isfied by the basis elements ϵjk corresponding to infinitesimal rotations. One
must get identical commutation relations for the − 1

2γjγk and can show that
these are the relations needed for commutators of Γ+(ξjξk) and Γ+(ξlξm).
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Note that here we are not introducing the factors of i into the definition of
quantization that in the bosonic case were necessary to get a unitary represen-
tation of the Lie group corresponding to the real Heisenberg Lie algebra h2d+1.
In the bosonic case we worked with all complex linear combinations of powers
of the Qj , Pj (the complex Weyl algebra Weyl(2d,C)), and thus had to identify
the specific complex linear combinations of these that gave unitary represen-
tations of the Lie algebra h2d+1 ⋊ sp(2d,R). Here we are not complexifying
for now, but working with the real Clifford algebra Cliff(r, s,R), and it is the
irreducible representations of this algebra that provide an analog of the unique
interesting irreducible representation of h2d+1. In the Clifford algebra case, the
representation may be on real vector spaces, with no analog of the unitarity
property of the h2d+1 representation.

In the bosonic case we found that Sp(2d,R) acted on the bosonic dual phase
space, preserving the antisymmetric bilinear form Ω that determined the Lie al-
gebra h2d+1, so it acted on this Lie algebra by automorphisms. We saw (see
chapter 4.2.4) that intertwining operators there gave us a representation of the
double cover of Sp(2d,R) (the metaplectic representation), with the Lie alge-
bra representation given by the quantization of quadratic functions of the qj , pj
phase space coordinates. There is a closely analogous story in the fermionic case,
where SO(r, s,R) acts on the fermionic phase space V , preserving the symmet-
ric bilinear form (·, ·) that determines the Clifford algebra relations. Here a
representation of the spin group Spin(r, s,R) double covering SO(r, s,R) is
constructed using intertwining operators, with the Lie algebra representation
given by quadratic combinations of the quantizations of the fermionic coordi-
nates ξj .

In order to have a full construction of a quantization of a pseudo-classical
system, we need to construct the Γ+(ξj) as linear operators on a state space.
As mentioned in section 5.2.1, it can be shown that the real Clifford algebras
Cliff(r, s,R) are isomorphic to either one or two copies of the matrix algebras
M(2l,R),M(2l,C), or M(2l,H), with the power l depending on r, s. The irre-
ducible representations of such a matrix algebra are just the column vectors of
dimension 2l, and there will be either one or two such irreducible representa-
tions for Cliff(r, s,R) depending on the number of copies of the matrix algebra.
This is the fermionic analog of the Stone-von Neumann uniqueness result in the
bosonic case.

5.3.2 Two examples

Quantization of the pseudo-classical spin

As an example, one can consider the quantization of the pseudo-classical spin
degree of freedom of section 5.1.3. In that case Γ+ takes values in Cliff(3, 0,R),
for which an explicit identification with the algebra M(2,C) of two by two
complex matrices was given in section 5.2.1. One has

Γ+(ξj) =
1√
2
γj =

1√
2
σj
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and the Hamiltonian operator is

−iH = Γ+(h) =Γ+(B12ξ1ξ2 +B13ξ1ξ3 +B23ξ2ξ3)

=
1

2
(B12σ1σ2 +B13σ1σ3 +B23σ2σ3)

=i
1

2
(B1σ1 +B2σ2 +B3σ3)

Physically this describes a spin- 12 degree of freedom in a magnetic field, with
fixed position (imagine an infinitely heavy spin- 12 paritcle).

The pseudo-classical equation of motion

d

dt
ξj(t) = −{h, ξj}+

after quantization becomes the Heisenberg picture equation of motion for the
spin operators

d

dt
SH(t) = −i[SH ·B,SH ]

for the case of Hamiltonian
H = −µ ·B

and magnetic moment operator
µ = S

Here the state space is H = C2, with an explicit choice of basis given by our
chosen identification of Cliff(3, 0,R) with two by two complex matrices. In the
next sections we will consider the case of an even dimensional fermionic phase
space, but there provide a basis-independent construction of the state space and
the action of the Clifford algebra on it.

The Fermionic Oscillator

The simple change in the harmonic oscillator problem that takes one from bosons
to fermions is the replacement of the bosonic annihilation and creation operators
a and a† by fermionic annihilation and creation operators called aF and aF

†,
and replacement of the commutator

[A,B] ≡ AB −BA

of operators by the anticommutator

[A,B]+ ≡ AB +BA

The commutation relations are now (for d = 1, a single degree of freedom)

[aF , a
†
F ]+ = 1, [aF , aF ]+ = 0, [a†F , a

†
F ]+ = 0

with the last two relations implying that a2F = 0 and (a†F )
2 = 0
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The fermionic number operator

NF = a†FaF

now satisfies

N2
F = a†FaFa

†
FaF = a†F (1− a†FaF )aF = NF − a†F

2
a2F = NF

(using the fact that a2F = a†F
2
= 0). So one has

N2
F −NF = NF (NF − 1) = 0

which implies that the eigenvalues of NF are just 0 and 1. We’ll denote eigen-
vectors with such eigenvalues by |0⟩ and |1⟩. The simplest representation of the

operators aF and a†F on a complex vector space HF will be on C2, and choosing
the basis

|0⟩ =
�
0
1

�
, |1⟩ =

�
1
0

�

the operators are represented as

aF =

�
0 0
1 0

�
, a†F =

�
0 1
0 0

�
, NF =

�
1 0
0 0

�

Since

H =
1

2
(a†FaF + aFa

†
F )

is just 1
2 the identity operator, to get a non-trivial quantum system, instead we

make a sign change and set

H =
1

2
(a†FaF − aFa

†
F ) = NF − 1

2
1 =

�
1
2 0
0 − 1

2

�

The energies of the energy eigenstates |0⟩ and |1⟩ will then be ± 1
2 since

H |0⟩ = −1

2
|0⟩ , H |1⟩ = 1

2
|1⟩

Taking complex linear combinations of the operators

aF , a
†
F , NF ,1

we get all linear transformations of HF = C2 (so this is an irreducible repre-
sentation of the algebra of these operators). The relation to the Pauli matrices
is

a†F =
1

2
(σ1 + iσ2), aF =

1

2
(σ1 − iσ2), H =

1

2
σ3

For the case of d degrees of freedom one has
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Definition (Canonical anticommutation relations). A set of 2d operators

aF j , aF
†
j , j = 1, . . . , d

is said to satisfy the canonical anticommutation relations (CAR) when one has

[aF j , aF
†
k]+ = δjk1, [aF j , aF k]+ = 0, [aF

†
j , aF

†
k]+ = 0

In this case one may choose as the state space the tensor product of N copies
of the single fermionic oscillator state space

HF = (C2)⊗d = C2 ⊗C2 ⊗ · · ·⊗C2

| {z }
d times

The dimension of HF will be 2d. On this space an explicit construction of the
operators aF j and aF

†
j in terms of Pauli matrices is

aF j = σ3 ⊗ σ3 ⊗ · · ·⊗ σ3| {z }
j−1 times

⊗
�
0 0
1 0

�
⊗ 1⊗ · · ·⊗ 1

aF
†
j = σ3 ⊗ σ3 ⊗ · · ·⊗ σ3| {z }

j−1 times

⊗
�
0 1
0 0

�
⊗ 1⊗ · · ·⊗ 1

The factors of σ3 are there as one possible way to ensure that

[aF j , aF k]+ = [aF
†
j , aF

†
k]+ = [aF j , aF

†
k]+ = 0

are satisfied for j ̸= k since then one will get in the tensor product factors

[σ3,

�
0 0
1 0

�
]+ = 0 or [σ3,

�
0 1
0 0

�
]+ = 0

While this sort of tensor product construction is useful for discussing the physics
of multiple qubits, in general it is easier to not work with large tensor products,
and the Fock space formalism we will describe in section 5.3.4 avoids this.

The number operators will be

NF j = aF
†
jaF j

These will commute with each other, so can be simultaneously diagonalized,
with eigenvalues nj = 0, 1. One can take as a basis of HF the 2d states

|n1, n2, · · · , nd⟩

which are the natural basis states for (C2)⊗d given by d choices of either |0⟩ or
|1⟩.

As an example, for the case d = 3 the picture
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2ℏω

− 1
2ℏω

0

1
2ℏω

3
2ℏω

5
2ℏω

7
2ℏω

Energy

Bosonic

|0, 0, 0⟩

|1, 0, 0⟩, |0, 1, 0⟩, |0, 0, 1⟩

|1, 1, 0⟩, |1, 0, 1⟩, |0, 1, 1⟩,
|2, 0, 0⟩, |0, 2, 0⟩, |0, 0, 2⟩

Fermionic

|0, 0, 0⟩

|1, 0, 0⟩, |0, 1, 0⟩, |0, 0, 1⟩

|1, 1, 0⟩, |1, 0, 1⟩, |0, 1, 1⟩

|1, 1, 1⟩

Figure 5.2: N = 3 oscillator energy eigenstates.

shows the pattern of states and their energy levels for the bosonic and fermionic
cases. In the bosonic case the lowest energy state is at positive energy and
there are an infinite number of states of ever increasing energy. In the fermionic
case the lowest energy state is at negative energy, with the pattern of energy
eigenvalues of the finite number of states symmetric about the zero energy level.

5.3.3 The Schrödinger representation for fermions: ghosts

We would like to construct representations of Cliff(r, s,R) and thus fermionic
state spaces by using analogous constructions to the Schrödinger and Bargmann-
Fock ones in the bosonic case. The Schrödinger construction took the state
space H to be a space of functions on a subspace of the classical phase space
which had the property that the basis coordinate functions Poisson-commuted.
Two examples of this are the position coordinates qj , since {qj , qk} = 0, or the
momentum coordinates pj , since {pj , pk} = 0. Unfortunately, for symmetric
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bilinear forms (·, ·) of definite sign, such as the positive definite case Cliff(m,R),
the only subspace the bilinear form is zero on is the zero subspace.

To get an analog of the bosonic situation, one needs to take the case of
signature (d, d). The fermionic phase space will then be 2d dimensional, with d
dimensional subspaces on which (·, ·) and thus the fermionic Poisson bracket is
zero. Quantization will give the Clifford algebra

Cliff(d, d,R) = M(2d,R)

which has just one irreducible representation, R2d . This can be complexified to
get a complex state space

HF = C2d

This state space will come with a representation of Spin(d, d,R) from expo-
nentiating quadratic combinations of the generators of Cliff(d, d,R). However,
this is a non-compact group, and one can show that on general grounds it can-
not have faithful unitary finite dimensional representations, so there must be a
problem with unitarity.

To see what happens explicitly, consider the simplest case d = 1 of one degree
of freedom. In the bosonic case the classical phase space is R2, and quantization
gives operators Q,P which in the Schrödinger representation act on functions
of q, with Q = q and P = −i ∂

∂q . In the fermionic case with signature (1, 1),
basis coordinate functions on phase space are ξ1, ξ2, with

{ξ1, ξ1}+ = 1, {ξ2, ξ2}+ = −1, {ξ1, ξ2}+ = 0

Defining

η =
1√
2
(ξ1 + ξ2), π =

1√
2
(ξ1 − ξ2)

one gets objects with fermionic Poisson bracket analogous to those of q and p

{η, η}+ = {π,π}+ = 0, {η,π}+ = 1

Quantizing, we get analogs of the Q,P operators

bη = Γ+(η) =
1√
2
(Γ+(ξ1) + Γ+(ξ2)), bπ = Γ+(π) =

1√
2
(Γ+(ξ1)− Γ+(ξ2))

which satisfy anticommutation relations

bη2 = bπ2 = 0, bηbπ + bπbη = 1

and can be realized as operators on the space of functions of one fermionic
variable η as

bη = multiplication by η, bπ =
∂

∂η

This state space is two complex dimensional, with an arbitrary state

f(η) = c11 + c2η
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with cj complex numbers. The inner product on this space is given by the
fermionic integral

(f1(η), f2(η)) =

Z
f∗
1 (η)f2(η)dη

with
f∗(ξ) = c11 + c2η

With respect to this inner product, one has

(1, 1) = (η, η) = 0, (1, η) = (η, 1) = 1

This inner product is indefinite and can take on negative values, since

(1− η, 1− η) = −2

Having such negative-norm states ruins any standard interpretation of this
as a physical system, since this negative number is supposed to the probability of
finding the system in this state. Such quantum systems are called “ghosts”, and
do have applications in the description of various quantum systems, but only
when a mechanism exists for the negative-norm states to cancel or otherwise be
removed from the physical state space of the theory.

5.3.4 Spinors and the Bargmann-Fock construction

While the fermionic analog of the Schrödinger construction does not give a
unitary representation of the spin group, it turns out that the fermionic analog
of the Bargmann-Fock construction does, on the fermionic oscillator state space
discussed in chapter 5.3.2. This will work for the case of a positive definite
symmetric bilinear form (·, ·). Note though that this will only work for fermionic
phase spaces Rm with m even, since a complex structure on the phase space is
needed.

The corresponding pseudo-classical system will be the classical fermionic
oscillator studied in section 5.1.3. Recall that this uses a choice of complex
structure J on the fermionic phase space R2d, with the standard choice J = J0
coming from the relations

θj =
1√
2
(ξ2j−1 − iξ2j), θj =

1√
2
(ξ2j−1 + iξ2j) (5.9)

for j = 1, . . . , d between real and complex coordinates. Here (·, ·) is positive-
definite, and the ξj are coordinates with respect to an orthonormal basis, so we
have the standard relation {ξj , ξk}+ = δjk and the θj , θj satisfy

{θj , θk}+ = {θj , θk}+ = 0, {θj , θk}+ = δjk

In the bosonic case, extending the Poisson bracket from M to M ⊗ C by
complex linearity gave an indefinite Hermitian form on M ⊗C

⟨·, ·⟩ = i{·, ·} = iΩ(·, ·)

59



positive definite on M+
J for positive J . In the fermionic case we can extend

the fermionic Poisson bracket from V to V ⊗C by complex linearity, getting a
Hermitian form on V ⊗C

⟨·, ·⟩ = {·, ·}+ = (·, ·)

This is positive definite on V +
J (and also on V −

J ) if the initial symmetric bilinear
form was positive.

To quantize this system we need to find operators Γ+(θj) and Γ+(θj) that
satisfy

[Γ+(θj),Γ
+(θk)]+ = [Γ+(θj),Γ

+(θk)]+ = 0

[Γ+(θj),Γ
+(θk)]+ = δjk1

but these are just the CAR satisfied by fermionic annihilation and creation
operators. We can choose

Γ+(θj) = aF
†
j , Γ+(θj) = aF j

and realize these operators as

aF j =
∂

∂θj
, aF

†
j = multiplication by θj

on the state space Λ∗Cd of polynomials in the anticommuting variables θj . This
is a complex vector space of dimension 2d, isomorphic with the state space HF

of the fermionic oscillator in d degrees of freedom, with the isomorphism given
by

1 ↔ |0⟩F
θj ↔ aF

†
j |0⟩F

θjθk ↔ aF
†
jaF

†
k |0⟩F

· · ·
θ1 . . . θd ↔ aF

†
1aF

†
2 · · · aF †

d |0⟩F
where the indices j, k, . . . take values 1, 2, . . . , d and satisfy j < k < · · · .

If one defines a Hermitian inner product ⟨·, ·⟩ on HF by taking these basis

elements to be orthonormal, the operators aF j and a†F j will be adjoints with
respect to this inner product. This same inner product can also be defined
using fermionic integration by analogy with the Bargmann-Fock definition in
the bosonic case as

⟨f1(θ1, · · · , θd), f2(θ1, · · · , θd)⟩ =
Z

e−
Pd

j=1 θjθjf1f2dθdθ1 · · · dθddθd (5.10)

where f1 and f2 are complex linear combinations of the powers of the anticom-
muting variables θj . For the details of the construction of this inner product, see
chapter 7.2 of [26] or chapters 7.5 and 7.6 of [32]. We will denote this state space
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as F+
d and refer to it as the fermionic Fock space. Since it is finite dimensional,

there is no need for a completion as in the bosonic case.
The quantization using fermionic annihilation and creation operators given

here provides an explicit realization of a representation of the Clifford algebra
Cliff(2d,R) on the complex vector space F+

d . The generators of the Clifford
algebra are identified as operators on F+

d by

γ2j−1 =
√
2Γ+(ξ2j−1) =

√
2Γ+

�
1√
2
(θj + θj)

�
= aF j + a†F j

γ2j =
√
2Γ+(ξ2j) =

√
2Γ+

�
i√
2
(θj − θj)

�
= i(a†F j − aF j)

Quantization of the pseudo-classical fermionic oscillator Hamiltonian h of
section 5.1.3 gives

Γ+(h) = Γ+


− i

2

dX

j=1

(θjθj − θjθj)


 = − i

2

dX

j=1

(a†F jaF j − aF ja
†
F j) = −iH

(5.11)
where H is the Hamiltonian operator for the fermionic oscillator used in section
5.3.2.

Taking quadratic combinations of the operators γj provides a representation
of the Lie algebra so(2d) = spin(2d). This representation exponentiates to a
representation up to sign of the group SO(2d), and a true representation of its
double cover Spin(2d). The representation that we have constructed here on
the fermionic oscillator state space F+

d is called the spinor representation of
Spin(2d), and we will sometimes denote F+

d with this group action as S.
In the bosonic case,H = Fd is an irreducible representation of the Heisenberg

group, but as a representation of Mp(2d,R), it has two irreducible components,
corresponding to even and odd polynomials. The fermionic analog is that F+

d

is irreducible under the action of the Clifford algebra Cliff(2d,C). One way
to show this is to show that Cliff(2d,C) is isomorphic to the matrix algebra

M(2d,C) and its action on HF = C2d is isomorphic to the action of matrices
on column vectors.

While F+
d is irreducible as a representation of the Clifford algebra, it is the

sum of two irreducible representations of Spin(2d), the so-called “half-spinor”
representations. Spin(2d) is generated by quadratic combinations of the Clifford
algebra generators, so these will preserve the subspaces

S+ = span{|0⟩F , aF
†
jaF

†
k |0⟩F , · · · } ⊂ S = F+

d

and
S− = span{aF †

j |0⟩F , aF
†
jaF

†
kaF

†
l |0⟩F , · · · } ⊂ S = F+

d

corresponding to the action of an even or odd number of creation operators on
|0⟩F . This is because quadratic combinations of the aF j , aF

†
j preserve the parity

of the number of creation operators used to get an element of S by action on
|0⟩F .
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5.3.5 Complex structures, U(d) ⊂ SO(2d) and the spinor
representation

The construction of the spinor representation given here has used a specific
choice of the θj , θj (see equations 5.9) and the fermionic annihilation and cre-
ation operators. This corresponds to a standard choice of complex structure
J0, which appears in a manner closely parallel to that of the Bargmann-Fock
case of section 4.3.2. The difference here is that, for the analogous construction
of spinors, the complex structure J must be chosen so as to preserve not an
antisymmetric bilinear form Ω, but the inner product, and one has

(J(·), J(·)) = (·, ·)

We will here restrict to the case of (·, ·) positive definite, and unlike in the
bosonic case, no additional positivity condition on J will then be required.

J splits the complexification of the real phase space V = R2d with its co-
ordinates ξj into a d dimensional complex vector space on which J = +i and a
conjugate complex vector space on which J = −i. As in the bosonic case one
has

V ⊗C = V +
J ⊕ V −

J

and quantization of vectors in V +
J gives linear combinations of creation op-

erators, while vectors in V −
J are taken to linear combinations of annihilation

operators. The choice of J is reflected in the existence of a distinguished di-
rection |0⟩F in the spinor space S = F+

d which is determined (up to phase) by
the condition that it is annihilated by all linear combinations of annihilation
operators.

The choice of J also picks out a subgroup U(d) ⊂ SO(2d) of those orthogonal
transformations that commute with J . Just as in the bosonic case, two different
representations of the Lie algebra u(d) of U(d) are used:

• The restriction to u(d) ⊂ so(2d) of the spinor representation described
above. This exponentiates to give a representation not of U(d), but of a
double cover of U(d) that is a subgroup of Spin(2d).

• By normal ordering operators, one shifts the spinor representation of u(d)
by a constant and gets a representation that exponentiates to a true rep-
resentation of U(d). This representation is reducible, with irreducible
components the Λk(Cd) for k = 0, 1, . . . , d.

In both cases the representation of u(d) is constructed using quadratic combina-
tions of annihilation and creation operators involving one annihilation operator
and one creation operator, operators which annihilate |0⟩F . Non-zero pairs of
two creation operators act non-trivially on |0⟩F , corresponding to the fact that
elements of SO(2d) not in the U(d) subgroup take |0⟩F to a different state in
the spinor representation.
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5.4 Spinor-oscillator analogy

The oscillator representation of a symplectic group that we have been dis-
cussing is closely analogous to the spinor representation of the orthogonal group.
Here we’ll make this analogy very explicit. This parallelism is well-known in
physics, where the “canonical formalism” in quantum mechanics comes in both
a “bosonic” version, with canonical commutation relations, and a “fermionic”
version, with canonical anti-commutation relations. Much of this material is
worked out in great detail in [31].

5.4.1 Classical theory, Lie groups and Lie algebras

Q: Symmetric non-degenerate bilinear
form on V = Rm

Ω: Antisymmetric non-degenerate bi-
linear form on M = R2n

Lie group SO(d) preserving Q, with
Lie algebra so(m).

Lie group Sp(2n,R) preserving Ω, with
Lie algebra sp(2n)

π1(SO(m)) = Z2. π1(Sp(2n),R) = Z.

Spin(m), double cover of SO(m). Mp(2n,R), double cover of Sp(2n,R).

Λ∗(V ): anti-symmetric algebra on V .
Polynomials in “anti-commuting vari-
ables ξj , j = 1, 2, · · ·m. For physicists
these are “fermionic” variables.

S∗(M): symmetric algebra onM . Poly-
nomial functions onM∗. Generated by
a basis qj , pk, j, k = 1, 2, · · ·n of M .
For physicists these are “bosonic” vari-
ables.

Poisson bracket {·, ·}+. Lie bracket for
Lie super-algebra of “anti-commuting
functions”on V ∗, determined by Q.

{v1, v2}+ = Q(v1, v2)

Poisson bracket {·, ·}. Lie bracket for
Lie algebra of functions on M∗, deter-
mined by Ω.

Lie superalgebra of anticommuting poly-
nomials on V ∗ of degree 0, 1, 2. Semi-
direct product of a Lie superalgebra
(degree 0 and 1) and the orthogonal
Lie algebra so(m,R) (degree 2).

Lie algebra of polynomials on M∗ of
degree 0, 1, 2. Semi-direct product of
the Heisenberg Lie algebra h2n+1 (de-
gree 0 and 1) and the symplectic Lie
algebra sp(2n,R) (degree 2).

Pseudo-classical mechanics. Classical mechanics.

5.4.2 Quantum theory and representations

Spin representation S (unitary) on a
complex vector space of dimension 2d

for m = 2d even.

Oscillator representation (unitary) on
H, an infinite-dimensional Hilbert space.

Clifford algebra Cliff(m,C). For m = Weyl algebra U(h2n+1)/(Z − 1). This
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2d even this is the algebra End(S), iso-
morphic to the matrix algebraM(2d,C).

algebra is infinite-dimensional over C.

The group SO(m) acts by automor-
phisms on Cliff(m,C).

The group Sp(2n,R) acts by automor-
phism on the Weyl algebra.

For m = 2d even, Cliff(2d,C) has a
unique irreducible module, the spin mod-
ule S. This is the spin representation
as a Lie algebra representation of so(2d).
Integrating to the group, one gets a
projective (up to ±) representation of
SO(2d), a true representation of the
double cover Spin(2d).

Stone-von Neumann theorem: theWeyl
algebra has an essentially unique irre-
ducible module H that integrates to a
representation of the Heisenberg group
on H. Integrating to the group, one
gets a projective (up to ±) represen-
tation of Sp(2n,R), a true representa-
tion of the double cover Mp(2n,R).

For m = 2d even, the spin represen-
tation has two irreducible components,
the half-spinors S+, S−, each of dimen-
sion 2d−1

The oscillator representation has two
irreducible components (an “even” and
an “odd” component).

Generators γj of the Clifford algebra.
On the spinor module S, identifying
the Clifford algebra with a matrix al-
gebra, these are the physicist’s Dirac
γ-matrices.

Generators Qj , Pk of the Weyl algebra.

In even dimension, the Lie algebra rep-
resentation operators for the spin rep-
resentation are given by quadratic com-
binations of γ-matrices.

The Lie algebra representation oper-
ators for the oscillator representation
are given by quadratic combinations of
the Qj , Pk operators.

Spin 1/2 degree of freedom in m di-
mensions.

Harmonic oscillator with n degrees of
freedom.

5.4.3 Real and complex polarizations

When Q has signature (d, d), choos-
ing a real polarization V = L ⊕ L∗

(Q = 0 on L and on L∗), one can real-
ize the spinor module as anticommut-
ing functions on L. This will be an irre-
ducible representation of the real form
SO(d, d), non-unitary.

Choosing a real polarization M = L⊕
L∗ one can realize (the Schrödinger rep-
resentation) the Qj , Pj operators re-
spectively as multiplication and differ-
entiation operators on L2(L). This rep-
resentation will be unitary, both as a
representation of the Heisenberg group
and the metaplectic group.

For m = 2d even, an orthogonal com-
plex structure on V is a linear map
J satisfying J2 = −1 and preserving
the bilinear form Q. This picks out a

A symplectic complex structure on M
is a linear map J satisfying J2 = −1
and preserving the bilinear form Ω. This
picks out a U(n) ⊂ Sp(2n,R). Such
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U(d) ⊂ SO(2d) and the space of such
complex structures is the compact space
SO(2d)/U(d).

J satisfying the positivity conditions
S(·, J ·) positive are parametrized by
the non-compact space Sp(2n,R)/U(n).

For m = 2d even, such a J gives a com-
plex polarization V ⊗C = W+

J ⊕W−
J

(±i eigenspaces of J).

Such a J gives a complex polarization
M ⊗ C = W+

J ⊕ W−
J (±i eigenspaces

of J).

For m = 2d even, taking complex lin-
ear combinations of the γj in W+

J one

can form adjoint operators aj , a
†
j on

the spinor module, satisfying the canon-
ical anti-commutation relations

[aj , a
†
k]+ = δjk1

Taking complex linear combinations of
the Qj , Pj in W+

J one can form ad-

joint operators aj , a
†
j on the oscillator

representation, satisfying the canonical
commutation relations

[aj , a
†
k] = δjk1

For each J there is a unique (up to
scalar) vector in S annihilated by all
the a operators. These are fibers of
the line bundle Λd(W+

J )−
1
2 .

For each J there is a unique (up to
scalar) vector (vacuum vector) in H
annihilated by all the a operators. These
are fibers of the line bundle Λn(W+

J )
1
2 .

Applying a† operators

S = Λ∗(W+
J )⊗ (Λd(W+

J )−
1
2

Applying a† operators

H = S∗(W+
J )⊗ (Λn(W+

J )
1
2

Half-spinors are holomorphic sections
of the line bundle Λn(W+

J )−
1
2 over

SO(2d)/U(d)

S+ = Γhol(Λ
n(W+

J )−
1
2 )

The even component of the oscillator
representation is holomorphic sections
of the line bundle Λn(W+

J )
1
2 over

Sp(2n,R)/U(n).

Heven = Γhol(Λ
n(W+

J )−
1
2 )

5.5 For further reading

Some more detail about spin groups and the relationship between geometry and
Clifford algebras can be found in [15], and an exhaustive reference is [21]. A
good source for more details about Clifford algebras and spinors is chapter 12
of the representation theory textbook [27]. For the details of what happens for
all Cliff(r, s,R), another good source is chapter 1 of [15].

For more about pseudo-classical mechanics and quantization, see [26] chapter
7 or the very readable original reference [2]. The Clifford algebra and fermionic
quantization are discussed in chapter 20.3 of [11]. The fermionic quantization
map, Clifford algebras, and the spinor representation are discussed in detail in
[17]. For another discussion of the spinor representation from a similar point of
view to the one here, see chapter 12 of [27]. Chapter 12 of [22] contains an ex-
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tensive discussion of the role of different complex structures in the construction
of the spinor representation.
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Chapter 6

Free particles in three space
dimensions

Generalizing the discussion of the quantum free particle in section 3.1.1 to the
physical case of three spatial dimensions, states will be functions (or distribu-
tions) on R3 and the Hamiltonian operator will be

H =
1

2m
(P 2

1 + P 2
2 + P 2

3 ) = − ℏ2

2m
∇2

Fourier transforming to momentum space, the energy eigenvalue equation be-
comes

1

2m
(P 2

1 + P 2
2 + P 2

3 )
eψ(p) = 1

2m
|p|2 eψ(p) = E eψ(p)

States of energy E (E ≥ 0) will be distributions on momentum space supported
on the sphere of radius

√
2mE. Restricting to those distributions of the form

eψ(p) = eψE(ϕ, θ)δ(ρ−
√
2mE)

in spherical coordinates, the space HE of energy eigenstates of energy E can be
identified with the space of functions eψE(ϕ, θ) on the sphere of radius

√
2mE.

This space has a Hermitian inner product given by integration over the sphere
and one can take HE to be the square-integrable functions.

6.1 Irreducible representations of the Euclidean
group E3

There is a unitary representation on HE of the Euclidean group E3 = R3 ⋊
SO(3), the semi-direct product of translations and rotations. This is the repre-
sentation induced from the action of E3 on R3. Recall that if a group G acts
on a space X, it acts on functions on X by

f(x) → f(g−1 · x)
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In this case the action of (a, R) ∈ E3 (translation by a and rotation by R ) on
momentum space wave functions will be by

eψ(p) → e−ia·p eψ(R−1p)

One can show that this representation is irreducible and that one gets distinct
representations for each R > 0.

Note that what we are doing here is just taking the Schrödinger representa-
tion in the case n = 3 and restricting it to a representation of E3, which breaks
up into a continuous sum over the HE for E > 0. Here the R3 is the subgroup
of the Heisenberg group that acts by translations in q. The rotations SO(3) are
the subgroup of Sp(6,R) given by rotating both q and p (preserving their dot
product). On this subgroup the metaplectic group is a trivial double cover, so
one can use Sp(6,R) instead of the double cover Mp(6,R).

Another way to get this decomposition into irreducibles is to consider the
Casimir operators of the Lie algebra of E(3). These are operators quadratic in
the generators that commute with the generators. There are two of them:

|P|2 = P 2
1 + P 2

2 + P 2
3

and
J ·P = J1P1 + J2P2 + J3P3

Here Jj is the operator that generates the action of rotations about the j axis.
By Schur’s lemma, on an irreducible representation these operators will act by
scalars, and these scalars will characterize the irreducible representation. On
our representation on HE , the first of these will act by 2mE, the second can be
shown to act by 0.

The general theory of representations of groups N ⋊K, where N is commu-
tative, says that irreducible representations of such a group will correspond to
pairs consisting of

• Orbits of K on the character group bN of the abelian group N . Here the
definition of the semi-direct product gives the action of K on N by auto-
morphisms, which induces an action on the characters (homomorphisms
χ : N → C).

• Irreducible representations of the stabilizer group Kχ ⊂ K, the subgroup
of K that leaves a character in the orbit invariant. Physicists often call
this the “little group”.

In the case we are looking at, N = R3 and K = SO(3). The complete list
of irreducible representations is labeled by the pairs:

• The trivial orbit 0 ∈ bN with stabilizer K0 = SO(3), which has irreducible
representations labeled by n = 0, 1, 2, . . . . These are just the irreducible
representations of E3 on which R3 acts trivially.
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• Non-trivial orbits are spheres in the momentum space R3 (which is the

character group of the position space R3). We’ll label these by E = |p|2
2m .

The stabilizer group of a vector p on the sphere is the SO(2) ⊂ SO(3)
subgroup of rotations about p. Irreducible representations of this SO(2)
are labeled by integers h.

Of the representations in the second class, our representation on HE is the
one labeled by (E, 0). To get others, we need to find representations with non-
zero eigenvalues of the second Casimir J ·P. On wave-functions of momentum
p, this operator is the operator that generates rotations about p and will have
eigenvalues h|p|, where h ∈ Z is called the “helicity”. One way to get such
representations is to take wavefunctions in H ⊗ C|h|+1, with the Hamiltonian
acting trivially on the second factor, but the rotations acting on it by the spin|h|
representation. This will break up into irreducibles of different helicities. In the
next section we’ll se how this works in the case |h| = 1

2 , where one needs to take
the spin double cover of SO(3) (and the corresponding double cover of E(3)).

6.2 The Dirac operator and spin 1
2

In chapters 4 and 5 we saw how to quantize a classical system and get the
Schrödinger representation describing a spin-less free particle, as well as how to
quantize a pseudo-classical system and get a spin- 12 degree of freedom. In this
section we’ll see that one can put these two together, getting a description of a
free spin 1

2 particle, with a Hamiltonian that now has a square root, providing
a non-relativistic version of the Dirac equation.

One can take as phase space the conventional classical phase space with 3
degrees of freedom and coordinates qj , pj , together with the three-dimensional
pseudo-classical phase space with coordinates ξj . The non-zero Poisson super-
brackets are

{qj , pk}± = δjk, {ξj , ξk}± = δjk

The Hamiltonian function for the free particle now has a square root p1ξ1 +
p2ξ2 + p3ξ3 in the sense that

h =
1

2m
{

3X

j=1

pjξj ,

3X

k=1

pkξk}± =
1

2m

3X

j,k=1

pj{ξj , ξk}±pk =
1

2m

3X

j=1

p2j

This is a simple example of what is called a “supersymmetry”: by extending the
usual Lie algebra to a Lie superalgebra, we are able to find a generator which
in some sense is a “square root” of the generator of time translation.

Quantization takes

p1ξ1 + p2ξ2 + p3ξ3 → 1√
2
σ ·P

and the Hamiltonian operator can be written

H =
1

2m
[
1√
2
σ ·P,

1√
2
σ ·P]+ =

1

2m
(σ ·P)2 =

1

2m
(P 2

1 + P 2
2 + P 2

3 )
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One can define the Dirac operator in this context as

/∂ = σ1
∂

∂q1
+ σ2

∂

∂q2
+ σ3

∂

∂q3
= σ ·∇

The Schrödinger equation now is called the “Pauli-Schrödinger” equation (or
“Pauli equation”) and given by

i
∂

∂t
ψ = − 1

2m
/∂
2
ψ

where ψ is a two-component wave function.
This is nothing but two decoupled copies of the usual Schrödinger equation.

The total angular momentum operator that generates rotations is different, since
on the state space H = L2(R3)⊗C2, rotations act on the C2 not trivially, but
by the spin representation. The helicity operator will be

1

|P|J ·P =
1

|P| (L+
1

2
σ) ·P

The term involving the orbital angular momentum L will act trivially, as in
the spin-less case, but the other term will act with eigenvalues ± 1

2 . The space
of solutions with a fixed energy will decompose into two different irreducible
representations of (the double-cover of) E(3), distinguished by the eigenvalue
of the helicity operator.

The Pauli-Schrödinger equation becomes much more interesting when one
couples the free particle to an electromagnetic field. We will discuss this in
detail in a later chapter, but the main point is that derivatives get replaced by
covariant derivatives of a gauge field A, so

∂

∂t
→ ∂

∂t
− ieA0, ∇ → ∇− ieA (6.1)

The Pauli-Schrödinger equation becomes

i(
∂

∂t
− ieA0)ψ = − 1

2m
(σ · (∇− ieA))2ψ = − 1

2m
((∇− ieA)2+ eσ ·B)ψ (6.2)

with the magnetic field B corresponding to the vector potential A now giving a
non-trivial coupling between the components of ψ.
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Chapter 7

Non-relativistic quantum
field theory

In the previous chapters we have discussed the quantum theory of a non-
relativistic single free particle, as well as the oscillator and spinor represen-
tations. In this chapter we’ll put these two subjects together, getting quantum
field theories describing arbitrary numbers of identical free particles, using the
oscillator representation for bosons, the spinor representation for fermions. This
subject is sometimes known as “second quantization”, with first quantization
giving solutions of the Schrödinger equation, second quantization treating this
space of solutions as a classical or pseudo-classical phase space. Quantizing this
phase space as a bosonic or fermionic oscillator, using an infinite-dimensional
version of the Bargmann-Fock quantization, quantum field theory appears as an
oscillator or spinor representation for an infinite number of degrees of freedom.

The fact that we are quantizing an infinite-dimensional phase space gives
the subject a very different flavor. The material discussed in chapters 4 and
5 assumes a finite number of degrees of freedom and it is not clear how this
generalizes (for instance, what is the right infinite-dimensional version of the
metaplectic or spin group and their oscillator or spinor representations?). A
crucial part of the story in finite dimensions, the Stone-von Neumann theorem
for bosons or the analogous uniqueness of the spinor module for the Clifford
algebra, no longer holds. This non-uniqueness means that for quantum field
theories finding the correct state space becomes a major problem, even before
one comes to questions about operators acting on it.

For free quantum field theories, which can be decomposed into an infinite
number of finite-dimensional oscillator problems that do not interact with each
other, the mathematical issues can be addressed. But for interacting field the-
ories, corresponding physically to arbitrary numbers of quantum particles that
are not free particles but that interact with each other, the problems are se-
rious enough that no non-trivial interacting relativistic quantum field theory
in four spacetime dimensions has yet been rigorously constructed. For weakly
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coupled particles approximate computations in principle are possible, but these
require very careful treatment since a straightforward computation will give in-
finite results. We will not get into the details of methods for making sense of
such calculations (“renormalization theory”) in general, but will outline what is
known for the Standard Model quantum field theory in later chapters. In this
chapter we’ll begin by restricting our attention mostly to free field theories and
do the non-relativistic case.

Note that changing at this point we will be changing notation for position
variables from q to x. In quantum mechanics, position coordinates q get quan-
tized and become an operator Q, whereas in quantum field theory, the position
in space plays a different role, parametrizing field operators.

7.1 Oscillators and quantum fields

In quantum mechanics one can deal with multi-particle systems by taking tensor
products of the state spaces and operators for the single particle system. If one
does this, one finds that one needs to restrict to symmetric tensor products
(bosons) or anti-symmetric tensor products (fermions), a procedure that lacks
an obvious motivation. In quantum field theory, the use of oscillator methods
automatically gives state spaces that are symmetric or antisymmetric tensor
products.

We’ll first consider the case of the quantum field theory describing non-
relativistic quantum particles moving in one spatial dimension. Recall that
solutions of the Schrödinger equation break up into complex one-dimensional
spaces of solutions proportional to

ψp(x, t) = eipxe−i p2

2m t

describing a particle with momentum p. We can do an oscillator second quan-
tization of this complex one-dimensional space by defining annihilation and
creation operators ap, a

†
p satisfying the commutation relations (here we’ll do

bosons, could instead use anti-commutators and do fermions)

[ap, a
†
p] = 1

The number operator Np = a†pap will have eigenvalues 0, 1, 2, . . ., which will be
interpreted as the number of quanta of momentum p. The Hamiltonian will be

Hp =
p2

2m
(Np +

1

2
)

If there were only a finite number of possible momentum values, we could de-
fine a quantum theory of an indefinite number of indistinguishable particles with
those possible momenta by using a finite number of operators ap, a

†
p satisfying

[ap, a
†
p′ ] = δp,p′
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and a Hamiltonian
H =

X

p

Hp

The problem of course is that the space of possible momenta is not a finite
set, but is R. Physicists deal with this by introducing

• An “infrared cutoff” that makes the set of momenta discrete, also called
“putting the system in a box.” The idea is to restrict space to a finite
interval [−L

2 ,
L
2 ] of size L and choose periodic boundary conditions (or,

equivalently, take space to be a circle). The periodicity condition eipx =
eip(x+L) then implies that p takes only the discrete values

pj = j
2π

L

labeled by j ∈ Z.

• An “ultraviolet cutoff” that makes the set of discrete momenta finite. This
is the choice of some Λ > 0 and restriction of the set of momenta to the
interval [−Λ,Λ].

One then tries to recover the theory with continuous momenta by taking the
limits L → ∞ and Λ → ∞. Before taking the limit, the theory will just be a
harmonic oscillator with a large but finite number of degrees of freedom, and
the Stone-von Neumann theorem will apply. Unfortunately one immediately
runs into problems when trying to take the limit. In particular, each p will
contribute a term 1

2 to the energy of the vacuum state, so the vacuum will have
infinite energy. This is just the first of various problems that will need to be
addressed to get a well-defined limit.

Physicists often define the theory formally, in a notation assuming that the
limits can be made sense of, with sums becoming integrals and Kronecker δj,k
terms becoming Dirac delta-functions as p becomes a continuous variable in the
limit. In this notation, one has operators a(p), a(p)† for p ∈ R satisfying

[a(p), a(p′)†] = δ(p− p′)

and a Hamiltonian operator

H =

Z ∞

−∞

p2

2m
(a(p)a(p)† +

1

2
)dp

In this notation a quantum field will be the (inverse) Fourier transform of
the ap operator,

bψ(x) = 1√
2π

Z ∞

−∞
eipxa(p)dp

with adjoint

bψ†(x) =
1√
2π

Z ∞

−∞
e−ipxa(p)†dp
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and these quantum field operators will satisfy the commutation relations

[ bψ(x), bψ(x′)] = [ bψ†(x), bψ†(x′)] = 0, [ bψ(x), bψ†(x′)] = δ(x− x′)

The physical interpretation of these operators is that bψ†(x) creates an ad-

ditional quantum, thus a particle, at position x at t = 0, while bψ(x) removes a
particle at position x. While the a(p) and a(p)† operators have a stable phys-
ical interpretation (a particle of momentum p at t = 0 will continue to be a
particle of momentum p at all later times), this is not true at all if one creates
a physical quantum particle at a specific position x′ at time t = 0. The initial
wave function δ(x − x′) has constant Fourier transform, so contributions from

arbitrarily large momenta p, which will each evolve separately as e−i p2

2m t. For
arbitrarily short times after t = 0 there will be non-zero probability that the
particle is observed arbitrarily far away.

We will make heavy use of the Fourier transform for functions and for dis-
tributions. For the spatial variables x the Fourier transform variable will be p
and the Fourier and inverse Fourier transforms are

ef(p) = 1√
2π

Z ∞

−∞
e−ipxf(x)dx, f(x) =

1√
2π

Z ∞

−∞
eipx ef(p)dp

For the time variable there will be an opposite choice of sign

ef(E) =
1√
2π

Z ∞

−∞
eiEtf(t)dt, f(t) =

1√
2π

Z ∞

−∞
e−iEt ef(E)dE

this convention is motivated by the relativistic case, where the Lorentz-invariant
inner product of energy-momentum and time-space vectors has opposite signs
for time and space. Under Fourier transformation differentiation becomes mul-
tiplication with

f∂f
∂t

= −iE ef,
f∂f
∂x

= ip ef

(use integration by parts, assume functions vanishing at ±∞).

7.2 Quantum fields as operator-valued distribu-
tions

In order to have a well-defined notion of a quantum field theory, one needs to
take into account that one gets physically sensible results not for states with
a definite position or momentum, but for states that are in L2(R). We can

rigorously define quantum fields as operator-valued distributions, meaning bψ(x)
by itself is not an operator, but there will be a well-defined operator bψ(f) for
f ∈ L2(R), which we’ll write as

bψ(f) =
Z ∞

−∞
bψ(x)f(x)dx
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In this section we’ll outline a rigorous construction of the state space of the non-
relativistic quantum field theory, for more details see [5]. This is based on exactly
the Fock space construction we explained in the finite-dimensional case for the
bosonic and fermionic oscillators. There we used polynomials in generators zj
or θj , with creation operators given by multiplication, annihilation operators
given by differentiation. Here instead of polynomials we’ll use the symmetric
and antisymmetric tensor algebras.

Note that in earlier chapters we were starting with a finite-dimensional real
phase space M , and choosing an appropriate complex structure J , giving a de-
composition M ⊗C = M+

J ⊕M−
J . The oscillator state space of the Bargmann-

Fock construction would be S∗(M+
J ) (bosonic) or Λ∗(M+

J ) (fermionic). Here we
want to construct oscillator state spaces starting not with a finite-dimensional
real phase space M , but with an infinite-dimensional complex space H1 =
L2(R), the space of initial data for a solution of the Schrödinger equation. We
still need to complexify the phase space, but don’t need to choose a J . Instead
we have

H1 ⊗C = H1 ⊕H1

where H1 is H1 with the conjugate action of complex scalars.
Given a Hilbert space H1 one also gets a Hilbert space structure on the n-

fold tensor product Tn(H1). This in turn gives a Hilbert space structure on the
entire tensor algebra T ∗(H1), taking as norm-squared the infinite sum of the
norm-squareds for each Tn. Note that another way to represent multi-particle
wavefunctions is to use the fact that when one takes tensor products one has

L2(R)⊗ L2(R) = L2(R2)

so one could identify Tn(H1) with L2(Rn) (although we will not be using this).
On Tn(H1) one has symmetrization and anti-symmetrization operators that
project onto Sn(H1) and Λn(H1). These are given by

Π+(f1 ⊗ · · ·⊗ fn) =
1

n!

X

P

(fP (1) ⊗ · · ·⊗ fP (n))

and

Π−(f1 ⊗ · · ·⊗ fn) =
1

n!

X

P

(sgn(P ))(fP (1) ⊗ · · ·⊗ fP (n))

where P are the elements of the permutation group Sn and sgn(P ) the sign of
a permutation.

The action of the field operators will be given by

bψ†(f)Π±(f1 ⊗ · · ·⊗ fn) =
√
n+ 1Π±(f ⊗ f1 ⊗ · · ·⊗ fn)

and

bψ(f)Π±(f1 ⊗ · · ·⊗ fn) =
1√
n

nX

j=1

(f, fj)Π
±(f1 ⊗ · · ·⊗ bfj ⊗ · · ·⊗ fn)
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Here (·, ·) is the inner product on H1. and the hatted term in the tensor product

is omitted. Note that the operator bψ†(f) is complex linear in the complex

function f , whereas bψ(f) is complex anti-linear.
These definitions are set up to give us the usual CCR or CAR relations. In

our earlier discussion we just wrote those down for the operators corresponding
to basis element of the complex vector space M+

J , but we could have extended
these relations to arbitrary vectors in M+

J , which would be what we have here.
The relations we get are explicitly (for the bosonic case, for fermions use anti-
commutators).

[ bψ(f1), bψ(f2)] = [ bψ†(f1), bψ†(f2)] = 0

[ bψ(f1), bψ†(f2)] = (f1, f2)

More effort is needed to define quadratic products of operators such as the
Hamiltonian, for details see [5]. Such products will not be defined only on pairs
of elements of H1 that lie in a dense subspace given by functions f that are in
the Schwarz space S(R) ⊂ L2(R).

7.3 Dynamics of quantum fields

Until now we have been studying the dynamics of quantum systems in what
physicist’s call the “Schrödinger picture”, with states in H evolving in time,
while the interesting operators like Q and P are time-independent. There is
an alternative way to proceed, the “Heisenberg picture”, in which states are
time independent, with time dependence instead in the operators. In quantum
field theory the Heisenberg picture is much more convenient, since the set of
states is very complicated (functions on an infinite-dimensional spaces), with
the set of operators (combinations of field operators) much less so. In addition,
in quantum field theory there is a distinguished state, the vacuum state, and
one can study other states in terms of the operators that produce the state from
the vacuum.

Going back to quantum mechanics, the time dependence of Schrödinger pic-
ture states is given by

ψ(t) = e−iHtψ(0)

and operator expectation values are give by inner products

⟨ψ′(t), Oψ(t)⟩ = ⟨ψ′(0), eiHtOe−iHtψ(0)⟩

In the Heisenberg picture one treats the state space as time-independent, for
instance taking Schrödinger states at t = 0, but operators now become time-
dependent, with the Heisenberg time-dependent operator O(t) related to the
Schrödinger time-independent operator O by

O(t) = eiHtOe−iHt
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Differentiating this equation, one finds that Heisenberg picture operators will
satisfy the equation

d

dt
O(t) = [O(t),−iH]

which is the quantization of Hamilton’s equations of classical mechanics

d

dt
f = {f, h}

For annihilation and creation operators with Hamiltonian H = ωa†a one has

d

dt
a(t) = −iωa(t),

d

dt
a†(t) = −iωa†(t)

so
a(t) = e−iωta, a†(t) = eiωta† (7.1)

where a = a(0), a† − a†(0). In quantum field theory we will have momentum
space annihilation and creation operators a(t, p) and a†(t, p) and position space

field operators bψ(t, x) and bψ†(t, x). Note that all of these are operator-valued

distributions, with actual operators given by bψ(f) for f in the Schwartz space
of functions of t and x.

For the quantum field theory of free non-relativistic particles, one can use the
Heisenberg picture, and take as state space the Fock space S∗(H1) or Λ∗(H1)
described above. Observables will be time-dependent fields, which are operator-
valued distributions bψ(t, x) satisfying the equation of motion

∂ bψ(t, x)
∂t

= i[H, bψ(t, x)]

The Hamiltonian is time-independent and for a free particle is given by

H =

Z ∞

−∞

p2

2m
a†(p)a(p)dp =

Z ∞

−∞
bψ†(x)

�
− 1

2m

∂2

∂x2

�
bψ(x)dx

To describe interacting particles, the simplest sort of interaction is a single-
particle interaction with an external potential V (x). This is no longer so simply
described using momentum space a(p) and a(p)† operators since one no longer
has translation invariance and particle momentum is no longer conserved. There
is a simple description using field operators, with the Hamiltonian now

Z ∞

−∞
bψ†(x)

�
− 1

2m

∂2

∂x2
+ V (x)

�
bψ(x)dx

The field is now an operator-valued distribution satisfying the usual linear
Schrödinger equation

i
∂ bψ(t, x)

∂t
=

�
− 1

2m

∂2

∂x2
+ V (x)

�
bψ(t, x)
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In momentum space the a(t, p) are no longer decoupled, with the Hamiltonian
now

H =

Z ∞

−∞

p2

2m
a†(p)a(p)dp+

Z ∞

−∞

Z ∞

−∞
eV (q)a†(p+ q)a(p)dpdq

The second term has a physical interpretation as causing a change in momen-
tum of a particle by momentum q, with amplitude proportional to the q Fourier
component of the potential. One can also easily write down the non-relativistic
field theory Hamiltonian for charged particles coupled to a background electro-
magnetic vector potential by changing derivatives to covariant derivatives (see
equation 6.1. Using a two component version of H1, one can also write down
the field theory version of the Pauli-Schrödinger equation, describing spin 1

2
particles coupled to an electromagnetic field.

The non-relativistic quantum field theory formalism can also describe parti-
cles that can interact not just with a potential but with each other. In the case
where particles interact pairwise the Hamiltonian gets an added term

1

2

Z ∞

−∞

Z ∞

−∞
bψ†(x) bψ†(y)v(x− y) bψ(x) bψ(y)dxdy

Here v(x − y) is the interaction potential energy between the particles. As an
example, for the Coulomb interaction this would be

v(x− y) = − e2

|x− y|

By doing this, the Hamiltonian is no longer quadratic in the fields and the
equation of motion of the operators is now non-linear. This introduces serious
new difficulties, one of which is that of how to make any sense of a product of
four operator valued distributions.

Note that the formalism we have discussed here applies equally well to
bosonic and fermionc cases, with the only difference the use of symmetric versus
anti-symmetric tensor product spaces and commutators versus anti-commutators.

7.4 Anti-particles

We have been discussing non-relativistic quantum field theory as a second quan-
tization of the phase space H1 of solutions of the Schrödinger equation by os-
cillator methods. H1 is complex, so comes with a complex structure J = i that
one can use to do Bargmann-Fock quantization. One could however have cho-
sen the opposite complex structure, J = −i, or equivalently choose to quantize
the space H1 of complex conjugates ψ of solutions to the Schrödinger equation,
which are solutions to the equation

−i
∂

∂t
ψ =

1

2m
P 2ψ
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We’ll denote the annihilation and creation operators used to do this by b(p), b†(p),
satisfying the same (anti)-commutation relations as the a(p), a†(p). We can de-
fine a new set of field operators, which for free particles will be given by

bψ(t, x) = 1√
2π

Z ∞

−∞
eipxe−i p2

2m tb(p)†dp

This operator and its adjoint will have the physical interpretation of creating
and annihilating an “anti-particle” of the particle corresponding to bψ. One can
interpret such particles as moving backwards in time with negative energy (and
negative the usual momentum). The usual particles we have been discussing
are said to have “charge +1”, which both describes their behavior under U(1)
phase transformations and their coupling to electromagnetism (to be discussed
in chapter 15). Anti-particles will instead have charge −1. In the relativistic
theory, there will unavoidably be both particles and anti-particles, but in the
non-relativistic limit they decouple, so we can just consider particles and ignore
the anti-particles.

7.5 The propagator

In the Heisenberg picture, one can use the existence of a distinguished vacuum
state |0⟩ ∈ H, with the other states in H given by applying linear combinations

of sums of field operators of the form bψ†(f). What we need to calculate are the
distributions

⟨0|O1(t1, x1)O2(t2, x2) · · ·On(tn, xn) |0⟩
depending on n values of t and x, where the operator Oj can be bψ or bψ†. These
are known as “Wightman n-point functions”, although they are distributions,
not functions. For the case of the free particle, one only gets a non-zero result
by pairing one of the bψ and one of the bψ†, with the result factorizing into
contributions from each possible pairing. We won’t here explain the details of
this, but just note that one just needs to compute the 2-point function

W (t, t′, x, x′) = ⟨0| bψ(t, x) bψ(t′, x′) |0⟩

Furthermore, this will only depend on t − t′ and x − x′, since one can trans-
late field operators in time and space using the Hamiltonian and momentum
operators by

bψ(t+ a, x) = eiaH bψ(t, x)e−iaH , bψ(t, x+ b) = eibP bψ(t, x)e−ibP

and use
P |0⟩ = 0 = H |0⟩

We thus just need to calculate

W (t, x) = ⟨0| bψ(t, x) bψ†(0, 0) |0⟩
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The field operators are Fourier transforms of the momentum space operators
a(t, p), a†(t, p) which have time dependence given by 7.1. So

W (t, x) =
1

2π

Z ∞

−∞

Z ∞

−∞
eipxe−i p2

2m t ⟨0| a(p)a†(p′) |0⟩ dpdp′

Using
[a(p), a†(p′)] = δ(p− p′)

this becomes

W (t, x) =
1

2π

Z ∞

−∞
eipxe−i p2

2m tdp

Note that this is just the inverse Fourier transform of

fW (t, p) =
1√
2π

e−i p2

2m t

One could also Fourier transform in t, with Fourier transform variable E, and
find that

fW (E, p) = δ(E − p2

2m
) (7.2)

To work with this distribution, one can define it as a boundary value of a
holomorphic function by looking at complex values of t, defining z = τ + it.
Then

W (z, x) =
1

2π

Z ∞

−∞
eipxe−

p2

2m zdp

This integral is well-defined if τ > 0 and then is holomorphic in the τ > 0
half-plane. In this half-plane one can evaluate the integral by completing the
square and getting a Gaussian integral, by shifting p by i

p
m
z x with the result

W (z, x) =

r
m

2πz
e−

m
2z x

2

The distribution W (t, x) is then defined as

W (t, x) = lim
τ→0+

r
m

2π(τ + it)
e−

m
2(τ+it)

x2

Note that the choice of square root here is determined by the analytic continu-
ation from the result on the τ > 0 real z axis.

7.6 Euclidean quantum field theory

The calculation of the propagator in the last section makes it tempting to try
and define the quantum field theory for complex values of time, getting operators

ψ(z, x) = ezHψ(0, x)e−zH
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that would be holomorphic in z for τ > 0. This however cannot work for very
general reasons. For any sensible theory with a stable lowest energy state, the
Hamiltonian is supposed to have a spectrum bounded below that goes off to +∞,
and for τ > 0 this will make ezH ill-defined. What does make sense though are
expectation values of operators of the form

⟨0|O(z1, x1)O(z2, x2), · · ·O(zn, xn) |0⟩
where successive zj satisfy Re(zj) > Re(zj+1) (since, translating to z = 0, there
will be factors e−(zj−zj+1)H between the operators). An example of this is the
propagator of the previous section, which only makes sense for τ > 0.

In Euclidean quantum field theory (the origin of the name will become
clear when we study the relativistic case), one defines the theory by defining
n-point functions for real values of zj (equivalently, for imaginary values of
time). Analytic continuation to real values of time (imaginary values of z) will
give Wightman distributions with properties needed to define a quantum field
theory. These imaginary time n-point functions are called “Schwinger func-
tions” and they are actual functions (not distributions) away from coinciding
points. In particular, the Schwinger twi-point function for the non-relativistic
free particle theory will be

S(τ, x) =

r
m

2πτ
e−

m
2τ x2

and only defined for τ > 0.
This Schwinger function is well-known in mathematics as the “heat kernel”,

and it is appearing because the Schrödinger equation for imaginary time

(
∂

∂τ
− 1

2m

∂2

∂x2
)ψ(τ, x) = 0

is just the heat equation (for the choice of constant 1
2m ). One normally looks

for real-valued solutions, but can also consider complex-valued solutions, which
will just be pairs of real-valued solutions. A standard problem one solves for the
heat equation is to find ψ(τ, x) given initial data ψ(0, x). This can be done only
for τ > 0. Unlike the Schrödinger equation case, initial data can be propagated
in one direction only.

The heat kernel is the kernel of the transformation taking initial data to
solutions at later times:

ψ(τ, x) =

Z ∞

−∞
S(τ, x− x′)ψ(0, x′)dx′ (7.3)

It has remarkable properties, in particular the way it smooths solutions, with
initial data a distribution in S′(R) propagating to a C∞ function for arbitrarily
small τ . Physically, it describes the diffusion of heat in a homogeneous material,
and also models the way probability diffuses in a random walk. Note that the
way probability appears is very different than in the Schrödinger equation case.
In the random walk case the probability density at x is ψ(x) and is real, whereas
in the Schrödinger equation case ψ is complex and the probability density is
|ψ(x)|2.
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7.7 Propagators and Green’s functions

In the real time quantum field theory, field operators satisfy an equation of
motion such as the Schrödinger equation, but in imaginary time there are not
well-defined operators satisfying an equation of motion. Using the propagation
equation 7.3 one can see that the Schwinger functions however do satisfy the
imaginary time equation of motion for τ > 0 (since the ψ(τ, x) do). They also
must satisfy the distributional boundary condition S(0, x− x′) = δ(x− x′) and
can be defined as 0 for τ < 0. Shifting the x coordinate by x′, the Schwinger
function will satisfy

(
∂

∂τ
− 1

2m

∂2

∂x2
)S(τ, x) = δ(τ)δ(x)

Fourier transforming in τ and p, this equation becomes

(−iE +
p2

2m
)eS(E, p) =

1

2π

so

eS(E, p) =
1

2π

 
1

−iE + p2

2m

!
=

1

2π

 
i

E + i p2

2m

!

The Schwinger function is thus the inverse of the heat equation differential op-
erator, so an example of a “Green’s function”. Note that eS(E, p) is holomorphic

in the complex E-plane, except for a simple pole at E = −i p2

2m with residue one.
Evaluating the integral

eS(τ, p) = 1√
2π

Z ∞

−∞
e−iEτ 1

2π

 
i

E + i p2

2m

!
dE

along the real E axis, one can close the contour in the upper half E plane for
τ < 0 and in the lower half E plane for τ > 0. Using the residue formula one
gets

eS(τ, p) =
(

1√
2π

e−
p2

2m τ τ > 0

0 τ < 0
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In real time, it is the Wightman function W (t, x) that gives the kernel for
propagation in time t according to the Schrödinger equation. Defining (here
θ(t) is the Heaviside function)

W+(t, x) = θ(t)W (t, x)

to get propagation just in the positive t direction, by the same calculation as
above except for the Schrödinger rather than heat equation one gets

fW+(E, p) =
i

2π

1

E − p2

2m

(7.4)

Taking an inverse Fourier transform gives

fW+(t, p) =
1√
2π

Z ∞

−∞
e−iEt i

2π

1

E − p2

2m

dE

This integral is however ill-defined in the absence of any indication of how one

should treat integration through the pole at E = p2

2m . The origin of the problem
is that one is trying to invert an operator that has a kernel, so the inverse is
ill-defined. One needs to impose some boundary condtions to remove the kernel.
Going to imaginary time also resolves the problem.

It turns out that one can get a sensible result if one shifts the position of the
pole by an infinitesimal negative imaginary amount −ϵ (or, equivalently, moves
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the contour into the upper half plane by a positive amount ϵ. Then fW+(t, p) is
the limit as ϵ → 0+ of

1√
2π

i

2π

Z ∞

−∞
e−iEt 1

E − p2

2m + iϵ
dE =

(
0 t < 0
1√
2π

e−i( p2

2m−iϵ)t t > 0

One gets this result from Cauchy’s integral formula since, for t < 0 one can
close the contour in the upper half-plane (which doesn’t include the pole), and
for t > 0 close in the lower half-plane, which does. The propagator is then

W+(t, x) = lim
ϵ→0+

θ(t)
1

2π

Z ∞

−∞
eipxe−i( p2

2m−iϵ)tdp

To get progagation to negative t, one just needs to switch the Heaviside
function and the sign of ϵ

W−(t, x) = lim
ϵ→0−

θ(t)
1

2π

Z ∞

−∞
eipxe−i( p2

2m−iϵ)tdp

Adding together W+ and W− gives the earlier result that W is a delta-function,
since the integrals in the sum cancel except one goes above the pole, the other
below, with the integral around the pole the delta-function.
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7.8 On and off mass-shell quantum fields

Non-relativistic quantum field theory has a state space H = S∗(H1) or Λ
∗(H1),

where H1 is the single particle state space of solutions to the Schrödinger equa-
tion. The Schrödinger picture field operators bψ†(f) of section 7.2 for f ∈ H1

act by increasing the number of particles by one, their adjoints bψ(f) reduce the
number by one. These satisfy commutation relations

[ bψ(f1), bψ†(f2)] = (f1, f2)

and
⟨0| bψ(f1) bψ†(f2) |0⟩ = (f1, f2)

More explicitly, the space H1 can be identified with initial data at t = 0 for a
solution, which will be either ψ(0, x) ∈ L2(R) or the Fourier transfrom eψ(0, p) ∈
L2(R). The Wightman function at t = 0 is the delta-function distribution
W (0, x) = δ(x).

Heisenberg picture time dependent quantum fields are again operator-valued
distributions, but now depend on t as well as x, so operators are given by
bψ(f), bψ†(f), where f is a function of two variables. Fourier transforming, ef is

a function of E and p. The Fourier transformed Wightman function fW (E, p) is

the distribution δ(E − p2

2m ) and one has

⟨0| bψ(f1) bψ†(f2) |0⟩ = (f1, f2)

where

(f1, f2) =

Z ∞

−∞

Z ∞

−∞
ef1(E, p)δ

�
E − p2

2m

�
ef2(E, p)dEdp

H1 now has a description as functions on the parabola E = p2

2m .
While we have been writing down formulas just for one spatial dimension,

the extension to the case of three dimensions is straightforward, with position
and momentum x, p now 3-vectors x,p. The Wightman function in energy-
momentum space will be

fW (E,p) = δ

�
E − |p|2

2m

�

The locus E = |p|2
2m is sometimes called the “mass-shell”, for reasons that will

become clear in the relativistic case.

7.9 For further reading

For a more detailed rigorous version of the Fock space construction discussed
here, see chapter 5 of [5]. For a physics text that covers clearly this material,
see chapter 6 of [9].
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Chapter 8

Quantization of infinite
dimensional phase spaces

For quantum field theories such as the non-relativistic quantum field theory
of the previous section, one is quantizing an infinite-dimensional phase space
such as the space of solutions to the free-particle Schrödinger equation and the
Stone-von Neumann theorem and its analog for Clifford algebras no longer hold.
One no longer has a unique (up to unitary equivalence) representation of the
canonical commutation (or anticommutation) relations. For a restricted sort of
infinite dimensional symplectic or orthogonal group one does one recover the
Stone-von Neumann uniqueness of the finite dimensional case, but new phe-
nomena appear. The arbitrary constants found in the definition of the moment
map now cannot be ignored, but may appear in commutation relations, leading
to something called an “anomaly”.

8.1 Inequivalent irreducible representations

In our discussion of quantization, an important part of this story was the Stone-
von Neumann theorem, which says that the Heisenberg group has only one in-
teresting irreducible representation, up to unitary equivalence (the Schrödinger
representation). In infinite dimensions, this is no longer true: there will be an
infinite number of inequivalent irreducible representations, with no known com-
plete classification of the possibilities. Before one can even begin to compute
things like expectation values of observables, one needs to find an appropriate
choice of representation, adding a new layer of difficulty to the problem that
goes beyond that of just increasing the number of degrees of freedom.

One example of this phenomenon can be constructed by considering changes
in the complex structure J used to define the Bargmann-Fock construction of
the representation. For finite d, representations defined using |0⟩J for different
complex structures are all unitarily equivalent, but this can fail in the limit as d
goes to infinity. In both the standard oscillator case with Sp(2d,R) acting, and
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the fermionic oscillator case with SO(2d,R) acting, we found that there were
“Bogoliubov transformations”: elements of the group not in the U(d) subgroup
distinguished by the choice of J , which acted non-trivially on |0⟩J , taking it
to a different state. Such action by Bogoliubov transformations can, in the
limit of d → ∞, take |0⟩ to an orthogonal state. This introduces the possibility
of inequivalent representations of the commutation relations, built by applying
operators to orthogonal ground states. The physical interpretation is that such
states correspond to condensates of quanta. For the usual bosonic oscillator case,
this phenomenon occurs in the theory of superfluidity, for fermionic oscillators
it occurs in the theory of superconductivity. It was in the study of such systems
that Bogoliubov discovered the transformations that now bear his name.

8.2 The restricted symplectic group

If one restricts the class of complex structures J to ones not that different from
the standard one J0, then one can recover a version of the Stone-von Neumann
theorem and have much the same behavior as in the finite dimensional case.
Note that for each invertible linear map g on phase space, g acts on the complex
structure (see equation ??), taking J0 to a complex structure we’ll call Jg. One
can define subgroups of the infinite dimensional symplectic or orthogonal groups
as follows:

Definition (Restricted symplectic and orthogonal groups). The group of linear
transformations g of an infinite dimensional symplectic vector space preserving
the symplectic structure and also satisfying the condition

tr(A†A) < ∞

on the operator
A = [Jg, J0]

is called the restricted symplectic group and denoted Spres. The group of linear
transformations g of an infinite dimensional inner-product space preserving the
inner-product and satisfying the same condition as above on [Jg, J0] is called the
restricted orthogonal group and denoted SOres.

An operator A satisfying tr(A†A) < ∞ is said to be a Hilbert-Schmidt operator.
One then has the following replacement for the Stone-von Neumann theorem:

Theorem. Given two complex structures J1, J2 on a Hilbert space such that
[J1, J2] is Hilbert-Schmidt, acting on the states

|0⟩J1
, |0⟩J2

by annihilation and creation operators will give unitarily equivalent representa-
tions of the Weyl algebra (in the bosonic case), or the Clifford algebra (in the
fermionic case).
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The standard reference for the proof of this statement is the original papers
of Shale [24] and Shale-Stinespring [25]. A detailed discussion of the theorem
can be found in [18].

For some motivation for this theorem, not that elements of sp(2d,R) corre-
sponding to Bogoliubov transformations (i.e., with non-zero commutator with
J0) act on the metaplectic representation by

− i

2

X

jk

(Bjka
†
ja

†
k +Bjkajak) (8.1)

for a complex symmetric d by dmatrix B. Commuting two of these (for matrices
B and C) gives

X

jk

(BC − CB)jka
†
jak +

1

2
(BC − CB)1

For d = ∞, this trace in general will be infinite and undefined. An alter-
nate characterization of Hilbert-Schmidt operators is that for B and C Hilbert-
Schmidt operators, the traces

tr(BC†) and tr(CB†)

will be finite and well-defined. So, at least to the extent normal ordered op-
erators quadratic in annihilation and creation operators are well-defined, the
Hilbert-Schmidt condition on operators not commuting with the complex struc-
ture implies that they will have well-defined commutation relations with each
other.

8.3 The anomaly and the Schwinger term

The argument above gives some motivation for the existence as d goes to ∞ of
well-defined commutators of operators of the form 8.1 and thus for the existence
of an analog of the metaplectic representation for the infinite dimensional Lie
algebra spres of Spres. There is one obvious problem though with this argument,
in that while it tells us that normal ordered operators will have well-defined
commutation relations, they are not quite the right commutation relations, due
to the occurrence of the extra scalar term

1

2
tr(BC† − CB†)1

This term is sometimes called the “Schwinger term”.
The Schwinger term causes a problem with the standard expectation that

given some group G acting on the phase space preserving the Poisson bracket,
one should get a unitary representation of G on the quantum state space H.
This problem is sometimes called the “anomaly”, meaning that the expected
unitary Lie algebra representation does not exist (due to extra scalar terms in
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the commutation relations). This potential problem was already visible at the
classical level, in the fact that given L ∈ g, the corresponding moment map µL

is only well-defined up to a constant. While for the finite dimensional cases we
studied, the constants could be chosen so as to make the map

L → µL

a Lie algebra homomorphism, that turns out to no longer be true for the case
g = spres (or sores) acting on an infinite dimensional phase space. The potential
problem of the anomaly is thus already visible classically, but it is only when
one constructs the quantum theory and thus a representation on the state space
that one can see whether the problem cannot be removed by a constant shift
in the representation operators. This situation, despite its classical origin, is
sometimes characterized as a form of symmetry-breaking due to the quantization
procedure. The anomaly is an inherently infinite dimensional problem since it
is only then that infinite shifts are necessary. When the anomaly does appear,
it will appear as a phase-ambiguity in the group representation operators (not
just a sign ambiguity as in finite dimensional case of Sp(2d,R)), and H will be
a projective representation of the group (a representation up to phase).

8.4 Spontaneous symmetry breaking

In the standard Bargmann-Fock construction, there is a unique state |0⟩, and
for the Hamiltonian of the free particle quantum field theory, this will be the
lowest energy state. In interacting quantum field theories, one may have state
spaces unitarily inequivalent to the standard Bargmann-Fock one. These can
have their own annihilation and creation operators, and thus a notion of particle
number and a particle number operator bN , but the lowest energy |0⟩ may not
have the properties

bN |0⟩ = 0, e−iθ bN |0⟩ = |0⟩
Instead the state |0⟩ gets taken by e−iθ bN to some other state, with

bN |0⟩ ̸= 0, e−iθ bN |0⟩ ≡ |θ⟩ ̸= |0⟩ (for θ ̸= 0)

and the vacuum state not an eigenstate of bN , so it does not have a well-defined
particle number. If [ bN, bH] = 0, the states |θ⟩ will all have the same energy
as |0⟩ and there will be a multiplicity of different vacuum states, labeled by
θ. In such a case the U(1) symmetry is said to be “spontaneously broken”.
This phenomenon occurs when non-relativistic quantum field theory is used to
describe a superconductor. There the lowest energy state will be a state without
a definite particle number, with electrons pairing up in a way that allows them
to lower their energy, “condensing” in the lowest energy state.

When, as for the multi-component free particle, the Hamiltonian is invariant
under U(n) transformations of the fields ψj , then we will have

[ bX, bH] = 0
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for bX the operator giving the Lie algebra representation of U(n) on the multi-
particle state space. In this case, if |0⟩ is invariant under the U(n) symmetry,
then energy eigenstates of the quantum field theory will break up into irreducible
representations of U(n) and can be labeled accordingly. As in the U(1) case,
the U(n) symmetry may be spontaneously broken, with

bX |0⟩ ̸= 0

for some directionsX in u(n). When this happens, just as in the U(1) case states
did not have well-defined particle number, now they will not carry well-defined
irreducible U(n) representation labels.

8.5 For further reading

Berezin’s The Method of Second Quantization [1] develops in detail the infinite
dimensional version of the Bargmann-Fock construction, both in the bosonic
and fermionic cases. Infinite dimensional versions of the metaplectic and spinor
representations are given there in terms of operators defined by integral kernels.
For a discussion of the infinite dimensional Weyl and Clifford algebras, together
with a realization of their automorphism groups Spres and Ores (and the corre-
sponding Lie algebras) in terms of annihilation and creation operators acting on
the infinite dimensional metaplectic and spinor representations, see [18]. The
book [22] contains an extensive discussion of the groups Spres and Ores and the
infinite dimensional version of their metaplectic and spinor representations. It
emphasizes the or igin of novel infinite dimensional phenomena in the geometry
of the complex structures used in infinite dimensional examples.

The use of Bogoliubov transformations in the theories of superfluidity and
superconductivity is a standard topic in quantum field theory textbooks that
emphasize condensed matter applications, see for example [14]. The book [4]
discusses in detail the occurrence of inequivalent representations of the commu-
tation relations in various physical systems.

For a discussion of “Haag’s theorem”, which can be interpreted as showing
that to describe an interacting quantum field theory, one must use a represen-
tation of the canonical commutation relations inequivalent to the one for free
field theory, see [6].
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Chapter 9

Gaussian integrals and path
integral quantization

In this chapter we’ll discuss the path integral formalism for the non-relativistic
quantum field theory described in chapter 7. These are formal objects involving
an ill-defined notion of integration over and infinite dimensional space. We’ll
begin with the finite-dimensional version of the story, which is well-defined and
both of significant interest in other fields. The application to quantum field
theory will proceed by trying to make sense of the infinite-dimensional analogs
of the well-defined finite-dimensional calculations.

9.1 Gaussian integrals

For free field theories the path integral will be an infinite-dimensional version of
a Gaussian integral. In this section we’ll study the finite-dimensional version,
following the discussion in chapter 1 of [32], where one can find a more detailed
and comprehensive version of the material here.

Recall that one has (for a > 0)

1√
2π

Z ∞

−∞
e−

a
2 x

2

dx = a−
1
2

and (for any b) by completing the square

1√
2π

Z ∞

−∞
e−

a
2 x

2+bxdx = a−
1
2 e

b2

2a

For multiple variables, the first of these generalizes to (A is a complex sym-
metric matrix with entries Ajk).

Z(A) ≡
Z

Rn

e−
Pn

j,k=1
1
2xjAjkxk

dnx

(2π)
n
2
= (detA)−

1
2
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when A has no zero eigenvalues and the real part of A is non-negative.
More generally

Z(A,J) ≡
Z

Rn

e−
Pn

j,k=1
1
2xjAjkxk−

Pn
j=1 Jjxj

dnx

(2π)
n
2
= (detA)−

1
2 e

Pn
j,k=1 Jj∆jkJk

where ∆jk are the matrix elements of the inverse matrix of A. One can compute
moments of Gaussian integrals by taking derivatives of Z(A,b). Normalizing
the moments by defining

⟨xl1 · · ·xlm⟩ ≡= Z(A)−1

Z

Rn

(xl1 · · ·xlm)e−
Pn

j,k=1
1
2xjAjkxk

dnx

(2π)
n
2

one finds

⟨xl1 · · ·xlm⟩ = ∂

∂Jl1
· · · ∂

∂Jlm

�
e
Pn

j,k=1 Jj∆jkJk

�
|J=0

Non-zero contributions to the result will arise when there are paired derivatives
(to get something possibly non-zero at b = 0). One gets (this is known as
“Wick’s theorem”)

⟨xj1 · · ·xjm⟩ =
X

P

⟨xk1
xk2

⟩ · · · ⟨xkm−1
xkm

⟩

Where the sum is over all ways to group the indices j1, · · · jm into pairs

(k1, k2), · · · (km−1, km)

The calculation of these moments thus reduces to sums of products of

⟨xjxk⟩ = ∆jk

9.2 Perturbation theory

To calculate non-Gaussian integrals where the exponent is no longer quadratic,
but instead of the form

e−
Pn

j,k=1
1
2xjAjkxk+λV (x1,...,xn)

where V is a higher order polynomial, one can expand the exponential in powers
of λ

e−
Pn

j,k=1
1
2xjAjkxk(1 + λV (x1, . . . , xn) +

1

2!
V (x1, . . . , xn)

2 + · · ·

This gives a calculation of moments

⟨xl1 · · ·xlm⟩λ

with respect to the non-Gaussian exponential factor as power series in λ about
λ = 0. This is called the perturbation series in λ for the moment. There are
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various ways to organize such calculations which we will not discuss here, but
will just give the result for the case

V (x1, . . . , xn) =
1

4!

�
x4
1 + · · ·x4

n

�

One finds for the two-point function

⟨xj1xj2⟩λ =∆j1j2

− 1

2
λ
X

j

∆jj1∆jj∆jj2

+ λ2
X

j,k

�
1

4
∆j1j∆kj2∆jk∆jj∆kk +

1

4
∆jj1∆jj2∆

2
jk∆kk +

1

6
∆j1j∆kj2∆

3
jk

�

+O(λ3)

To keep track of the terms in such computations, one associates a diagram
(“Feynman diagram) to each term. In these diagrams, each ∆jk factor corre-
sponds to a line with ends labeled by j, k. When V is a monomial of degree l
these lines are connected together at l-valent vertices, and the sum has a factor
of λ for each vertex. The graphs for the calculation of the two-point function
above are

Continuing with this example, the four-point functions ⟨xj1xj2xj3xj4⟩λ will
have contributions

⟨xj1xj2⟩λ⟨xj3xj4⟩λ + ⟨xj1xj3⟩λ⟨xj2xj4⟩λ + ⟨xj1xj4⟩λ⟨xj3xj2⟩λ

corresponding to disconnected graphs, but also contributions corresponding to
these connected graphs:

93



For the details of this, see section 1.4 of [32].

9.3 Complex and fermionic cases

So far we have just dealt with integrals over real variables xj (even if the matrix
A was complex), but one can easily extend the above to work with complex
variables zj and Gaussian integrals of the form

ZC(A) ≡
Z

Cn




nY

j=1

dzjdzj
2πi


 e−

Pn
j,k=1 zjAjkzk = (detA)−1

and

ZC(A,J,J′) ≡
Z

Cn




nY

j=1

dzjdzj
2πi


 e−

Pn
j,k=1 zjAjkzk+

Pn
j=1(Jjzj+J′

jzj)

= (detA)−1e
Pn

j,k=1 J ′
j∆jkJk

As in the real case, moments can be calculated by taking derivatives with respect
to Jj and J ′

j , and used to get the terms in a perturbation expansion for some
polynomial V in the zj , zj . Wick’s theorem will now involve two-point functions
with one z and one z, and the graphical expression will use directed lines (with
an arrow) to keep track of which is the z and which is the z.

We saw in section 5.1 that one could describe fermionic systems in terms
of anti-commuting variables (labeled ξj in the real case, θj , θj in the complex
case), and that there was an analog of integration and differentiation using
these variables. One can rewrite all the formulas for Gaussians, moments, etc.
developed above in this case, and there are only a few changes in the formalism.
Besides various signs to keep track of, while in the bosonic case the Gaussian
integration over zj , zj gives a factor of (detA)−1, in the fermionic case one gets
detA.

For more details, see sections 6.1 and 7.4 of [32].

9.4 The path integral for non-relativistic quan-
tum field theory

The non-relativistic quantum field theory based on the Schrödinger equation
that we developed in chapter 7 only depended on the Wightman or Schwinger
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functions, and for the free field theory we saw that these could be computed
in terms of the propagator, which for the Wightman functions is the inverse
of the Schrödinger operator. The moments calculated using Gaussian integrals
also just depend on the inverse of a linear operator, the matrix A. If we for-
mally calculate moments of a Gaussian integral over the infinite-dimensional
complex vector space of complex-valued, time-dependent wave functions, with
the Gaussian factor defined by the Schrödinger operator, we get the inverse of
the Schrödinger operatorWightman functions of the free quantum field theory

We can formally define

Z =

Z Y

(t,x)

�
dψ(t,x)dψ(t, x)

2πi

�
e
R
R4 ψ(t,x)(i ∂

∂t+
1

2m∇2)ψ(t,x)dtd3x

as the determinant of the Schrödinger operator
�
i ∂
∂t +

1
2m∇2

�
, but this operator

has an infinite number of zero eigenvalues (for each solution to the Schrödinger
equation). One can try and define the two-point function as the inverse of the
Schrödinger operator (see 7.4), but then one has the problem of how to handle
the kernel of this operator (the solutions), and this was reflected in the problem

of how to handle the pole at E = p2

2m .
This problem can be resolved by going to imaginary time τ , where the heat

equation operator
�

∂
∂τ − 1

2m∇2
�
does not have the problems of the Schrödinger

operator, since it has no L2 solution for all τ only solutions that are well-behaved
for τ > 0

To finish: path integral for Schwinger functions. Relation between moments
and the operator formalism.

9.5 Path integrals in general

Since the phase space for the non-relativistic quantum field theory is the space
of fields ψ(t0,x) at a constant time t0 (e.g. t0 = 0), one can think of the space
of all fields ψ(t,x) formally integrated over in the previous section as a space of
paths in phase space, parametrized by t. The infinite dimensional integrals are
because of this known as “phase space path integrals”. One can consider instead
a simpler problem of a finite dimensional phase space P = R2n with coordinates
qj , pj . A quantization of this phase space by path integral methods would involve
integrals over the space of paths (qj(t), pj(t)) in P , formally written as

Z  Y

t

[dq(t)][dp(t)]

!
ei

R
(p dq

dt −h(q,p))dt (9.1)

One can in some sense derive this integral from conventional quantum mechanics
as follows.

• Take the time evolution operator U(t− t′) = e−iH(t−t′), break up the time
interval t− t′ into N pieces and U into a product of N terms.
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• Between the terms in the product, alternately introduce an integration
over q and p eigenstates.

• Take the limit N → ∞, with the integrations over q and p at each t
becoming an integral over paths, and the matrix elements of the operators
better and better approximated by the exponential factor in 9.1.

While one can make sense of this calculation, as a kernel for the operator
U(t−t′) between q eigenstates, it cannot be taken seriously as an actual integral
over phase space, since it depends crucially on the chosen discretization. There
are no eigenstates localized at both q and p so one must use eigenstates for q and
for p separately and differently. To have an integral one wants the integrand to
me a measure on path space, but there is nothing in the integrand giving any
reason succeeding values of q or of p should be anywhere near each other, so
this is not an integral over paths with any continuity properties.

As a formal device, equation 9.1 has wonderful invariance properties un-
der symplectic transformations, since dqdp is the symplectic form on P and
this symplectic form is d of the one form pdq in the integrand of the exponent.
These invariance properties however are too wonderful, implying a quantum me-
chanical formalism with symmetry the infinite-dimensional group of symplectic
transformations of P , while we have seen that the symmetry is only that of
transformations generated by quadratic functions in q and p. If this integral
had the expected invariance properties, a change of variables would identify it
with the harmonic oscillator, and we know that there are quantum systems that
are not harmonic oscillators.

When the Hamiltonian is quadratic in p, one can do all the integrals over
the p eigenstates, and be left with an integral over paths q(t) in configuration
space. One now formally has a configuration space path integral of the form

Z  Y

t

[dq(t)]

!
ei

R
L(q,q̇)dt (9.2)

where L is the Lagrangian. Putting back in the dimensional constant ℏ, the
integrand is

e
i
ℏS

where S is the action of a trajectory. This no longer has all of the bad prop-
erties of 9.1, and in addition has the attractive property that as ℏ → 0, by the
stationary phase approximation one would expect the integral to be dominated
by paths such that δS = 0, which are the classical paths.

The integral 9.2 still is an integral over an infinite-dimensional space of a
phase-valued function, and still cannot be understood in terms of any conven-
tional notion of measure. If however one “Wick rotates” the problem from real
time t to imaginary time τ , the integrand will no longer be a phase and in some
cases one can hope to interpret the path integral in terms of a legitimate mea-
sure. This works well for the case of the free particle, where the imaginary time
path integral can be interpreted rigorously using Wiener measure.
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Going back to quantum field theory, with its infinite dimensional configura-
tion spaces and phase spaces, calculations in quantum field theory often start
by trying to make sense of the notion of calculating, in Euclidean spacetime,
path integrals of the form

Z
[dϕ]e−SE(ϕ)F (ϕ)

Here F (ϕ) is some functional of the fields ϕ, SE is a Euclidean spacetime action,
and the integral is supposed to be over the infinite-dimensional space of all
possible field configurations. A great deal is known about special cases where
one may be able to make sense of this, with one of the most important the case
of quantum gauge theory, where the fields are connections and the action is the
Yang-Mills action.

In other parts of the Standard Model, the path integrals involved will be,
like for the non-relativistic quantum field theory path integral of section 9.4,
phase space path integrals rather than configuration space path integrals. This
is true of the matter fields, although in such cases we will see that the integrals
are fermionic and just quadratic in the fields. As such, they are formal algebraic
objects rather than measures.

9.6 For further reading

Refer to [32]
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Chapter 10

Geometry in 4 dimensions:
vectors, spinors and
twistors

Putting space and time together, physical spacetime is four rea -dimensional.
The Maxwell theory of electromagnetic fields (to be discussed in chapter 15) is
formulated in terms of four-dimensional vectors and tensors, but these trans-
form not under the group SO(4) of four-dimensional rotations, but instead the
Lorentz group SO(3, 1) of linear transformations preserving the Minkowski inner
product:

(x, y) = −x0y0 + x1y1 + x2y2 + x3y3

The vector space R4 with this inner product is called “Minkowski spacetime”.
Einstein’s special theory of relativity was essentially the realization that not

just electromagnetic fields, but the dynamics of all particles and fields should
transform in the same way under the Lorentz group, replacing the classical
Newtonian mechanics. In coming chapters we will see how quantum mechanics
and quantum field theory need to be reformulated to have Lorentz symmetry. In
this and the next chapter we’ll study in detail the geometry of four dimensions,
including the Minkowski geometry.

Recall that the group SO(3) has a three-dimensional Lie algebra so(3) of
antisymmetric 3 by 3 matrices. This has basis elements l1, l2, l3 given by el-
ementary antisymmetric matrices with all entries 0 except for a 1 and a −1.
One can add a row and column with index 0 and work with 4 by 4 matrices.
The Lie algebra so(3, 1) has so(3) as a Lie sub-algebra, but also three new basis
elements k1, k2, k3. These are symmetric and have all entries 0 except for a 1 in
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the index 0 column and row. One has for instance

l1 =




0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0


 k1 =




0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0




One can check that the kj transform as the components of a vector under
the rotations generated by the lj . They don’t however span a Lie subalgebra.
and have Lie bracket relations

[k1, k2] = −l3, [k3, k1] = −l2, [k2, k3] = −l1

The kj generate transformations of R4 called “boosts”. For instance, expo-
nentiating k1 gives the linear transformation that leaves x2, x3 invariant and
take �

x0

x1

�
→

�
cosh sinh
sinh cosh

��
x0

x1

�

The structure of so(3, 1) simplifies if one complexifies the Lie algebra and
defines new basis elements Aj , Bj as the complex linear combinations

Aj =
1

2
(lj + ikj), Bj =

1

2
(lj − ikj)

The bracket relations decouple into two identical sets for the Aj and Bj respec-
tively, with the Aj relations

[A1, A2] = A3, [A3, A1] = A2, [A2, A3] = A1

These are the Lie bracket relations for the Lie algebra sl(2,C) = so(3)⊗C and
we have found that

so(3, 1)⊗C = sl(2,C)⊕ sl(2,C)

with the complexification breaking the Lie algebra up as the sum of two sub-
algebras.

In this chapter we’ll study geometry in four complex dimensions, only re-
turning to four real dimensions and Minkowski spacetime in the next chapter.
We will see that there are several different ways in which going to complex
dimensions clarifies and simplifies things, including

• Complex Lorentz transformations are pairs of SL(2,C) transformations
(as we saw at the Lie algebra level above).

• Allowing the time coordinate to be complex allows one todo “Wick ro-
tation”, going to imaginary time, where one recovers the usual positive
definite inner product.

• Complex spacetime can be very usefully represented as 2 by 2 complex ma-
trices, with simple behavior under complex rotations and simple relation
to spinors.

• Conformal transformations of complex spacetime are simply described us-
ing the group SL(4,C).
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10.1 Complex spacetime

10.1.1 Vectors

Complex spacetime vectors in V = C4 with complex coordinates z0, z1, z2, z3
can be identified with the complex matrices M(2,C) by

(z0, z1, z2, z3) ↔ Z =

�
z0 + z3 z1 − z2
z1 + z2 z0 − z3

�
(10.1)

If one acts on complex spacetime by the linear transformation

Z → ΩLZΩ−1
R (10.2)

where ΩL and ΩR are complex matrices of determinant 1, such transformations
preserve

detZ = z20 − z21 + z22 − z23

so are elements of the complex orthogonal group SO(4,C) (this would be in
standard form if we changed basis by a factor of i in the 1 and 3 directions).

This gives a homomorphism mapping the product group SL(2,C)L×SL(2,C)R
to SO(4,C). It turns out that this mapping is surjective and 2 to 1 (since
(−ΩL,−ΩR) and (ΩL,ΩR) give the same transformation). We find that

SL(2,C)L × SL(2,C)R = Spin(4,C)

where Spin(4,C) is the spin double-cover of SO(4,C). Note that it is only in 4
dimensions that the spin group is not a simple group, but decomposes into two
factors.

10.1.2 Spinors

In chapter 5 we discussed spinors in arbitary dimensions. Now we are interested
in their properties in the specific case of four dimensions, which has very specific
and unusual properties, due to the decomposition of Spin(4,C) into two copies
of SL(2,C).

The group SL(2,C) has two inequivalent spinor representations:

• The defining representation on C2, which we’ll denote S. This represen-
tation is a holomorphic map SL(2,C) → GL(2,C) (the inclusion map).

• The conjugate representation on C2 (action by conjugated matrices),
which we’ll denote S. This representation is an anti-holomorphic map.

Note that these representations are non-unitary (the only non-trivial unitary
representations of SL(2,C) are infinite-dimensional). These representations
are both unitary and unitarily equivalent to each other as representations of
SU(2) ⊂ SL(2,C). They are self-dual (equivalent to their dual representations).
We’ll later see that there an SL(2,C) invariant nondegenerate antisymmetric
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bilinear form (the symplectic form) that identifies S and S with their respective
duals.

Since Spin(4,C) has two SL(2,C) factors, it has four inequivalent spinor
representations, which we’ll call SL, SL, SR, SR. SL, SL are spinor representa-
tions of SL(2,C)L, trivial on SL(2,C)R, while SR, SR are spinor representations
of SL(2,C)R, trivial on SL(2,C)L.

The conventional relation between vectors and spinors is to take

V = SL ⊗ SR

defining vectors in terms of more fundamental spinor representations. Since both
factors are holomorphic, this is a holomorphic representation. Equivalently, one
has an identification of elements of V as complex linear maps

V = Hom(S∗
R, SL)

with the the description 10.1 of Z ∈ V corresponding to a particular choice of
bases for SR and SL.

10.1.3 The Clifford algebra and antisymmetric tensors

A future version may include discussion of the complex Clifford algebra here.

10.1.4 Twistors

Twistor geometry is a 1967 proposal [19] due to Roger Penrose for a very dif-
ferent way of formulating four-dimensional spacetime geometry. For a detailed
expository treatment of the subject, see [29]. Fundamental to twistor geom-
etry is the twistor space T = C4, as well as its projective version, the space
PT = CP3 of complex lines in T . The relation of twistor space to conventional
spacetime is that complexified and conformally compactified spacetime is iden-
tified with the Grassmanian M = G2,4(C) of complex two-dimensional linear
subspaces in T . A spacetime point is thus a C2 in C4 which tautologically
provides the spinor degree of freedom at that point. The spinor bundle S is the
tautological two-dimensional complex vector bundle over M whose fiber Sm at
a point m ∈ M is the C2 that defines the point.

The group SL(4,C) acts on T and acts transitively on the spaces PT and
M of its complex subspaces. Points in the Grassmanian M can be represented
as elements

ω = (v1 ⊗ v2 − v2 ⊗ v1) ∈ Λ2(C4)

by taking two vectors v1, v2 spanning the subspace. Λ2(C4) is six conplex di-
mensional and scalar multiples of ω gives the same point in M , so ω identifies
M with a subspace of P (Λ2(C4)) = CP5. Such ω satisfy the equation

ω ∧ ω = 0 (10.3)
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which identifies (the “Klein correspondence”) M with a submanifold of CP5

given by a non-degenerate quadratic form. Twistors are spinors in six dimen-
sions, with the action of SL(4,C) on Λ2(C4) = C6 preserving the quadratic
form 10.3, and giving the spin double-cover homomorphism

SL(4,C) = Spin(6,C) → SO(6,C)

To get the tangent bundle of M , one needs not just the spinor bundle S,
but also another two complex-dimensional vector bundle, the quotient bundle
S⊥ with fiber S⊥

m = C4/Sm. Then the tangent bundle is

TM = Hom(S, S⊥) = S∗ ⊗ S⊥

with the tangent space TmM a four complex dimensional vector space given by
Hom(Sm, S⊥

m), the linear maps from Sm to S⊥
m.

For a simpler analog of M , consider the space CP 1 of complex lines in C2.
There is also a tautological bundle over CP 1, with fiber at each point the point
itself. This bundle will be denoted L−1, and it has a dual bundle denoted
L. These are holomorphic line bundles and the holomorphic tangent bundle is
(L−1)∗ ⊗ L = L ⊗ L ≡ L2. For CP 1 one has homogeneous coordinates z1, z2
and can use as a coordinate z = z1/z2 away from the point where z2 = 0. The
conformal group SL(2,C) acts on this coordinate by

�
a b
c d

�
· z =

az + b

cz + d

Returning to the Grassmannian M , one can use as homogenous coordinates
the 4 by 2 complex matrix �

Z1

Z2

�

where Z1, Z2 are complex 2 by 2 matrices, giving coordinates for the complex
2-plane in C4 spanned by the columns. Away from planes with det(Z2) = 0,
such homogeneous coordinates can be put in the form

�
Z
1

�
(10.4)

and the 2 by 2 complex matrix Z gives a coordinate on M = Gr2,4(C).
The complex conformal group SL(4,C) acts on this coordinate by

�
A B
C D

�
· Z = (AZ +B)(CZ +D)−1

The subgroup with C = 0 and detA = detD = 1 acts by

X → AZD−1 +BD−1

This is the exactly the action of Spin(4,C) on complex spacetime of equation
10.2, together with a translation by BD−1, giving an action of the full complex
Poincaré group.
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An element of twistor space T is in the complex plane corresponding to Z
exactly when it is of the form

�
Z
1

�
π =

�
Zπ
π

�

for some π ∈ C2, since it then is a linear combination of the columns of 10.4.
So, elements of T , written as �

ω
π

�

where ω,π ∈ C2 are in the plane Z when they satisfy the incidence equation

ω = Zπ (10.5)

From the above description of Spin(4,C) = SL(2,C)L×SL(2,C)R ⊂ SL(4,C)
acting on T , we see that ω is in the representation SL, while π is in the repre-
sentation S∗

R.
As a representation of SL(2,C)L × SL(2,C)R, twistor space T = SL ⊕

S∗
R, which is the same thing as a Dirac spinor. But twistor space comes with

additional structure, since it is an irreducible representation of a much larger
group, the complex conformal group SL(4,C).

A conventional component notation for spinors (sometimes known as the van
der Waerden notation) is to write the components of spinors like ω transforming
as SL as ωA (here A = 1, 2), and those transforming like S∗

L as ωA. Indices are
raised and lowered by using an SL(2,C) invariant antisymmetric bilinear form
ϵ. Transformation properties under SL(2,C)R, are indicated in the same way,
but using dotted indices. So, the components of π would be written as πȦ.

Since Λ2(SL) = Λ2(SR) = C, SL and SR have (up to scalars) unique choices
of non-degenerate antisymmetric bilinear forms, and corresponding choices of
SL(2,C) ⊂ GL(2,C) acting on SL and SR. These give (again, up to scalars),
a unique choice of a non-degenerate symmetric form on SL ⊗ SR, such that

⟨Z,Z⟩ = detZ

Besides the spaces PT and M of complex lines and planes in T , it is also
useful to consider the correspondence space whose elements are complex lines
inside a complex plane in T . This space can also be thought of as P (S), the
projective spinor bundle over M . There is a diagram of maps

P (S)

PT M

µ ν

where ν is the projection map for the bundle P (S) and µ is the identification
of a complex line in S as a complex line in T . µ and ν give a correspondence
between geometric objects in PT and M . One can easily see that µ(ν−1(m)) is
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the complex projective line in PT corresponding to a point m ∈ M (a complex
two plane in T is a complex projective line in PT ). In the other direction,
ν(µ−1) takes a point p in PT to α(p), a copy of CP 2 in M , called the “α-plane”
corresponding to p.

In our chosen coordinate chart, this diagram of maps is given by

(Z,π) ∈ P (S)

�
Zπ
π

�
∈ PT Z ∈ M

µ
ν

The incidence equation 10.5 relating PT and M implies that an α-plane is a null
plane in the metric discussed above. This is because given two points Z1, Z2 in
M corresponding to the same point in PT , their difference satisfies

ω = (Z1 − Z2)π = 0

Z1 − Z2 is not an invertible matrix, so has determinant 0 and is a null vector.

10.2 Real forms

Physical spacetime has 4 real dimensions rather than complex dimensions. The
spinor and twistor aspects of geometry in four dimensions become significantly
more intricate subjects when one considers the several different possibilites for
4 real dimensional geometries complexifying to the same complex geometry
considered in the previous chapter.

10.2.1 Real forms of complex representations

One normally studies Lie group representations as linear actions on a complex
vector space V , but one should take into account the fact that the groups in-
volved are real Lie groups, so one can ask about representations on real vector
spaces. In some cases the groups are quaternionic and one can ask about rep-
resentations on quaternionic vector spaces. The various possibilities can be
studied by always working with representations on complex vector spaces and
keeping track of extra structures relating these to real or quaternionic vector
spaces. It turns out that there are three possibilities:

• Real representations. A representation on a complex vector space V is a
real representation if one has a representation on a real vector space VR

such that
VR ⊗R C = V

This is equivalent to the existence of an anti-linear map σ : V → V such
that σ2 = 1. σ provides a conjugation on V and one can identify VR as
the fixed points of the σ action. In this case the representation V and the
conjugate representation V are equivalent.
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• Quaternionic representations. A representation on a complex vector space
V is a quaternionic representation if one has an anti-linear map σ : V → V
such that σ2 = −1. In this case σ provides an action of the quaternion j
on V . The full quaternion algebra acts on V , with the i from the action
of complex numbers on V providing i, and taking k = ij. Such represen-
tations on V are equivalent to their conjugate representation. They are
sometimes called “pseudo-real” representation.

• Complex representations. A representation on a complex vector space V
is a complex representation if it is neither real nor quaternionic. In this
case V is not equivalent to its conjugate representation V . Given such
a V , one can form a real representation on V ⊕ V , taking σ to be the
conjugation that interchanges V and V .

An alternative point of view on this classification is that for an irreducible
real representation V of a real Lie group, the argument for Schur’s lemma no
longer gives that EndG(V ) = C, but that it can be any division algebra over R.
The classification above corresponds to the fact that the three division algebras
over R are R,C,H. For further details, see for example [20].

We will see that there are three different real forms of the complex repre-
sentations on vectors, spinors and twistors of chapter 10. In all cases the vector
representation is a real representation, but this will not be true for the spinors
and twistors.

10.2.2 The signature (2, 2) real form

One can obviously define a conjugation σ on the complex spacetime V by con-
jugating the matrix entries

σ ·
�
z0 + z3 z1 − z2
z1 + z2 z0 − z3

�
=

�
z0 + z3 z1 − z2
z1 + z2 z0 − z3

�

by conjugating the matrix entries. Then the fixed points of σ are the real
matrices

X =

�
x0 + x3 x1 − x2

x1 + x2 x0 − x3

�

The determinant of such a matrix is x2
0 − x2

1 + x2
2 − x2

3. Taking this as the
norm-squared of an inner product, the inner product is indefinite, of signature
(2, 2). So we have a real spacetime V2,2 such that

V2,2 ⊗R C = V

The corresponding real form of the group Spin(4,C) is the subgroup

Spin(2, 2) = SL(2,R)L × SL(2,R)R

preserving σ. The spinor representations are also real: with the usual conjuga-
tion σ. The fixed points are the representations of SL(2,R)L and SL(2,R)R
on R2.

105



Twistors are also real, with σ acting on T by the usual conjugation, with
fixed points TR = R4. The real points of the compactified complex spacetime
G2,4(C) are the points of the real Grassmanian G2,4(R) of real 2-planes in R4.
The conformal group acting on this space is the real form SL(4,R) = Spin(3, 3)
of the complex spacetime conformal group SL(4,C) = Spin(6,C).

10.2.3 The signature (4, 0) real form: Euclidean spacetime

Euclidean spacetime is a real form VE of complex spacetime (i.e. VE ⊗R C =
V ), with a positive definite inner product. The spinor representations and
twistors are quaternionic, and we will begin by describing this real form in
purely quaternionic terms. In these terms one can readily identify the Euclidean
real forms Sp(1) × Sp(1) = Spin(4) of the complex rotation group Spin(4,C)
and SL(2,H) = Spin(5, 1) of the complex conformal group SL(4,C). The
group SL(2,H) is the group of quaternionic 2 by 2 matrices satisfying a single
condition that one can think of as setting the determinant to one. Here one can
interpret the determinant using the isomorphism with complex matrices, or, at
the Lie algebra level, sl(2,H) is the Lie algebra of 2 by 2 quaternionic matrices
with purely imaginary trace.

Quaternions and four-dimensional geometry

Just as C is the vector space R2 with a basis {1, i}, and a multiplication law
determined by the relation i2 = −1, the quaternion algebra H is the vector
space R4 with a basis {1, i, j,k} and a multiplication law determined by the
relations

i2 = j2 = k2 = −1, ij = −ji = k, ki = −ik = j, jk = −kj = i

Elements of H can be written as

q = q0 + q1i+ q2j+ q3k, qj ∈ R

The standard Euclidean norm-squared function on the vector space H = R4

can be written in terms of quaternions as

|q|2 = qq̄ = q20 + q21 + q22 + q23

where
q̄ = q0 − q1i− q2j− q3k

The unit norm quaternions form a group under multiplication, called Sp(1),
which as a manifold can be identified with the three dimensional sphere S3 ⊂
R4. Pairs (u, v) of unit quaternions give the product group Sp(1)L×Sp(1)R. An
element (u, v) of this group acts on q ∈ H = R4 by left and right quaternionic
multiplication

q → uqv−1
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This action preserves norms of vectors and is linear in q, so one has a homo-
morphism

Φ : (u, v) ∈ Sp(1)L × Sp(1)R → {q → uqv−1} ∈ SO(4)

Φ is surjective, and pairs (u, v) and (−u,−v) give the same element of SO(4).
The group Sp(1)L × Sp(1)R is the group Spin(4), a non-trivial double cover
of the group SO(4). The diagonal subgroup of pairs (u, v) such that u = v
leaves invariant 1 and acts by an SO(3) transformation on the R3 ⊂ H of
imaginary quaternions. Φ restricted to this diagonal subgroup is a double cover
homomorphism from the group Spin(3) = Sp(1) to the group SO(3).

There are two inequivalent quaternionic spinor representations of Spin(4).
We’ll denote SL the representation of Spin(4) on H given by Sp(1)L acting on
the left, Sp(1)R acting trivially, and SR the representation of Spin(4) on H
given by Sp(1)L acting trivially, Sp(1)R acting on the right.

For a Euclidean spacetime version of twistor space, one can take T =
H2, with T a quaternionic representation of the conformal group SL(2,H) =
Spin(5, 1). A spacetime point will be a quaternionic line in T = H2, and space-
time ME will be HP 1 = S4, the conformal compactification of the Euclidean
space R4. The group SL(2,H) acts transitively on ME = HP 1 = S4 by con-
formal transformations.

Just as in the case of CP 1, one can use as homogeneous coordinates

�
X1

X2

�

where X1, X2 ∈ H. Away from X2 = 0, these can be put in the form

�
X
1

�

with X ∈ H. The conformal group SL(2,H) acts by

�
A B
C D

�
·X = (AX +B)(CX +D)−1

where now A,B,C,D ∈ H. The Euclidean group in four dimensions will be the
subgroup of elements of the form

�
A B
0 D

�

such that A and D are independent unit quaternions, thus in the group Sp(1),
and B is an arbitrary quaternion. The Euclidean group acts by

X → AXD−1 +BD−1

with the spin double cover of the rotational subgroup now Spin(4) = Sp(1) ×
Sp(1).
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Relating quaternionic and complex

While we have seen that the translations, rotations and conformal transfor-
mations of four dimensional Euclidean geometry can be efficiently understood
purely in terms of quaternions, it is often desirable to instead work with com-
plex quantities, together with an antilinear σ satisfying σ2 = −1 on quaternionic
representations and σ2 = 1 on real representations (note that one gets real rep-
resentations when working with quaternions since the tensor product of two
quaternionic representations is real).

To identify H with C2, there are various choices to be made:

• One can identify C as the subalgebra of H spanned by 1, u, where u is
any element satisfying u2 = −1. There is an S2 of possibilities (any unit
length linear combination of the purely imaginary quaternions).

• Choosing a v ∈ H such that v2 = −1 and uv = −vu gives a C-basis of H,
so an identification with C2.

The conventional choices made are: u = i (giving a consistent meaning for
the symbol “i”) and v = j. Then an arbitrary quaternion can be written as

q = z1 + jz2

or as a vector �
z1
z2

�

Here one is also making the choice that, as a complex vector space, the subal-
gebra of H of complex numbers acts on H on the right. As a complex spinor
representation of Sp(1), the group acts on the left, with a commuting action
of H on the right. This will be a quaternionic representation, with a standard
choice of σ right multiplication by j. Since

(z1 + jz2)j = jz1 + j2z2 = −z2 + jz1

σ acts by

σ :

�
z1
z2

�
→

�
−z1
z2

�

On the Euclidean version of twistor space, one has T = C4, with quaternionic
structure map σ given by

σ :




z1
z2
z3
z4


 →




−z1
z2
−z3
z4


 (10.6)

The group SL(2,H) acts on this quaternionic representation, which is just the
complex form of the action on H2.
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Given this identification of H with C2, one can use the left action of H on
this C2 to get an isomorphism of algebras between H and the subalgebra of
M(2,C) of matrices of the form

�
α −β
β α

�
(10.7)

for α,β ∈ C. As an algebra , M(2,C) has two inequivalent real forms: M(2,R)
and H are non-ismorphic algebras satisfying

M(2,R)⊗R C = H⊗R C = M(2,C)

The usual conjugation of complex matrices has fixed points M(2,R). An in-
equivalent conjugation σ on M(2,C) corresponding to the real form H is given
by

σ ·
�
α γ
β δ

�
=

�
δ −β
−γ α

�

This satisfies σ2 = 1 and is clearly antilinear, with fixed points of the form 10.7.
More explicitly, the identification 10.7 takes

1 ↔ 1 =

�
1 0
0 1

�
, i ↔

�
i 0
0 −i

�
, j ↔

�
0 −1
1 0

�
, k ↔

�
0 −i
−i 0

�

Physicists often like to use instead the Pauli matrices, taking

1 ↔
�
1 0
0 1

�
, i ↔ −iσ1 =

�
0 −i
−i 0

�
, j ↔ −iσ2 =

�
0 −1
1 0

�

k ↔ −iσ3 =

�
−i 0
0 i

�

The correspondence between H and 2 by 2 complex matrices is then given by

q = q0 + q1i+ q2j+ q3k ↔
�
q0 − iq3 −(q2 + iq1)
q2 − iq1 q0 + iq3

�

In general we’ll avoid choosing between the mathematicians and physicists by
avoiding an explicit choice of one of the two identifications above.

Since

det

�
q0 − iq3 −(q2 + iq1)
q2 − iq1 q0 + iq3

�
= q20 + q21 + q22 + q23

we see that the length-squared function on quaternions corresponds to the de-
terminant function on 2 by 2 complex matrices. Taking q ∈ Sp(1), so of length
one, the corresponding complex matrix is in SU(2).

Still to do? Understand vectors as a tensor product h = H⊗H H, explicitly
how the spinor representation as a right action works. The usual conjugation
on quaternions in terms of matrices?
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Projective twistor space and Euclidean twistors

The projective twistor space PT is fibered over S4 by complex projective lines

CP 1 PT = CP 3

S4 = HP 1

π (10.8)

The projection map π is just the map that takes a complex line in T identified
with H2 to the corresponding quaternionic line it generates (multiplying ele-
ments by arbitrary quaternions). In this case the conjugation map σ of 10.6 has
no fixed points on PT , but does fix the complex projective line fibers and thus
the points in S4 ⊂ M . The action of σ on a fiber takes a point on the sphere to
the opposite point, so has no fixed points.

In the Euclidean case, the projective twistor space has another interpreta-
tion, as the bundle of orientation preserving orthogonal complex structures on
S4. A complex structure on a real vector space V is a linear map J such that
J2 = −1, providing a way to give V the structure of a complex vector space
(multiplication by i is multiplication by J). J is orthogonal if it preserves an
inner product on V . While on R2 there is just one orientation-preserving or-
thogonal complex structure, on R4 the possibilities can be parametrized by a
sphere S2. The fiber S2 = CP 1 of 10.8 above a point on S4 can be interpreted
as the space of orientation preserving orthogonal complex structures on the four
real dimensional tangent space to S4 at that point.

One way of exhibiting these complex structures on R4 is to identify R4 = H
and then note that, for any real numbers x1, x2, x3 such that x2

1 + x2
2 + x2

3 = 1,
one gets an orthogonal complex structure on R4 by taking

J = x1i+ x2j+ x3k

Another way to see this is to note that the rotation group SO(4) acts on orthogo-
nal complex structures, with a U(2) subgroup preserving the complex structure,
so the space of these is SO(4)/U(2), which can be identified with S2.

More explicitly, in our choice of coordinates, the projection map is

π :

�
s

s⊥ = Zs

�
→ Z =

�
x0 − ix3 −ix1 − x2

−ix1 + x2 x0 + ix3

�

For any choice of s in the fiber above Z, s⊥ associates to the four real coordinates
specifying Z an element of C2. For instance, if s =

�
1, 0

�
, the identification of

R4 with C2 is 


x0

x1

x2

x3


 ↔

�
x0 − ix3

−ix1 + x2

�

The complex structure on R4 one gets is not changed if s gets multiplied by a
complex scalar, so it just depends on the point [s] in the CP 1 fiber.
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For another point of view on this, one can see that for each point p ∈ PT ,
the corresponding α-plane ν(µ−1(p)) in M intersects its conjugate σ(ν(µ−1(p)))
in exactly one real point, π(p) ∈ M4. The corresponding line in PT is the line
determined by the two points p and σ(p). At the same time, this α-plane
provides an identification of the tangent space to M4 at π(p) with a complex
two plane, the α-plane itself. The CP 1 of α -planes corresponding to a point in
S4 are the different possible ways of identifying the tangent space at that point
with a complex vector space.

The correspondence space P (S) (here the complex lines in the quaternionic
line specifying a point in M4 = S4) is just PT itself, and the twistor correspon-
dence between PT and S4 is just the projection π. In the Euclidean case the
action of the real form SL(2,H) is transitive on PT .

10.2.4 The (3, 1) real form: Minkowski spacetime

The Maxwell equations describing electromagnetism (see section ??) are invari-
ant under the group SO(3, 1) acting on spacetime, taken to be the Minkowski
spacetime R3,1, the four dimensional space R4 with an indefinite inner product
given by

(x, y) ≡ x · y = −x0y0 + x1y1 + x2y2 + x3y3

(here xj , yj are coordinates on R4, with j = 0 the time coordinate). Einstein’s
discovery of special relativity was based on the observation that for consistency
one should describe not just electromagnetism but also mechanics in a formal-
ism based on taking spacetime to be R3,1, with physical laws invariant under
SO(3, 1).

Vectors v ∈ R3,1 such that |v|2 = v ·v > 0 are called “space-like”, those with
|v|2 < 0 “time-like” and those with |v|2 = 0 are said to lie on the “light cone”.
Suppressing one space dimension, the picture to keep in mind of Minkowski
spacetime looks like this:
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x0

x1 x2

x0 = 0

(plane)

|x|2 < 0
(timelike)

|x|2 = 0
(light cone)

|x|2 > 0
(spacelike)

Figure 10.1: Light cone structure of Minkowski spacetime.

Like R2,2 and H, R3,1 is a real form of M(2,C). The conjugation σ is given
by

σ · Z = −Z†

with fixed points the skew-Hermitian matrices, of the form

X = (−i)

�
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

�

which have determinant

detX = −x2
0 + x2

1 + x2
2 + x2

3

The subgroup of Spin(4,C) = SL(2,C)L × SL(2,C)R that commutes with
the action of σ and thus preserves skew-Hermiticity is the group SL(2,C), with
Ω ∈ SL(2,C) acting by

X → ΩXΩ†

where Ω† is the adjoint (conjugate transpose) of Ω. Recall that SL(2, C) has
two kinds of spinor representations: S (action by Ω) and the conjugate rep-
resentation S (action by Ω). Vectors in Minkowski spacetime thus transform
under the Lorentz group SL(2,C) as the tensor product S ⊗ S.
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Explain that SL(2,C) is double cover of component of SO(3, 1) preserving
time orientation.

Spinors have some quite different properties in Minkowski spacetime than
in the signature (2, 2) and Euclidean cases. These SL(2,C) representations are
not real or quaternionic, but complex, so there is no antilinear σ : S → S or
σ : S → S commuting with SL(2,C). What there is instead is an antilinear
map σ from S to S∗, which is a map of SL(2,C) representations

σ : S → S
∗

This takes a representation matrix Ω to (Ω†)−1 and satisfies σ2 = 1. σ gives

a real structure on the SL(2,C) representation S ⊕ S
∗
which interchanges the

terms in the direct sum. This real SL(2,C) representation is known to physicists
as the Majorana representation. On σ fixed points it is an SL(2,C) represen-
tation on a 4-real dimensional vector space, equivalent to considering SL(2,C
as a real Lie group, and C2 as a real vector space (check this).

The twistor geometry in the Minkowski signature case also has different
properties. As in the case of spinors, twistor space T is a complex representation
of SL(4,C), and one needs to consider not just T with an antilinear map σ,
but T and T ∗ with an antilinear map between them. Such a map σ will give
an identification of T and T

∗
, and so a non-degenerate Hermitian form Φ on

T . This picks out a unitary subgroup of SL(4,C) which turns out to have
signature (2, 2). So, in this case, the real form of the complex conformal group
is the conformal group SU(2, 2) = Spin(4, 2).

The conformal compactification of Minkowski space is a real submanifold of
M , denoted here by M3,1. It is acted upon transitively by the conformal group
Spin(4, 2) = SU(2, 2). This conformal group action on M3,1 is most naturally
understood using twistor space, as the action on complex planes in T coming
from the action of the real form SU(2, 2) ⊂ SL(4,C) on T .

SU(2, 2) is the subgroup of SL(4,C) preserving a real Hermitian form Φ of
signature (2, 2) on T = C4. In our coordinates for T , a standard choice for Φ is
given by

Φ

��
ω
π

�
,

�
ω′

π′

��
=

�
ω π

��0 1
1 0

��
ω′

π′

�
= ω†π′ + π†ω′ (10.9)

Minkowski space is given by complex planes on which Φ = 0, so

Φ

��
Xπ
π

�
,

�
Xπ
π

��
= π†(X +X†)π = 0

(recall that X are skew-Hermitian matrices).
One can identify compactified Minkowski space M3,1 as a manifold with the

Lie group U(2) which is diffeomorphic to (S3×S1)/Z2. The identification of the
tangent space with anti-Hermitian matrices reflects the usual identification of
the tangent space of U(2) at the identity with the Lie algebra of anti-Hermitian
matrices.
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SL(4,C) matrices are in SU(2, 2) when they satisfy

�
A† C†

B† D†

��
0 1
1 0

��
A B
C D

�
=

�
0 1
1 0

�

The Poincaré subgroup P of SU(2, 2) is given by elements of SU(2, 2) of the
form �

A B
0 (A†)−1

�

where A ∈ SL(2,C) and A†B = −B†A. These act on Minkowski space by

X → (AX +B)A†

BA† is anti-Hermitian and gives arbitrary translations on Minkowski space. The
Lorentz subroup is Spin(3, 1) = SL(2,C) acts by

X → AXA†

Here SL(2,C) is acting by the standard representation on S, and by the conjugate-

dual representation on S
∗
.

The SU(2, 2) action onM has six orbits: M++,M−−,M+0,M−0,M00, where
the subscript indicates the signature of Φ restricted to planes corresponding
to points in the orbit. The last of these is a closed orbit M3,1, compactified
Minkowski space. Acting on projective twistor space PT , there are three orbits:
PT+, PT−, PT0, where the subscript indicates the sign of Φ restricted to the
line in T corresponding to a point in the orbit. The first two are open orbits
with six real dimensions, the last a closed orbit with five real dimensions. The
points in compactified Minkowski space M00 = M3,1 correspond to projective
lines in PT that lie in the five dimensional space PT0. Points in M++ and M−−
correspond to projective lines in PT+ or PT− respectively.

10.3 For further reading

Among the places one can find more details of the material in this chapter, see
[29] and [16].
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Chapter 11

The Poincaré group and its
representations

In chapter 6 we classified the irreducible unitary representations of the (double
cover of the) Euclidean group E(3) and showed that these could be constructed
on the state space of a quantum free particle, allowing the wavefunctions to
take values in various representations of Spin(3). Adding a dimension and
going to spacetime, one can classify irreducible representations by the same
method. Such irreducible representations give the possible descriptions of a
relativistic particle, providing the single-particle state space H1 that one can
imagine second-quantizing to get a relativistic quantum field theory. In this
chapter we’ll discuss the Poincaré group and the classification of its irreducible
representations.

11.1 The Poincaré group and its Lie algebra

Definition (Poincaré group). The Poincaré group is the semi-direct product

P = R4 ⋊ SO(3, 1)

with double cover
P̃ = R4 ⋊ SL(2,C)

The action of SO(3, 1) or SL(2,C) on R4 is the action of the Lorentz group on
Minkowski spacetime.

We will refer to either of these as the “Poincaré group”, with the double
cover only necessary when discussing representations of half-integral spin.

The Lie algebra Lie P = Lie P̃ has dimension 10, with basis

t0, t1, t2, t3, l1, l2, l3, k1, k2, k3

where the first four elements are a basis of the Lie algebra of the translation
group, and the next six are a basis of so(3, 1). Note that infinitesimal boosts
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(kj) do not commute with infinitesimal time translation t0, so after quantiza-
tion boosts will not commute with the Hamiltonian. Boosts will act on spaces
of single-particle wavefunctions in a relativistic theory, and on states of a rela-
tivistic quantum field theory, but are not symmetries in the sense of preserving
spaces of energy eigenstates.

11.2 Irreducible representations of the Poincaré
group

Recall that in the E(3) case we had two Casimir operators:

P 2 = P 2
1 + P 2

2 + P 2
3

and
J ·P

Here Pj is the representation operator for Lie algebra representation, corre-
sponding to an infinitesimal translation in the j-direction. Jj is the operator for
an infinitesimal rotation about the j-axis. The Lie algebra commutation rela-
tions of E(3) ensure that these two operators commute with the action of E(3)
and thus, by Schur’s lemma, act as a scalar on an irreducible representation.
Note that the fact that the first Casimir operator is a differential operator in
position space and commutes with the E(3) action means that the eigenvalue
equation

P 2ψ = cψ

has a space of solutions that is a E(3) representation, and potentially irreducible.
In the Poincaré group case, there are also two Casimir operators, but now

they are

•
P 2 ≡ −P 2

0 + P 2
1 + P 2

2 + P 2
3

•
W 2 = −W 2

0 +W 2
1 +W 2

2 +W 2
3

Here W is the Pauli-Lubanski operator

W0 = −P · J, W = −P0J+P×K

To classify Poincaré group representations, we have two tools available. We
can use the two Casimir operators P 2 and W 2 and characterize irreducible
representations by their eigenvalues. In addition, recall that irreducible repre-
sentations of semi-direct products N ⋊K (N commutativ) are associated with
pairs of a K-orbit Oα for α ∈ N̂ , and an irreducible representation of the cor-
responding little group Kα.
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For the Poincaré group, N̂ = R4 is the space of characters (one dimensional
representations) of the translation group of Minkowski space. Elements α are
labeled by

p = (p0, p1, p2, p3)

where the pµ are the eigenvalues of the energy-momentum operators Pµ. For
representations on wavefunctions, these eigenvalues will correspond to elements
in the representation space with space-time dependence.

ei(−p0x0+p1x1+p2x2+p3x3)

Given an irreducible representation, the operator P 2 will act by the scalar

−p20 + p21 + p22 + p23

which can be positive, negative, or zero, so given by m2,−m2, 0 for various
m. The value of the scalar will be the same everywhere on the orbit, so in
energy-momentum space, orbits will satisfy one of the three equations

−p20 + p21 + p22 + p23 =





−m2

m2

0

The representation can be further characterized in one of two ways:

• By the value of the second Casimir operator W 2.

• By the representation of the stabilizer group Kp on the eigenspace of the
momentum operators with eigenvalue p.

At the point p on an orbit, the Pauli-Lubanski operator has components

W0 = −p · J, W = −p0J+ p×K

In the next chapter we will find the possible orbits, then pick a point p on each
orbit, and see what the stabilizer group Kp and Pauli-Lubanski operator are at
that point.

11.3 Classification of representations by orbits

The Lorentz group acts on the energy-momentum space R4 by

p → Λp

and, restricting attention to the p0p3 plane, the picture of the orbits looks like
this
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p0

p3m

m

−m

−m

O0

O(m,0,0,0)

O(1,0,0,1)

O(−1,0,0,1)

O(0,0,0,m)

O(−m,0,0,0)

Figure 11.1: Orbits of vectors under the Lorentz group.

Unlike the Euclidean group case, here there are several different kinds of
orbits Op. We’ll examine them and the corresponding stabilizer groups Kp each
in turn, and see what can be said about the associated representations.

11.3.1 Positive energy time-like orbits

One way to get negative values −m2 of the Casimir P 2 is to take the vector
p = (m, 0, 0, 0), m > 0 and generate an orbit O(m,0,0,0) by acting on it with the
Lorentz group. This will be the upper, positive energy, sheet of the hyperboloid
of two sheets

−p20 + p21 + p22 + p23 = −m2

so

p0 =
q

p21 + p22 + p23 +m2

The stabilizer group of K(m,0,0,0) is the subgroup of SO(3, 1) of elements of
the form �

1 0
0 R

�
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where R ∈ SO(3), so K(m,0,0,0) = SO(3). Irreducible representations of this
group are classified by the spin. For spin 0, points on the hyperboloid can
be identified with positive energy solutions to a wave equation called the Klein-
Gordon equation and functions on the hyperboloid both correspond to the space
of all solutions of this equation and carry an irreducible representation of the
Poincaré group. This case will be studied in detail in chapters ?? and ??. We
will study the case of spin 1

2 in chapter ??, where one must use the double cover
SU(2) of SO(3). The Poincaré group representation will be on functions on
the orbit that take values in two copies of the spinor representation of SU(2).
These will correspond to solutions of a wave equation called the massive Dirac
equation. For choices of higher spin representations of the stabilizer group, one
can again find appropriate wave equations and construct Poincaré group repre-
sentations on their space of solutions (although additional subsidiary conditions
are often needed) but we will not enter into this topic.

For p = (m, 0, 0, 0) the Pauli-Lubanski operator will be

W0 = 0, W = −mJ

and the second Casimir operator will be

W 2 = m2J2

The eigenvalues of W 2 are thus proportional to the eigenvalues of J2, the
Casimir operator for the subgroup of spatial rotations. These are again given
by the spin s, and will take the values s(s + 1). These eigenvalues classify
representations consistently with the stabilizer group classification.

11.3.2 Negative energy time-like orbits

Starting instead with the energy-momentum vector p = (−m, 0, 0, 0), m > 0,
the orbit O(−m,0,0,0) one gets is the lower, negative energy component of the
hyperboloid

−p20 + p21 + p22 + p23 = −m2

satisfying

p0 = −
q
p21 + p22 + p23 +m2

Again, one has the same stabilizer group K(−m,0,0,0) = SO(3) and the same
constructions of wave equations of various spins and Poincaré group represen-
tations on their solution spaces as in the positive energy case. Since negative
energies lead to unstable, unphysical theories, we will see that these represen-
tations are treated differently under quantization, corresponding physically not
to particles, but to antiparticles.

11.3.3 Space-like orbits

One can get positive values m2 of the Casimir P 2 by considering the orbit
O(0,0,0,m) of the vector p = (0, 0, 0,m). This is a hyperboloid of one sheet,
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satisfying the equation

−p20 + p21 + p22 + p23 = m2

It is not too difficult to see that the stabilizer group of the orbit is K(0,0,0,m) =
SO(2, 1). This is isomorphic to the group SL(2,R), and it has no finite dimen-
sional unitary representation s. These orbits correspond physically to “tachyons”,
particles that move faster than the speed of light, and there is no known way
to consistently incorporate them in a conventional theory.

11.3.4 The zero orbit

The simplest case where the Casimir P 2 is zero is the trivial case of a point
p = (0, 0, 0, 0). This is invariant under the full Lorentz group, so the orbit
O(0,0,0,0) is just a single point and the stabilizer group K(0,0,0,0) is the entire
Lorentz group SO(3, 1). For each finite dimensional representation of SO(3, 1),
one gets a corresponding finite dimensional representation of the Poincaré group,
with translations acting trivially. These representations are not unitary, so not
usable for our purposes. Note that these representations are not distinguished
by the value of the second Casimir W 2, which is zero for all of them.

11.3.5 Positive energy null orbits

One has P 2 = 0 not only for the zero-vector in momentum space, but for a
three dimensional set of energy-momentum vectors, called the null-cone. By
the term “cone” one means that if a vector is in the space, so are all products
of the vector times a positive number. Vectors p = (p0, p1, p2, p3) are called
“light-like” or “null” when they satisfy

p2 = −p20 + p21 + p22 + p23 = 0

One such vector is p = (|p|, 0, 0, |p|) and the orbit of the vector under the action
of the Lorentz group will be the upper half of the full null-cone, the half with
energy p0 > 0, satisfying

p0 =
q

p21 + p22 + p23

It turns out that the stabilizer group K|p|,0,0,|p| of p = (|p|, 0, 0, |p|) is E(2),
the Euclidean group of the plane. One way to see this is to use the matrix
representation ?? which explicitly gives the action of the Poincaré Lie algebra
on Minkowski space vectors, and note that

l3, l1 + k2, l2 − k1

each act trivially on (|p|, 0, 0, |p|). l3 is the infinitesimal spatial rotation about
the 3-axis. Defining

b1 =
1√
2
(l1 + k2), b2 =

1√
2
(l2 − k1)
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and calculating the commutators

[b1, b2] = 0, [l3, b1] = b2, [l3, b2] = −b1

we see that these three elements of the Lie algebra are a basis of a Lie subalgebra
isomorphic to the Lie algebra of E(2).

Recall from section ?? that there are two kinds of irreducible unitary repre-
sentations of E(2):

• Representations such that the two translations act trivially. These are
irreducible representations of SO(2), so one dimensional and characterized
by an integer n (half-integers when the Poincaré g roup double cover is
used).

• Infinite dimensional irreducible representations on a space of functions on
a circle of radius r.

The first of these two cases corresponds to irreducible representations of the
Poincaré group labeled by an integer n, which is called the “helicity” of the
representation. Given the representat ion, n will be the eigenvalue of J3 acting
on the energy-momentum eigenspace with energy-momentum (|p|, 0, 0, |p|). We
will in later chapters consider the cases n = 0 (massless scalars, wave equa-
tion the Klein-Gordon equation), n = ± 1

2 (Weyl spinors, wave equation the
Weyl equation), and n = ±1 (photons, wave equation the Maxwell equations).
The second sort of representation of E(2) corresponds to representations of the
Poincaré group known as “continuous spin” representations, but these seem not
to correspond to any known physical phenomena.

Calculating the components of the Pauli-Lubanski operator, one finds

W0 = −|p|J3, W1 = −|p|(J1 +K2), W2 = −|p|(J2 −K1), W3 = −|p|J3
Defining

B1 =
1√
2
|p|(J1 +K2), B2 =

1√
2
|p|(J2 −K1)

the second Casimir operator is given by

W 2 = 2|p|(B2
1 +B2

2)

which is the Casimir operator for E(2). It takes non-zero values on the contin-
uous spin representations, but is zero for the representations where E(2) trans-
lations act trivially. It does thus not distinguish between massless Poincaré
representations of different helicities.

11.3.6 Negative energy null orbits

Looking instead at the orbit of p = (−|p|, 0, 0, |p|), one gets the negative energy
part of the null-cone. As with the time-like hyperboloids of non-zero mass
m, these will correspond to antiparticles instead of particles, with the same
classification as in the positive energy case.
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11.4 For further reading

For an extensive discussion of the Poincaré group, its Lie algebra and repre-
sentations, see [28]. Weinberg [30] (chapter 2) has some discussion of the rep-
resentations of the Poincaré group on single-particle state spaces that we have
classified here. Folland [8] (chapter 4.4) and Berndt [3] (chapter 7.5) discuss the
construction of these representations using induced representation methods (as
opposed to the construction as solution spaces of wave equations that we will
use in following chapters).
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