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DETERMINANTAL PROCESSES AND RELATED TOPICS

Determinantal processes form a special class of random point processes
that are on the next level of complexity after Poisson processes. Numerous
examples of determinantal processes emerge in different domains of mathe-
matics and mathematical physics: probability theory, random matrix theory,
tiling models, algebraic combinatorics, representation theory; the subject is
also related to classical analysis and special functions.

The theory of determinantal processes is a relatively new and rapidly
developing subject. The goal of the course is to give a comprehensive intro-
duction to this theory and to review some of its most recent achievements.

The course is accessible to graduate students. Prerequisites: Basic Real
Analysis and Probability Theory (measure and integration, Markov chains,
elements of Markov processes); Linear Algebra; some familiarity with basic
notions related to Banach and Hilbert space operators would also be desir-
able.

Brief course description

Elements of General Theory: Random point processes. Janossy func-
tions and correlation functions. Determinantal point processes. Correlation
kernels. Macchi-Soshnikov theorem.

Basic Examples: Sine-kernel process and discrete sine-kernel process. Or-
thogonal polynomials, Christoffel-Darboux kernel. N -particle ensembles: or-
thogonal polynomial ensembles and biorthogonal ensembles. Large-N limit
transitions.
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Random Matrices: Random matrices and random spectra. Dyson’s circu-
lar unitary ensemble CUEN , convergence to the sine-kernel process. Cayley
transform relating unitary and Hermitian matrices. Infinite-dimensional ran-
dom matrices.

Random Partitions: Partitions and Young diagrams. Combinatorics of
the Young graph. Probability measures on Young diagrams: z-measures and
Plancherel measure. Ulam’s problem. Baik-Deift-Johansson theorem and its
generalization.

Space-time Determinantal Processes: Dyson’s Brownian motion model.
Eynard–Mehta theorem. Non-intersecting path models. General structure
of space-time correlation kernels.

Markov Chains on Partitions related to z-measures; Plancherel
Measure: Dynamical Meixner ensemble. Analytic continuation in dimen-
sion. Space-time hypergeometric kernel. Viennot’s geometric version of
Robinson-Schensted correspondence. From Poisson process in a quarter-
plane to Plancherel dynamics.

Projective Limit Construction of infinitely-many-particle Feller dy-
namics: Branching graphs and Martin boundaries. Commutative diagrams
of Markov kernels. The projective limit construction of Markov dynamics.
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