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Quantum mechanics as we know it was born in 1925 in a series of conceptual
breakthroughs which began with Heisenberg’s creation of a theory involving non-
commuting quantities, soon reformulated (by Max Born) in terms of position
and momentum operators Q and P satisfying the commutation relations

[Q,P ] = iℏ1

(now known as the Heisenberg commutation relations). We are for now consid-
ering just one degree of freedom. ℏ is a constant that depends on units used to
measure position and momentum. We will choose units such that ℏ = 1. The
mathematician Hermann Weyl soon recognized these relations as those of a uni-
tary representation of a Lie algebra now known as the Heisenberg Lie algebra,
and described the corresponding Heisenberg group.

Late in 1925, Schrödinger formulated a seemingly different version of quan-
tum mechanics, in terms of wave-functions satisfying a differential equation.
What Schrödinger had found was a construction of a representation of the
Heisenberg Lie algebra on the vector space of functions ψ(q) of a position vari-
able q, with Q the multiplication by q operator and P the differential operator

P = −i d
dq

Ultimately the Stone-von Neumann theorem showed that there was essentially
only one irreducible representation of the Heisenberg group, so the two formu-
lations of quantum mechanics were two aspects of the same thing.

We’ll begin with the Lie algebra corresponding to the Heisenberg com-
mutation relations, then find the group with this Lie algebra and show that
Schrödinger’s wave-functions give an irreducible unitary representation of the
Lie algebra and group. It turns out that any irreducible unitary representation
of the Heisenberg group is essentially equivalent to this one (Stone-von Neumann
theorem), but the family of different ways of constructing these representations
carries an intricate structure.

1 The Heisenberg Lie algebra and Lie group

The Heisenberg Lie algebra h will be the three-dimensional Lie algebra with a
basis X,Y, Z and Lie bracket relations

[X,Z] = [Y, Z] = 0, [X,Y ] = Z

This Lie algebra can be identified with the Lie algebra of three by three strictly
upper-triangular matrices by

X =

0 1 0
0 0 0
0 0 0

 , Y =

0 0 0
0 0 1
0 0 0

 , , Z =

0 0 1
0 0 0
0 0 0
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A unitary representation (which we’ll call π′) will be given by three skew-
adjoint operator π′(X), π′(Y ), π′(Z) satisfying

[π′(X), π′(Y )] = π′(Z), [π′(X), π′(Z)] = 0, [π′(Y ), π′(Z)] = 0

These become the Heisenberg commutation relations if we identify

π′(X) = −iQ, π′(Y ) = −iP, π′(Z) = −i1

Note that factors of i are appearing here just because physicists want to work
with self-adjoint operators, but for unitary representations the Lie algebra rep-
resentation operators are skew-adjoint.

In terms of matrices, exponentiating elements of h as in

exp

0 x z
0 0 y
0 0 0

 =

1 x z + 1
2xy

0 1 y
0 0 1


gives the elements of the Heisenberg group H. This is the group of upper
triangular matrices with 1s on the diagonal. Using x, y, z as (“exponential”)
coordinates on the group, H is the space R3 with multiplication law

(x, y, z)(x′, y′, z′) = (x+ x′, y + y′, z + z′ +
1

2
(xy′ − x′y))

For computations with the Heisenberg group it is often convenient to use the
Baker-Campbell-Hausdorf formula, which simplifies greatly in this case since all
Lie brackets except [X,Y ] = Z vanish. As a result, for A,B ∈ h one has

eAeB = eA+B+ 1
2 [A,B]

This group is a central extension

0 → (R,+) → H → (R2,+) → 0

of the additive group of R2 by the additive group of R.
A slightly different version of the Heisenberg goup (which we’ll call Hred)

that is sometimes used takes a quotient by Z and replaces the central R with a
central U(1), so is a central extension

0 → U(1) → Hred → (R2,+) → 0

Elements are labeled by (x, y, u) where x and y are in R and u ∈ U(1), and the
group law is

(x, y, u)(x′, y′, u′) = (x+ x′, y + y′, uu′ei
1
2 (xy

′−x′y))
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2 The Schrödinger representation

The Schrödinger representation πS will be a representation on a vector space H
of complex valued functions ψ(q) on R, with derivative the Lie algebra repre-
sentation

π′
S(X) = −iQ = −iq, π′

S(Y ) = −iP = − d

dq
, π′

S(Z) = −i1

Exponentiating these operators gives unitary operators that generate πS

πS(x) = e−ixq, πS(y) = e−y d
dq , πS(Z) = e−iz1

Note that πS(y) acts on the representation space by translation

πS(y)ψ(q) = ψ(q − y)

Definition (Schrödinger representation). The Schrödinger representation of the
Heisenberg group H is given by

πS(x, y, z)ψ(q) = e−izei
1
2xye−ixqψ(q − y)

for (x, y, z) ∈ H.

One can easily check that this is a representation, since it satisfies the ho-
momorphism property

πS(x, y, z)πS(x
′, y′, z′) = πS(x+ x′, y + y′, z + z′ +

1

2
(xy′ − x′y))

Taking as representation space H = L2(R), for the Lie algebra representation
π′
S there will be domain (functions on which operators not defined) and range

(operators take something in L2(R) to something not in L2(R)) problems. As
an alternative, one can take H = S(R) so that the representation operators
are well-defined (but then the dual space is something different, the tempered
distributions S′(R)). For the group representation the operators πS are well
defined on H = L2(R). Giving up on a well-defined inner-product and unitarity,
one can take H = S ′(R). This is a general phenomenon for infinite-dimensional
representations of non-compact Lie groups that we will see again later in other
examples: one has inequivalent representations on a sequence of inclusions of
representation spaces

S(R) ⊂ L2(R) ⊂ S ′(R)

but there is a sense in which these are all “the same”, since the inclusions are
dense.

3 The Stone-von Neumann theorem

The remarkable fact about representations of the Heisenberg group is that there
is essentially only one representation (once one has specified the constant by
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which Z acts, but non-zero choices are related by a rescaling). More specif-
ically, any irreducible representation of H will be unitarily equivalent to the
Schrödinger representation. One has the following theorem

Theorem (Stone-von Neumann). For any irreducible unitary representation π
of H (with action of the center π(0, 0, z) = e−iz) on a Hilbert space H, there is
a unitary operator U : H → L2(R) such that

UπU−1 = πS

We will not give a proof here, since the analysis is somewhat involved, but
what follows should make clear some problems that any proof needs to overcome
and motivate the strategy for an actual proof.

Recall (see for example the notes on simple quantum mechanical examples),
that one can define the adjoint pair of operators

a =
1√
2
(Q+ iP ) =

1√
2
(q +

d

dq
), a† =

1√
2
(Q− iP ) =

1√
2
(q − d

dq
)

and for the harmonic oscillator Hamiltonian the lowest energy eigenspace is the
one-dimensional space of solutions in L2(Q) of

aψ0(q) = 0

These are all proportional to

ψ0 = e−
1
2 q

2

The rest of the state space can be generated by repeatedly applying the oper-
ator a† to ψ0. One of the exercises will be to use this basis to prove that the
Schrödinger representation is irreducible.

A possible approach to the Stone-von Neumann theorem would be to look
at the operators

b = UaU−1, b† = Ua†U−1

show that b has a one-dimensional kernel, and that the rest of the representation
is given by repeated applications of b†. Unfortunately, this can’t work, since
the domain/range problems mean there is no guarantee that vectors in the
range of b† will be in its domain, so generating the representation by repeatedly
applying b† won’t work. It turns out that the Stone-von Neumann theorem is
not true for general Lie algebra representations of h, only works for Lie algebra
representations that integrate to give a group representation.

To get a proof that does work, one needs to work not with Q,P or a, a†, but
with their exponentiated versions. For details, see [3], chapter 14.

An important example of an irreducible representation unitarily equivalent
to the Schrödinger representation is given by the Fourier transform F which
takes

ψ(q) → ψ̃(p) = (Fψ)(p) = 1√
2π

∫
R

e−ipqψ(q)dq
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and is a unitary transformation on L2(R), with inverse F̃ given by Fourier
inversion

ψ̃(p) → (F̃ ψ̃)(q) = 1√
2π

∫
R

eipqψ̃(p)dp

This is thus an example where the Stone-von Neumann theorem applies, with
U = F̃ , U−1 = F .

4 The Bargmann-Fock representation

The Stone-von Neumann theorem also applies to very different constructions of
representations on other versions of Hilbert space. In particular, it is clear from
looking at the harmonic oscillator calculations that energy eigenstates can be
identified with monomials in a complex variable , with a and a† decreasing and
increasing the degree. To find a construction of the Heisenberg group irreducible
representation on C[w], one needs a Hilbert space structure, which we can define
as follows:

Definition (Fock Space). Fock space HF is the space of entire functions on C,
with finite norm in the inner product

⟨f(w), g(w)⟩ = 1

π

∫
C

f(w)g(w)e−|w|2

An orthonormal basis of H is given by apropriately normalized monomials.
Since

⟨wm, wn⟩ =
1

π

∫
C

wmwne−|w|2

=
1

π

∫ ∞

0

(

∫ 2π

0

eiθ(n−m)dθ)rn+me−r2rdr

= n!δn,m

we see that the functions wn
√
n!

are orthornormal.

To get a representation of the (complexified) Heisenberg Lie algebra on this
space, define

a =
d

dw
, a† = w

As an exercise, you should show that these operators are each other’s adjoints
with respect to the inner product on Fock space. On the real Heisenberg Lie
algebra, this representation exponentiates to a representation of the Heisenberg
group. By the Stone-von Neumann theorem it is unitarily equivalent to the
Schrödinger representation on L2(R).

To explicitly write the Bargmann-Fock representation of the Heisenberg Lie
algebra, we can complexify and work with operators that depend on complex
linear combinations of the real basisX,Y, Z. If we do this first in the Schrödinger
representation we have

π′
S(iX) = Q, π′

S(iY ) = P, π′
S(iZ) = 1
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and so

π′
S(

1√
2
(iX + i(iY ))) = a =

1√
2
(q +

d

dq
)

(with at similar formula for a†). To get Bargmann-Fock we want a π′
BF that

takes the same linear combinations to d
dw and w, acting on HF . Thus

π′
BF (

1√
2
(iX+i(iY )) = a =

d

dw
, π′

BF (
1√
2
(iX−i(iY )) = a† = w, π′

BF (iZ) = 1

We won’t work this out here, but these operators can be exponentiated to get
operators for a Heisenberg Lie group representation. By Stone-von Neumann,
there will be a unitary operators

U : HF → L2(R), U−1 : L2(R) → HF

These operators are quite non-trivial and interesting in analysis, giving unitary
isomorphisms between two very different kinds of function spaces. The explicit
form for U−1 is often called the Bargmann transform and is given by

(U−1ψ)(w) =

(
1

π

) 1
4

e−
1
2w

2

∫ ∞

−∞
e−

1
2 q

2

e
√
2wqψ(q)dq

The relation between the Schrödinger and Bargmann-Fock operators will be
given by

U
d

dw
U−1 =

1√
2
(q +

d

dq
), UwU−1 =

1√
2
(q − d

dq
)

For more on the Bargmann-Fock representation and the Bargmann trans-
form a good source is Chapter 1, Section 6 of [2].

5 The Weyl algebra

A closely related algebra to the Heisenberg Lie algebra is the Weyl algebra,
which can be defined as the non-commutative algebra of polynomial coefficient
differential operators for a complex variable w. The generators of the algebra
are

• Multiplication by w.

• Differentiation by w: d
dw

These satisfy the same commutation relations as a, a†

[
d

dw
,w] = 1

since
d

dw
(wf)− w

df

dw
= f
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Recall that one can think of representations of a Lie algebra g as modules for
the associative algebra U(g). It is convenient here also to complexify, and for
any Lie algebra we’ll use the notation U(g) to refer to U(g)⊗C = U(g⊗C). For
the Heisenberg Lie algebra h, U(h) is given by all complex linear combinations
of products of basis elements X,Y, Z, modulo the relations

[X,Z] = [Y,Z] = 0, [X,Y ] = Z

The center Z(h) of U(h) is the commutative algebra C[Z] of polynomials in Z.
Note that we are following convention and using Z(h) to mean the center of U(h)
not the center of the Lie algebra itself (which in this case is one dimensional, so
in a confusing notation CZ not C[Z]).

In any irreducible representation π′ of a Lie algebra g, by Schur’s lemma
elements of the center Z(g) act by scalars. This gives a homomorphism

χπ′ : Z(g) → C

called the infinitesimal character of the representation. In the case of g = h, since
Z(h) is the polynomial functions on h, the infinitesimal character is evaluation
of the polynomial at some c ∈ C. This c is the scalar given by the action of
π′(Z) on the representation space. The Schrödinger representation as we have
defined it is an irreducible representation with c = −i.

For general Lie algebra representations of the complexified Lie algebra h⊗C,
for each c ̸= 0 we have the irreducible representation unitarily equivalent to the
Schrödinger representation (rescaled from c = −i. These will be unitary for c
imaginary.

Z acts by a scalar we’ll call cπ. Polynomials in Z(h) also act by a scalar, the
evaluation of the polynomial at cπ. The Schrödinger representation as we have
defined it is an irreducible representation with cπS

= −i. Restricting attention
to Lie algebra representations for which π′(Z) = c1 for a chosen c ∈ C, these
will be modules for the quotient algebra

U(h)/(Z − c)

By rescaling X and Y , for c ̸= 0, we get the Weyl algebra, and so an irreducible
Heisenberg algebra representation will be a module for the Weyl algebra. Among
these modules is the standard one on polynomials on w, which corresponds to
the one we have studying, which is integrable to a unitary Heisenberg group
representation. But there are many different modules for the Weyl algebra,
with the study of thes modules the beginning of the subject of D-modules in
algebraic geometry (see for instance [1]).

6 The Heisenberg group and symplectic geom-
etry

The three-dimensional Heisenberg group that we have been studying has a sim-
ple generalization that behaves in much the same way. For any n, define the
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2n + 1 dimensional Heisenberg Lie algebra to be the Lie algebra with basis
Xj , Yj , Z (j = 1, 2, · · · , n) and all Lie brackets zero except

[Xj , Yk] = δjkZ

One can easily easily get a corresponding Heisenberg Lie group generalizing the
n = 1 case by exponentiating.

Instead of working with a basis like this, one can define this Lie group in a
more coordinate-invariant way, starting with any symplectic form on V = R2n,
where

Definition (Symplectic form). A symplectic form S on a vector space V is a
non-degenerate anti-symmetric bilinear form

(v1, v2) ∈ V × V → S(v1, v2) ∈ R

on V .

This is the same definition as that of an inner product on V , with “symmet-
ric” replaced by antisymmetric. For any even-dimensional real vector space S
with a symplectic form S, one can define a Lie algebra structure on V ⊕R by
taking the Lle bracket to be

[(v, z), (v′, z′)] = (0, S(v, v′))

where (v, z) are elements of V ⊕ R. One gets a corresponding Lie group by
taking as group law on V ⊕R

(v, z) · (v′, z′) = (v + v′, z + z′ +
1

2
S(v, v′))

In the inner product case, by Gram-Schmidt orthornomalization one can
always find an orthonormal basis of V , with any other basis related to this one
by an element of GL(V ). The subgroup of GL(V ) preseving the inner product
and thus taking orthonormal bases to orthonormal bases is the orthogonal group
O(V ). In the symplectic case, V has to be even-dimensional (to have a non-
degenerate S), then one can always find (exercise?) a “symplectic basis”: Xj

and Yj for j = 1, 2, · · · , n satisfying

S(Xj , Xk) = S(Yj , Yk) = 0, S(Xj , Yk) = δjk

In this basis one recovers the earlier definition of the Heisenberg Lie algebra and
Lie group of dimension 2n+ 1.

The subgroup of GL(V ) preserving S and taking symplectic bases to sym-
plectic bases is by definition the symplectic group Sp(V ). Since V is even
dimensional, this group will be a matrix group that can be denoted Sp(2n,R).
Note that this is different than the group often written as Sp(n), the group of
n by n quaternionic matrices preserving the standard hermitian form on Hn.
The groups Sp(n) and Sp(2n,R) are different real forms of the group Sp(2n,C)
of linear transformations preserving a non-degenerate anti-symmetric bilinear
form on C2n.
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7 Polarizations

From the discussion above, V can be written as

V =M ⊕M∗

where M is an n-dimensional vector space with basis Xj and M∗ is the dual
vector space with basis elements Yj dual to the Xj (i.e. Yj(Xk) = δjk). Note
that for any vectors x, x′ ∈ M ⊂ V one has S(x, x′) = 0. A subspace with this
property is called “isotropic”. The maximal dimension of a subspace of V on
which S is zero is n, and such isotropic subspaces are called “Lagrangian”. M∗

is also Lagrangian.
Since the definition of the Heisenberg Lie algebra and Lie group depend

only on the symplectic form S, and by Stone-von Neumann there is only one
irreducible representation, this irreducible representation should depend just
on S. It turns out though that all constructions of this representation depend
upon a choice of additional structure. We have seen that the construction of
the Schrödinger representation depends on a choice of n position coordinates
qj , correspondng to the basis elements Xj of the Lie algebra, which span a
Lagrangian subspace of R2n. The Fourier transform takes this construction to
a different one, depending on n momentum coordinates pj , corresponding to the
basis elements Yj of the Lie algebra, which span a complementary Lagrangian
subspace of R2n. More generally, one can construct a version of the Schrödinger
representation for any choice of Lagrangian subspace ℓ ⊂ R2n (we will not
show this here, may later give this construction). By the Stone-von Neumann
theorem, for each ℓ there will be an operator Uℓ giving a unitary equivalence
with the construction for the standard choice of ℓ spanned by the Xj . For ℓ
spanned by the Yj , Uℓ will be the Fourier transform, but for more general ℓ its
construction is rather non-trivial.

As an exercise, you should show that the choices of Lagrangian subspace
ell are parametrized by the space U(n)/O(n). Choices of Lagrangian subspace
M ⊂ V give what is called a “real polarization” of V . The Bargmann-Fock
construction involves a different sort of polarization, called a “complex polar-
ization”. Here one complexifies V and asks for Lagrangian subspaces W and W
such that

V ⊗C =W ⊕W

where W and W are interchanged by the conjugation map on C.
Such a decomposition is equivalent to the choice of a compatible complex

structure on V , where

Definition (Complex structure). A complex structure on a real vector space V
is a (real)-linear map

J : V → V

satisfying J2 = −1.

and
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Definition (Compatible complex structure). A complex structure on V is com-
patible with a symplectic form S on V when

S(Jv1, Jv2) = S(v1, v2)

Such J only exist if the dimension of V is even and one can think of them
as ways of making V a complex vector space (so identifying R2n = Cn), with
multiplication by i given by J . J has no eigenvectors in V , but it does have
complex eigenvalues ±i giving a decomposition

V ⊗C = V +
J ⊕ V −

J

into ±i eigenspaces for J . This will be a polarization of V when J is compatible
with S since then V +

J and V −
J are Lagrangian subspaces. To see this, note that

for w1, w2 ∈ V +
J

S(w1, w2) = S(Jw1, Jw2) = S(iw1, iw2) = −S(w1, w2)

so must be zero.
Given both a symplectic form S and a compatible complex structure J on

V , V becomes not just a complex vector space, but a complex vector space with
Hermitian inner product, defined by

⟨v1, v2⟩J = S(v1, Jv2) + iS(v1, v2)

One can easily check that this is Hermitian, but it is not necessarily positive. To
get a positive Hermitian structure one needs to impose an addtional condtion
on J , that, for non-zero v ∈ V one has

S(v, Jv) > 0

The possible choices of general complex structure J are parametrized byGL(2n,R)/GL(n,C).
The compatibility condition implies that J ∈ Sp(2n,R). As an exercise you will
show that the space of possible positive complex structures compatible with S
is Sp(2,R)/U(n). Gor the case n = 1, this is SL(2,R)/U(1), which can be
identified either with the upper half plane or interior of the unit disk in C.

Draw picture of n = 1 case.
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